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Abstract: A free-radical cascade approach has enabled the de-
velopment of a synthetically versatile alkyl–arylation of olefins. 
This transformation engages an excellent range of olefins, 
from mono- to tetrasubstituted, without requiring directing or 
electronically activating groups. Further synthetic advantages, 
such as the facile generation of quaternary centers and the in-
troduction of heteroaryl groups with Lewis basic nitrogen at-
oms, also complement transition-metal-catalyzed alkyl–aryla-
tion. Vicinal stereoarrays were generated with high levels of 
diastereoselectivity. The synthetic potential of this transfor-
mation was demonstrated by serving as the key step in a con-
cise synthesis of oliceridine, a new painkiller that received FDA 
approval in 2020. 

Carbon–carbon bond-forming reactions are central ap-
proaches for preparing valuable organic compounds such as 
medicines, agrochemicals, materials, and fragrances.1 Trans-
formations that forge multiple C–C bonds from simpler starting 
materials are particularly enabling for the rapid construction of 
complex molecular frameworks.2 Accordingly, extensive ef-
forts over the past few years have sought to establish a new 
C(sp3)–C bond at both C(sp2) sites in olefins in an intermolecu-
lar fashion.3,4 These vicinal alkene difunctionalizations have 
proven impactful in large part because simple olefins are feed-
stock chemicals. Even in more complex frameworks, these 
groups are still ubiquitous or can easily be installed.5 

Given the importance of aromatic moieties in bioactive com-
pounds and the continued underrepresentation of sp3 content 
in pharmaceuticals,6 vicinal alkyl–arylations of olefins hold a 
privileged position among alkene difunctionalizations. In this 
arena, transition-metal-catalyzed conjunctive couplings be-
tween olefins, aromatic substrates, and aliphatic substrates 
have received the most attention.7,8 Conjunctive couplings, 
however, have overwhelmingly relied on olefins bearing addi-
tional functionality to promote olefin–catalyst interactions, 
which inherently restricts the products that may be obtained 
directly from these reactions. That functionality, whether a 
conjugated ‘activating’ group or an electronically isolated di-
recting group, is needed to overcome the poor Lewis basicity 
of olefins and the propensity of transition metals to promote 
direct aryl–alkyl coupling. This limitation has been addressed9 
by converting the alkyl partner to a free radical that can add 
 

 

 

 

Figure 1. (a) General design and advantages of a free-radical alkyl–
arylation of olefins. (b) Synthetic approaches to a selection of bio-
active targets enabled by olefin alkyl–arylation. 

directly to ‘simple’ olefins (i.e., not bearing activating or direct-
ing groups) without assistance from the metal, but this ap-
proach has only proven effective when using hindered, tertiary 
or electron-poor, highly fluorinated congeners to prevent10 
their direct, metal-mediated arylation.11 

We thus hypothesized that a completely free-radical 
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Figure 2. Mechanistic design of olefin alkyl–arylation enabled by a 
photoredox-catalyzed radical cascade. See text for details. 

approach12 would be well-suited to address these limitations. 
As shown in Figure 1a, we envisioned that simple alkyl–aryl sul-
fones,13,14 straightforwardly prepared in 1–2 steps from readily 
available alkyl halides and aryl sulfinates or thiols, could add 
their alkyl and aryl groups across an olefin under photoredox 
activation15 and extrude SO2. Mechanistically, electrophilic sul-
fone-derived alkyl radical A would add to the olefin, generating 
the desired C(sp3)–alkyl bond and a new alkyl radical (B). The 
latter intermediate would be well-poised for a key radical mi-
gration (radical Smiles-Truce Rearrangement) and desulfonyl-
ation to forge the C(sp3)–aryl bond.16,17 This approach should 
afford clear synthetic advantages. First, a wide scope of olefins 
is expected to add to electrophilic radical A, avoiding the need 
for activating or directing groups on the alkene. Second, the 
radical-migration-mediated arylation should accommodate bi-
ologically privileged18 nitrogen-rich heteroaryl groups that of-
ten inhibit transition-metal catalysts. Finally, the elongated 
open-shell transition states involved in all steps should facili-
tate the generation of quaternary centers,19 which is also chal-
lenging for transition metals, without forgoing diastereocon-
trol.17c,f

 

This transformation could also empower new synthetic ap-
proaches to a range of bioactive molecules, a selection of 
which are shown in Figure 1b. The structures depicted therein 
could all be retrosynthetically simplified to easily accessible 
olefin and sulfone precursors. The highlighted bonds would be 
introduced in a single step by the proposed alkyl–arylation, 
with standard functional-group manipulations completing the 
peripheral structures. 

The mechanistic design for the alkyl–arylation of olefins (1) 
with alkyl–aryl sulfones (2) to afford product 3 is illustrated in 
Figure 2. Deprotonation of the acidic C–H site in alkyl–aryl sul-
fone 2 (pKa = 11.4 in DMSO for PhSO2(COPh)CH2)20 and single-
electron oxidation of the resulting anion (not shown, E1/2

red 
[PhSO2(COPh)CH•/ PhSO2(COPh)CH–] = +0.78 V vs. SCE in 
DMSO)20 by an excited-state photoredox catalyst such as 
Ru(bpy)3

2+ (4, E1/2
red[*Ru(bpy)3

2+ (5)/Ru(bpy)3
+ (6)] = +0.77 V vs. 

SCE in MeCN)21 would generate radical 7. This radical would be 
 

Table 1. Control Experiments for Alkyl–Arylation of Olefins.a 

 
a Olefin 11 (3 equiv.), sulfone 12 (0.4 mmol), K3PO4 (3 equiv.), and 
[Ru(dMebpy)3](PF6)2 (PC1, 1 mol%) were irradiated with blue light 
in MeCN (0.4 M in 12) at rt for 48 h, with variations as noted. NMR 
yields. See SI for experimental procedures. 

highly electrophilic owing to the two adjacent electron-with-
drawing groups. Addition to simple olefin 1 to form the first C–
C bond and new alkyl radical 8 would therefore be polarity-
matched and not require specific substituents on the alkene. 
Unstabilized alkyl radical 8 would then be well-poised for a 
[1,4]-radical migration, ultimately forging the second desired 
C–C bond while extruding SO2. Importantly, both proposed 
steps of the radical migration would also be polarity-matched, 
further underpinning the reaction’s projected generality. Spe-
cifically, the ipso-addition involving 8 would occur between the 
nucleophilic alkyl radical22 and the electrophilic arylsulfonyl 
carbon. Resulting cyclohexadienyl radical 9 would then frag-
ment to cleave the weak,23 electrophilic C–S bond and restore 
aromaticity. Subsequent loss of SO2 would generate electron-
poor alkyl radical 10 (E1/2

red (EtCO)(Me)CH•/(EtCO)(Me)CH–] = 
–0.55 V vs. SCE in DMSO), 24 which would receive one electron 
from the reduced, ground-state photoredox catalyst 
(E1/2

red[Ru(bpy)3
2+ (4)/Ru(bpy)3

+ (6)] = –1.33 V vs. SCE in 
DMSO)21 to generate an anion such as an enolate (not shown, 
pKa = 27.1 in DMSO for (EtCO)(Me)CH).24 Protonation of this 
anion, either from the more-acidic alkyl–aryl sulfone or the 
conjugate acid of an exogenous Brønsted base, would afford 
the desired alkyl–aryl product. Optimization studies between 
monosubstituted olefin 11 and alkyl–aryl sulfone 12 to afford 
model alkyl–aryl product 13 identified general conditions em-
ploying commercially available [Ru(dMebpy)3](PF6)2 (PC1) as 
the photoredox catalyst under blue-light irradiation and K3PO4 
as a Brønsted base in MeCN (Table 1). Using a fairly high 
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concentration of the limiting alkyl–aryl sulfone substrate (0.4 
M) and a modest excess of the olefin (3 equiv.), the desired 
product was obtained in 81% yield after 48 h at ambient tem-
perature (entry 1). [Ru(bpy)3](PF6)2 gave a slightly lower yield 
(entry 2, 71% yield), which we attribute to Minisci-type 

additions of alkyl radicals to the unsubstituted bipyridyl ligands. 
Common Ir-based photoredox catalysts (up to 74% yield, en-
tries 3–6) were also competent, as long as they were not highly 
oxidizing (7% yield, entry 4) or reducing (23% yield, entry 6). 
 

 

Table 2. Scope of Free-Radical Alkyl–Arylation of Olefins.a 
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(Table 2 Continued) 

 

a Standard conditions follow Table 1, entry 1. Yields of isolated products. All chiral products are racemic. See SI for experimental procedures. 
b Catalyst PC2 (1 mol%). c Catalyst PC3 (1 mol%). d DMSO as solvent or cosolvent. e NMR yield. f LC yield. g Mixture of regioisomers, see SI. 
h Green LED lamp. i Results with trans-3-hexene. With cis-3-hexene, 62 was obtained in 88% yield and 15:1 syn/anti. 

A selection of common inorganic or organic bases other than 
K3PO4 were unsuccessful (entries 7–9, 0–8% yields). Only a 
minimal decrease in efficiency occurred when a smaller excess 
of olefin was used (entry 10, 2 equiv., 74% yield), whereas 51% 
yield was obtained at equimolar stoichiometry (entry 11). 
More-substituted olefins, however, reacted efficiently in 1:1 
stoichiometries (95% yield, see Scheme 1). Yields were unaf-
fected when the mixture was not degassed or when the reac-
tion was performed open to air (entries 12–13, 79–80% yields). 
The photoredox catalyst, light, and base were all essential for 
obtaining the desired product (entries 14–16, 0% yield). 

The scope of the free-radical olefin alkyl–arylation is de-
tailed in Table 2. The alkyl group featured a selection of reso-
nance-withdrawing functionalities adjacent to the reactive al-
kyl site in the sulfone, including esters, ketones, amides, and 
nitriles (14–19, 52–95% yields). The electron-withdrawing 
group may assist in many elementary steps (see Figure 2 and 
discussion), but we hypothesize that it is mainly required to fa-
cilitate the single-electron reduction of the final open-shell in-
termediate (10, Figure 2). Additional substitution on the alkyl 
group was well-tolerated, with methyl, phenyl, and cyclic, 
branched products obtained in 61–88% yields (20–22). All alkyl 

groups added regioselectively to the olefin, forming the more-
stable radical following the first radical-addition step in the 
proposed mechanism (8, Figure 2). 

A range of useful aryl groups, which are added to the olefin 
by radical migration, were tolerated. Heteroaromatic motifs 
with different ring sizes and multiple Lewis basic nitrogen at-
oms reacted well. Specifically, products with pyridine, pyrimi-
dine, imidazole, triazole, tetrazole, thiazole, benzothiazole, thi-
adiazole, oxadiazole, and thiophene rings added to the olefin 
were obtained in modest-to-excellent efficiencies (23–32, 37–
99% yields). Benzene derivatives could also be introduced. or-
tho-Substituted phenyl groups performed best, followed by 
para-, and then meta-substituted congeners. ortho-Methoxy, 
bromo, CF3, and CO2Me substituents, as well the disubstituted 
o-bromo-p-fluoro pattern on the migrating phenyl ring gave 
products 33–37 in 19–96% yields (all above 50% yield except 
for CF3 product 35). An electron-withdrawing para-CO2Me sub-
stituent was also tolerated (38, 43% yield). Finally, meta- and 
unsubstituted phenyl substrates afforded products 39–41 in 
low yields (9–20%), with 39 and 40 isolated as mixtures of or-
tho- and para-products (see SI). In contrast to many transition-
metal-catalyzed cross-coupling manifolds,10 arylated 
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quaternary centers were generated without complication 
throughout this study. In some cases, especially those involv-
ing electron-poor aryl groups in the sulfone, more-oxidizing Ir-
based photoredox catalysts PC2 or PC3 provided superior 
yields (see SI). 

A structurally diverse range of olefins also successfully 
underwent the alkyl–arylation, further demonstrating the 
synthetic potential of this free-radical approach. 
Monosubstituted olefins reacted well, including 1-octene, 
examples bearing a distal alkyl bromide or amide, and a Boc-
protected allylic amine (42–45, 39–92% yields). Electron-rich 
olefins including an enamide, an enol ester, and an enol ether 
also reacted efficiently (46–48, 42–99% yields). Styrene (49, 35% 
yield) and p-chlorostyrene (50, 63% yield) were viable olefin 
partners. Notably, even products derived from tri- and even 
tetrasubstituted olefins were cleanly isolated (51, 66% yield 
and 52, 35% yield, respectively). Electron-poor olefins such as 
acrylates were unproductive. Lastly, we generated vicinal 
stereoarrays by employing 1,2-disubstituted or trisubstituted 
olefins. syn-Products were obtained in good yields and 
stereoselectivities when starting from rigid norbornene (53, 65% 
yield, 10:1 dr) and five-membered cyclopentene (54, 84% 
yield, >20:1 cis/trans), presumably because the putative cis-
fused intermediates in these systems are much more stable 
than their trans-fused counterparts.25 Product 55 bearing a 
quaternary benzylic center, derived from 1-
methylcyclopentene, was generated in lower dr (56% yield, 5:1 
cis/trans). Six-membered products derived from cyclohexenes 
and heterocyclic analogs efficiently provided cyclohexane, 
pipreridine, and tetrahydropyran products 56–59 (70–93% 
yields). Interestingly, the 6-membered heterocyclic alkenes 
underwent syn-alkyl–arylation in high distereoselectivity 
(>20:1 cis/trans for 58 and 59), whereas trans-selectivity was 
observed for cyclohexane product 56 (5:1 trans/cis, see SI for 
a detailed discussion). Analogously to the five-membered 
products, cyclohexane 57, derived from 1-methylcyclohexene 
and featuring a new quaternary center, gave lower dr (2:1 
trans/cis). Lastly, internal, acyclic trans-3-hexene afforded 60 
in 89% yield and good 17:1 syn-selectivity. The isomeric 
starting material, cis-3-hexene, delivered same product was 
obtained in similar efficiency and syn-selectivity (88% yield, 
15:1 syn/anti). We postulate that this stereochemical 
convergence arises from rotameric equilibration between 
alkyl-radical intermediates arising from addition of the olefin 
to the initial, electrophilic alkyl radical, but before radical 
migration (e.g., 8 in Figure 2), which is unaffected by the 
geometry of the olefin substrate (see SI).17c,f 

Finally, we sought to demonstrate the utility of this alkyl–
arylation in a new synthesis of oliceridine, a novel painkiller 
approved by the FDA in 2020 (Scheme 1).26 To this end, olefin 
61 (3 steps from 3-buten-1-ol and cyclopentanone) underwent 
alkyl–arylation with sulfone 62 (2 steps from 2-
mercaptopyridine and methyl bromoacetate) using 1:1 
stoichiometry, forming alkyl–arylation product 63 in 95% yield. 
The methyl ester was first converted to protected amine 64 by 
hydrolysis and a modified Curtius rearrangment (83% yield 
over 2 steps), and oliceridine was ultimately obtained by Troc 
deprotection and reductive amination with thienyl aldehyde 
65 (53% yield from 64 over 2 steps; 44% from 63 over 4 steps). 

In conclusion, a free-radical cascade approach was 
leveraged to develop a synthetically versatile alkyl–arylation of 
 

Scheme 1. Concise Synthesis of (±)-oliceridine Featuring a Key 
Olefin Alkyl–Arylation.a 

 
a Alkyl–arylation of olefin 61 (1 equiv.) with alkyl–aryl sulfone 62 
(1 equiv.) served as a key step in a new synthesis of (±)-oliceridine 
(65). See SI for detailed procedures. 

olefins. Owing to its free-radical mechanistic elements, this 
transformation engages an excellent range of olefins, from 
mono- to tetrasubstituted, without requiring directing or 
electronically activating groups. Key synthetic outcomes 
resulting from the intramolecular nature of the aryl migration, 
such as the facile generation of quaternary centers and the 
introduction of heteroaryl groups with Lewis basic nitrogen 
atoms, further complement transition-metal-catalyzed alkyl–
arylation. Finally, this method can generate vicinal 
stereoarrays, often exhibiting good diastereoselectivity. We 
are confident that new cascades featuring intramolecular 
radical migration will ultimately empower a further suite of 
complexity-generating transformations. 
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