
Spontaneous-Symmetry-Breaking Charge

Separation Induced by Pseudo-Jahn–Teller

Distortion in Organic Photovoltaic Material

Takeaki Zaima,†,‡ Wataru Ota,†,‡ Naoki Haruta,†,‡ Motoyuki Uejima,¶

Hideo Ohkita,§ and Tohru Sato∗,†,‡

†Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho

34-4, Sakyo-ku, Kyoto 606-8103, Japan

‡Department of Molecular Engineering, Graduate School of Engineering, Kyoto University,

Nishikyo-ku, Kyoto 615-8510, Japan

¶MOLFEX, Inc., Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan

§Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University,

Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: tsato@scl.kyoto-u.ac.jp

Abstract

The driving force of charge separation in the initial photovoltaic conversion process

was theoretically investigated using ITIC, non-fullerene acceptor material for organic

photovoltaic (OPV) devices, as an example. The density functional theory (DFT) cal-

culations show that the pseudo-Jahn–Teller (PJT) distortion of the S1 excimer state

induces spontaneous-symmetry-breaking charge separation (SSB-CS) between the iden-

tical ITIC molecules to give an intermolecular charge-transfer (ICT) excited state, even

without the asymmetry of the surrounding environment. The strong PJT effect arises
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from the vibronic coupling between the pseudo-degenerate S1 and S2 excited states

with different irreducible representations (irreps), i.e., Au for S1 and Ag for S2, via

the asymmetric vibrational mode with Au irrep. The vibrational mode responsible

for the spontaneous polarization, opposite in one ITIC monomer and the other, is the

intramolecular C-C stretching vibration between the core IT and terminal IC units

at the stacked region. These results suggest that controlling the PJT effect of the

excited states can influence the charge separation efficiency in the initial photovoltaic

conversion process.

Organic photovoltaics (OPV) is a photovoltaic conversion system using organic molecules. 1–4

The active layer of an OPV device typically consists of donor and acceptor materials to in-

hibit carrier recombination at the donor-acceptor interface. 5–7 The photovoltaic conversion

process can be divided into the following steps: 8–10 (i) photon absorption creates an exciton

in the donor or acceptor regions, (ii) the exciton diffuses to the donor-acceptor interface,

(iii) a charge-transfer (CT) state forms, and (iv) free carriers are generated by overcoming

the Coulomb attraction between the electron-hole pair. The driving force of the free car-

rier generation has been considered as an energy offset defined by the HOMO or LUMO

energy differences between the donor and acceptor materials. 8 The threshold of the energy

offset required to overcome the Coulomb attraction was estimated to be around 0.3 eV. 11,12

However, OPV devices with energy offsets less than 0.3 eV have been recently reported

to achieve high power conversion efficiencies (PCEs). 13–20 The driving force of the charge

separation in the OPV devices remains unclear, although several contributing factors have

been proposed, such as entropy,21,22 cascade energy landscape,23–25 and electron delocaliza-

tion.26 Symmetry-breaking charge separation (SB-CS), causing the intra- or inter-molecular

charge separation between identical fragments, can also be an initial charge separation step

in small offset systems.27–29 In general, the origin of the SB-CS, primarily studied in polar

solvents, is attributed to the asymmetry of the surrounding environment, such as solvent

coordinates.30,31
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It has been reported that SB-CS competes with excimer formation. 32,33 An excimer state

is defined by an excited state where the electronic wavefunction is symmetrically delocalized

over a dimer; that is, an admixture of molecular exciton and charge resonance states. 34–37

A vertical excitation is likely to form an excimer state in the aggregation phase because of

the proximity of molecules.38 The electronic structure of the excimer is pseudo-degenerate.

In this case, spontaneous symmetry-breaking during vibrational relaxation can generate an

intermolecular CT (ICT) excited state or a locally excited (LE) state from the excimer state

(Fig. 1). This symmetry lowering without the surrounding asymmetry is called pseudo-

Jahn–Teller (PJT) distortion.39,40 The strength of the PJT effect, determining whether the

adiabatic state becomes an excimer state or an ICT state, depends on the vibronic coupling

and energy gap between the pseudo-degenerate electronic states. 39,40
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Figure 1: (a) Possible excited electronic states of the dimer after the vibrational relaxation.
(b) Schematic representations of the potential energy surfaces with the weak and strong PJT
effect.

Based on density functional theory (DFT) calculations, we investigate the driving force

of charge separation in the initial photovoltaic conversion process, focusing on the PJT
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distortion to cause spontaneous symmetry-breaking. The origin of vibronic coupling respon-

sible for the PJT distortion is discussed by its density form, i.e., vibronic coupling density

(VCD).41–43 The non-fullerene acceptor material for OPV devices, ITIC (2,2’-[[6,6,12,12-

tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene-

2,8-diyl]-bis[methylidyne(3-oxo-1H-indene2,1(3H)-diylidene)]]bis[propanedinitrile], Fig. 2 (a)),

is used as an illustrative example. The ITIC consists of the core IT (indacenodithieno[3,2-

b]thiophene) unit and terminal IC (1,1-dicyanomethylene3-indanone) unit. The absorption

spectral lineshape of the ITIC neat film differs from that of the CHCl3 solution;44 the spec-

trum in the neat film is red-shifted and broadened compared with that in the solution. This

result suggests that ITIC has delocalized wavefunctions in the neat film.

The theory of the PJT effect is briefly described. A molecular system with M nuclei

and N electrons is considered. Sets of electronic and mass-weighted normal coordinates

are denoted by r = (r1, · · · , ri, · · · , rN) and Q = (Q1, · · · , Qα, · · · , Q3M−5 or 3M−6), respec-

tively. Using the Herzberg–Teller expansion, electronic Hamiltonian, Ĥe(r,Q), is expanded

in terms of the mass-weighted normal coordinates around reference nuclear configuration

(the geometry of the saddle point) Q = 0,45,46

Ĥe(r,Q) = Ĥe(r,0) +
∑
α

V̂αQα +
1

2

∑
αβ

ŴαβQαQβ + · · · , (1)

where V̂α and Ŵαβ are the electronic parts of linear and quadratic vibronic coupling operators,

V̂α =

(
∂Ĥe(r,Q)

∂Qα

)
0

, (2)

Ŵαβ =

(
∂2Ĥe(r,Q)

∂Qα∂Qβ

)
0

. (3)

Linear vibronic coupling constant (VCC), Vnm,α, and quadratic VCC, Wnm,αβ, between elec-

tronic states |Ψm(r,0)〉 and |Ψn(r,0)〉, which are the eigenstates of Ĥe(r,0), are expressed
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Figure 2: (a) Structure of ITIC. (b) The ITIC dimer with an edge-stacking structure as a
computational model in the aggregation phase.

as45,46

Vnm,α =
〈
Ψn(r,0)

∣∣∣ V̂α

∣∣∣Ψm(r,0)
〉
, (4)

Wnm,αβ =
〈
Ψn(r,0)

∣∣∣ Ŵαβ

∣∣∣Ψm(r,0)
〉
. (5)

Note that Vnm,α is non-vanishing when the direct product of the irreducible representation

(irrep) for electronic states n and m contains the irrep of vibrational mode α, i.e., Γα ∈

Γn ⊗ Γm.
39 Based on the second-order perturbation theory, the energy of electronic state m
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along single vibrational mode α is given by39

Em(Q) = Em(0) +
1

2
(Wm,α − 2Km,α)Q

2
α. (6)

In Eq. (6), Wm,α := Wmm,αα (≥ 0) is the diagonal quadratic VCC and

Km,α =
∑
n ̸=m

Knm,α, (7)

Knm,α =
|Vnm,α|2

En(0)− Em(0)
. (8)

Large off-diagonal VCC, |Vnm,α|2, and small positive energy gap, En(0) − Em(0), between

electronic states n and m give large positive Knm,α. When Wm,α − 2Km,α < 0 in the second

term of Eq. (6), electronic state m becomes unstable along vibrational mode α because of the

negative curvature of the potential energy surface, which is called the PJT distortion (strong

PJT effect).39,40 Negative Knm,α, or negative En(0) − Em(0), contributes to stabilizing the

potential energy surface. The PJT distortion, for example, is known to be the origin of

ferroelectricity, i.e., the spontaneous polarization of the crystal. 47,48

The spatial distribution of VCC can be expressed by VCD; 41–43

Vnm,α =

∫
dx ηnm,α(x), (9)

where x = (x, y, z) is the three-dimensional coordinate. Off-diagonal VCD, ηnm,α(x), with

n 6= m is defined by

ηnm,α(x) = ρnm(x)× vα(x), (10)

where ρnm(x) is the overlap density between electronic states n and m, and vα(x) is the

potential derivative of vibrational mode α (for details, see Sec. S1 in the Supporting Infor-

mation). The VCD enables us to elucidate the origin of vibronic coupling from electronic

and vibrational structures separately. The integration of the overlap density and off-diagonal
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VCD over the Wigner–Seitz cell give their atomic contributions. 49

The ground and excited electronic structures of ITIC were computed at the B3LYP/3-

21G and TD-B3LYP/3-21G levels of theory, respectively. For the calculations in the CHCl3

solution, the solvent effect was included through the polarizable continuum model (PCM). 50

The S0 and S1 optimized structures were confirmed stable by vibrational analysis. The

electronic and vibrational structures were computed using Gaussian 16. 51 The absorption

spectrum (see Sec. S1.2 for theoretical details), VCC, and VCD were computed using our

codes.

First, the electronic structures of the single ITIC molecule in the CHCl3 solution were

calculated to check the reliability of the present computational method. The electric dipole

transition from S0 to S1 is symmetry allowed (Table S1). The calculated S1 absorption

spectrum using the B3LYP functional, compared with the M06-2X and ωB97X-D functionals,

reproduces the lineshape and wavelength of the experimental spectrum well (Fig. S1). 44

Hence, the B3LYP functional is considered reasonable. S1 of the single ITIC molecule has

only weak intramolecular CT character from the core IT to terminal IC units both in the

vertical excited and adiabatic states (Fig. S2).

Next, the electronic structures of the ITIC dimer in the aggregation phase were calculated.

The dimer model was constructed to have an edge-stacking structure (Fig. 2 (b)) because

ITIC has been considered packed through the terminal π-π stacking in previous studies.52–54

The S0 state of the ITIC dimer is optimized within Ci symmetry. The Franck–Condon S1

state with the Au irrep has a large oscillator strength (Table S2). In addition, the electron

density difference between S1 and S0 is symmetrically delocalized over the ITIC dimer (Fig. 3

(a)), suggesting that vertical excitation generates the S1 excimer state. Therefore, this

excimer state was geometrically optimized. As a result, the symmetry of the S1 optimized

structure is lowered to C1, indicating that spontaneous symmetry-breaking occurs during

the vibrational relaxation. The electron density difference between S1 and S0 shows that the

adiabatic S1 state is the ICT excited state having polarization (Fig. 3 (b)).
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Figure 3: Electron density differences between S1 and S0 at the (a) S0 and (b) S1 optimized
structures for the ITIC dimer. The white/blue region is positive/negative. The isosurface
values are 4×10−4 a.u.

To investigate the contributing factors of spontaneous symmetry-breaking, the S1 saddle

point was obtained by optimizing the S1 geometry with Ci symmetry kept. One vibrational

mode with imaginary frequency (924.6i cm−1) was obtained at the S1 saddle point (Fig. 4

(a)). This mode belongs to the Au irrep lowering the symmetry from Ci to C1; that is,

the direction of the vibrational mode is opposite in one ITIC monomer and the other. The

symmetry is lowered by the intramolecular C-C stretching vibration between the core IT and
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terminal IC units at the stacked region (not the intermolecular vibration). The potential

energy surfaces were calculated along the imaginary vibrational mode from the S1 saddle

point (Fig. S3), having double wells characteristic of the PJT distortion.

(d)(b)

(c)

z

x

(a)

z

x

y

x

Figure 4: (a) Vibrational mode with the imaginary frequency of 924.6i cm−1 belonging to
the Au irrep. (b) Overlap density between the pseudo-degenerate S1 and S2 states, ρnm,
(c) potential derivative for the imaginary vibrational mode, vα, and (d) off-diagonal VCD,
ηnm,α, at the S1 saddle point. The direction of the vibrational mode is taken so that the
off-diagonal VCC is negative. The white/blue region is positive/negative. The isosurface
values of (b), (c), and (d) are 4×10−4, 5×10−3, and 2×10−6 a.u., respectively.

Table 1 lists the off-diagonal VCCs between S1 and other singlets for the imaginary

vibrational mode at the S1 saddle point. Since both the irreps of S1 and imaginary vibrational

mode are the Au irrep, S1 couples to the singlets with the Ag irrep because of the selection
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rule of vibronic coupling. In particular, the off-diagonal VCC between the energetically-close

S1 and S2 is large. As a result, the square of the off-diagonal VCC divided by the electronic

energy difference (Eq. (8)) is significant between these pseudo-degenerate states, primarily

contributing to the PJT distortion.

Table 1: Off-diagonal VCC between Sm (m = 1) and Sn (n = 0, 2 − 6) for imaginary
vibrational mode α, Vnm,α, electronic energy difference between Sm and Sn, En(0)−Em(0),
and square of the off-diagonal VCC divided by the electronic energy difference, Knm,α, at
the S1 saddle point (Eq. (8)).

State |Vnm,α| En − Em Knm,α

n /10−4 a.u. /meV /10−5 a.u.
S0(Ag) 1.002 -1692 0.000
S2(Ag) 4.092 107 4.258
S3(Ag) 0.012 204 0.000
S4(Au) 0.000 205 0.000
S5(Au) 0.000 443 0.000
S6(Ag) 0.559 452 0.019

The off-diagonal VCD analysis was performed to elucidate the origin of the large vibronic

coupling responsible for the PJT distortion. Figs. 4 (b)-(d) show the results of the off-

diagonal VCD analysis between the pseudo-degenerate S1 and S2 states for the imaginary

vibrational mode. The overlap density between S1 and S2 has a large distribution at the

stacked region (see Fig. S4 for the atomic decomposition), coupling to the potential derivative

of the vibrational mode localized there. As a result, the off-diagonal VCD is large at the C-C

bonds between the core IT and terminal IC units at the stacked region (Fig. S4). The overlap

density has different signs between the ITIC monomers. This characteristic distribution is

related to the major configurations of the S1 and S2 excimer states, as discussed below.

The adiabatic S1 state of the ITIC dimer becomes the ICT state rather than the LE state

after the PJT distortion. The reason is investigated based on the electron configuration of

the excimer states at the S1 saddle point. Using the electron configurations represented by

the ITIC monomer orbitals, the S1 to S4 states within Ci symmetry can be approximately
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expressed as (Fig. 5; see Sec. S3.1 for the derivations)

|S1〉 ≈ 1

2

[
(|ΦLU,L

HO,L〉 − |ΦLU,R
HO,R〉)− (|ΦLU,L

HO,R〉 − |ΦLU,R
HO,L〉)

]
, (11)

|S2〉 ≈ 1√
2
(|ΦLU,L

HO,R〉+ |ΦLU,R
HO,L〉), (12)

|S3〉 ≈ 1√
2
(|ΦLU,L

HO,L〉+ |ΦLU,R
HO,R〉), (13)

|S4〉 ≈ 1

2

[
(|ΦLU,L

HO,L〉 − |ΦLU,R
HO,R〉) + (|ΦLU,L

HO,R〉 − |ΦLU,R
HO,L〉)

]
, (14)

where |ΦLU,L/R
HO,L/R〉 represents the electron configuration of a single-electron excitation from

the HOMO to LUMO of the left (L) and right (R) ITIC monomers. S1 and S4 are the

equal admixtures of the molecular exciton and charge resonance states. S2 is the charge

resonance state, whereas S3 is the molecular exciton state. Since S2 is the charge resonance

state, the PJT distortion arising from the vibronic coupling between S1 and S2 induces the

ICT excited state. Tables S4 and S5 summarize the overlap densities between the pseudo-

degenerate electronic states. In particular, the overlap density between S1 and S2 is given

by

ρ21 ≈
1

2
√
2

[
−(|ϕL

HO|2 + |ϕL
LU|2) + (|ϕR

HO|2 + |ϕR
LU|2)

]
(15)

where ϕ
L/R
HO/LU represents the monomer orbital. The left/right monomer orbitals are obtained

by inverting the right/left monomer orbitals, i : ϕL/R 7→ ϕR/L (Fig. S5). ρ21 is negative on

the left monomer and positive on the right monomer. The non-canceling overlap density

contributes to the large off-diagonal VCC between S1 and S2. The characteristic electronic

structures emerge because of pseudo-degeneracy. 38,55

Finally, the electronic structures of the ITIC dimer were calculated considering the pack-

ing effect in the aggregation phase to ensure the validity of the above computational model.

The aggregated structure was modeled using CONFLEX 9 (Fig. S6 (a)). 56 The electronic

structures were computed based on the ONIOM approach, 57 where the central dimer was

treated as a quantum mechanics (QM) region and the surrounding 30 molecules were treated
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Figure 5: Electron configurations of the ITIC dimer at the S1 saddle point with Ci sym-
metry. ME and CR represent the molecular exciton and charge resonance configurations,
respectively.

as a molecular mechanics (MM) region (Fig. S6 (b)). The MM region was fixed during the

geometry optimization of the QM region. The adiabatic S1 state of the ITIC dimer has the

ICT character, even considering the packing effect (Fig. S7).

In summary, we found that the PJT distortion induces the spontaneous SB-CS (SSB-CS)

between the identical ITIC molecules attributed to the vibronic coupling between the pseudo-

degenerate S1 and S2 states having the significant charge resonance configuration. The vi-

brational mode responsible for the symmetry lowering, asymmetric in one ITIC monomer

and the other, is the intramolecular C-C stretching vibration between the core IT and ter-

minal IC units at the stacked region. It should be emphasized that SB-CS originating from

the PJT distortion can occur in either intermolecular or intramolecular interactions without

the asymmetry of the surrounding environment. The degree of stabilization by symmetry-

breaking depends on the vibronic coupling and energy gap between the pseudo-degenerate

electronic states (although the reorganization of the surrounding environment accompanied

by symmetry-breaking may enhance stabilizing the system), which can affect the charge
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separation efficiency in the initial photovoltaic conversion process.
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