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Abstract

In this study we have tested the performance of standard molecular dynamics simu-

lations (MD), replicates of shorter standard MD simulations, and Hamiltonian Replica

Exchange (HREM) simulations for the sampling of two macrocyclic hosts for guests

delivery, characterized by induced fit (phenyl-based host) and conformation selection

(naphtyl-based host), and of the ODR-BRD4(I) drug-receptor system where the ODR

ligand can assume two main poses. For the optimization of the HREM simulation, we

have proposed an on-the-fly iterative scheme for equalizing the acceptance ratio along

the replica progression at constant replica number.

We have found that while short MD replicates are able to sample as effectively as

HREM the diverse conformational states in the phenyl-based host and in the ODR-

BRD4(I) complex, in the naphtyl-based macrocycle, characterized by long-lived meta-

stable states, HREM is the only viable alternative for a reliable canonical sampling

of the rugged conformational landscape. Implications of these results for free energy

calculation of binding free energy in drug-receptor systems are highlighted.
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1 Introduction

Identification of prospective drugs via a computational approach represents a major challenge in

drug discovery. More specifically, elimination of false positive produced in high throughput virtual

screening campaigns are still one of the key problems in the early stages of drug design.1 In a

hierarchical, funnel-shaped computational pipeline, hits from cost-effective docking or supervised

machine learning approaches, before undergoing wet-lab assessment, are often purged of false pos-

itives using expensive molecular dynamics (MD) techniques with a full atomistic description of the

system.2–6

Most of the current MD applications for computing the ligand-receptor binding affinities are

based on the so-called alchemical approach,7 whereby the build-up of ligand-environment inter-

actions is assessed in the two legs of a thermodynamic cycle (the ligand in the bulk and in the

bound state) by constructing a series of intermediate connecting alchemical states. The binding

free energy between the physical end states in the two legs of the cycle is recovered as a sum of

free energy difference between non physical alchemical states using free energy perturbation8 and

the Bennett acceptance ratio9 or thermodynamic integration.10 The absolute binding free energy

can hence essentially be computed as a difference between two solvation free energies, namely that

of the ligand in bulk solvent and in the bound state.11,12 Alchemical techniques can be likewise

adapted to evaluate the relative binding free energy between two congeneric compounds by grad-

ually transmuting one compound into the other in a series of “chimeric” states in the two legs of

the cycle.3,13

Despite progresses in the last decade of algorithms, force fields and methods,14–16 and despite

the spectacular growth of computer power recently boosted by the advent of GPU-CPU hetero-

geneous high performing computing (HPC) architectures, FEP-based alchemical techniques still

faces daunting computational challenges, mostly related to the difficulties in achieving a station-

ary (converged) sampling3,17,18 in conformationally complex drug receptor systems. In this respect,

molecular recognition is widely thought to be driven by two main mechanisms, namely the induced-

fit19 model or the conformational selection paradigm.20 According to the former, the protein adapts

its conformation upon ligand binding, switching from an apo (unbound) to an holo (bound) form,
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while in the latter case, believed to be the cornerstone of the allosteric effect,21 binding is possi-

ble only when the protein is in one particular conformation among several meta-stable states in

chemical equilibrium.

Structural differences between the holo and the apo form in the induced fit can be difficult to

address with FEP-based alchemical approaches due to the long time scale typical of these confor-

mational transitions. Binding through conformational selection relies on the identification of the

binding meta-stable state of the protein, sluggishly exchanging between several alternative long-

lived conformations, a task that can be achieved only resorting to enhanced sampling techniques

such as Hamiltonian Replica Exchange22–24 (HREM).

Recently, in the context of supramolecular chemistry, two paradigmatic macrocyclic receptors

have been designed for induced fit25 and conformational selection26 ligand selectivity. The first

compound is a structurally flexible macrocyclic cage characterized by two distinct rapidly exchang-

ing conformations due to the flipping of the three phenyl sidewalls connected by methylene bridges.

The second compound has a cage with four naphtyl sidewalls whose flipping defines several dif-

ferent, slowly interconverting conformations that can be distinguished in NMR spectra. In the

present paper, we have performed extensive MD simulations of these peculiar macrocyclic hosts,

showing that a converged free energy conformational landscape, in agreement with experimental

indications, can only be achieved using HREM simulations. The limited size of the systems allowed

us to test on the fly adaptive protocols for optimizing the efficiency of replica exchange.

Convergence of vanilla MD, MD replicates and HREM with solute tempering have been fur-

ther assessed and compared in a biologically relevant systems, consisting in the complex of a 3-

(trifluoromethyl)phenyl]-5-isoxazolamine compound (ORD) with the first bromodomain-containing

protein 4 (BRD4). Such peculiar system is characterized by two distinct ligand poses, whose

probability ratio is strongly affected by the alchemical state of the ligand.

The crucial importance, revealed in our study, of enhanced sampling when dealing with common

molecular recognition mechanisms, such as induced fit and conformational selection or common

phenomena such as pose competition in drug-receptor systems, has important implications in the

setting up of automated efficient and reliable alchemical protocol for a high-level screening of

docking hits for false positive elimination in drug discovery projects.

3

https://doi.org/10.26434/chemrxiv-2023-13v9t ORCID: https://orcid.org/0000-0003-2667-3847 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-13v9t
https://orcid.org/0000-0003-2667-3847
https://creativecommons.org/licenses/by/4.0/


2 Theoretical background

Typically, events such as conformational transitions in proteins or flexible ligands with large tor-

sional barriers around rotatable bonds occurs abruptly, involving significant changes of the relevant

collective coordinate (e.g. a dihedral angle) in a subpicoseconds time scale. These rapid transitions,

triggered by random collision or concerted fluctuations, are nonetheless rare, in the sense that few

of them can be observed in a single molecule or flexible ligand on a time scale from nanoseconds to

milliseconds.27 In many-molecules systems, rare events become frequent when we test their generic

probability irrespective of the molecular index.28 So, while observing a rare event on some molecule

is common in a thermodynamic system, it is a matter of pure luck if one is monitoring the behavior

of one single molecule during a typical MD simulation lasting few tens of ns. Recently, the advent

of GPU and the porting of MD algorithms to GPU architectures has boosted the speed of popular

MD codes by more than one order of magnitude.29–31 A typical solvated drug-receptor system in

periodic boundary conditions (50K-100K atoms) can now be run for hundreds of ns per day on

a high-end heterogeneous high performing computing (HPC) platform. However, in many cases,

this time span can be insufficient for obtaining a statistically converged simulations, since we are

dealing with a single-molecule system and not with a thermodynamic ensemble. Unconverged runs

on single complexes typically plague the final outcome of the prediction using FEP or TI-based

alchemical approaches for binding free energy calculations.32,33 The sampling problem is patently

exposed when results are found to critically depend on similar starting conditions so that in general

replicates of costly alchemical free energy calculations must be often carried to deliver a reliable

prediction with a credible confidence interval.34–38

Enhanced sampling techniques are often used to overcome these sampling-related issues. HREM

is certainly one of the most effective advanced MD methods for simulating systems with rugged

conformational landscapes.22–24,39,40 HREM is generally engineered to be collective coordinate ag-

nostic, scaling the full potential energy of the system or a part of it as in the so-called solute

tempering scheme.23,24,40 This is a significant advantage in drug-receptor systems where we do not

generally know a priori which collective variables are involved in induced fit or regulating allosteric

effects.
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In a HREM simulation, several MD simulations are run in parallel on n states or nodes with

gradually scaled potential energy, up to a minimum scaling factor sn = smin such that

Vk(x) = skV (x), sk = 1, s1, ..smin (1)

Exchanges between scaling factors are periodically attempted, with an acceptance probability based

on a Metropolis criterion satisfying the detailed balance condition. In so doing, we observe a

random diffusion of the scaling factors (or inverse “temperatures” skβ) while the HREM simulation

proceeds. A replica is hence an MD trajectory spanning various Hamiltonian’s with different scaling

factors, providing a mechanism for transmitting conformations sampled in states with strongly

scaled potential energy to the target (unscaled) state with s = 1 with the correct Boltzmann

weight. The acceptance probability Pacc(k, k
′) for the k ↔ k′ exchange depends on the overlap

of the corresponding potential energy distributions,23 so that exchanges are normally attempted

between contiguous replicas. In this case, we use the short-hand notation Pacc(k) to denote the

acceptance probability for the exchange k ↔ k + 1.

The needed number of nodes n in a HREM simulation depends on the total number of degrees

of freedom N involved in the scaling. As the mean potential energy and its variance are extensive

functions, the larger is the number of degrees of freedom involved in the scaling, the more states

will be necessary for a significant overlap of contiguous distributions with n ∝ N1/2.28

In the generalized ensemble (GE) of the HREM simulation, the replica collection spend by

construction the same amount of time on each of the n states/nodes, independently of the Pacc(k).

However, the tuning of an HREM simulation for optimal sampling efficiency is by no means a

trivial task. As shown in Ref.,41 the exchange attempt frequency (EAF), one of the parameters of

an HREM simulation, should be chosen as high as possible (typically 20-30 ps−1) provided that the

cost of the attempted exchange is small as it happens when we exchange scaling factors rather than

configurations. High Pacc(k) are in principle desirable but they are costly as they involve a large

n. Like in standard Monte Carlo, it is generally believed that an optimal (and balanced) Pacc(k) in

systems with kinetics traps should be in the range 0.2-0.5. Balancing the acceptance probabilities

Pacc(k) may, in general, result in a smoother replica diffusion across the GE and in a shortening
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of the round trip times (RTT). On the other hand, as noted in Ref.,42 well balanced acceptance

ratios along the states progression does not guarantee an optimal flux in HREM simulation. The

upward flux can be measured as

fu(k) =
zu(k)

zu(k) + zd(k)
(2)

where zu(k), zd(k) are the number of visits to state k by replicas coming from state 1 (the target

state) and from state n, respectively. Due to replica conservation, we have that fd(k) = 1− fu(k)

where fd(k) is the downward flux. Ideally, the optimal flux is obtained when fu(k) = 1 − k/n

and fd(k) = k/n, leading to a linear flow distribution with constant transition probabilities. In

principle, in a HREM simulation we should try to adapt the scaling ladder to reach such a linear

regime for the flux. Flow optimization in HREM is prohibitively costly as it requires long adaptive

enhanced sampling simulations to estimate to flux, since many visits to the state k are necessary

to get a statistically reliable fu(k). Severely uneven acceptance ratio using standard scaling factors

may on the other hand produce bottlenecks in the replica flow compromising the HREM efficiency.

We may hence try to optimize our HREM by balancing the Pacc(k) on the fly. To this end, starting

from the traditional scaling protocol,

sk = s
(k−1)/(n−1)
min , (3)

whereby overlap between contiguous replica is maximized assuming that the system may be de-

scribed by an ensemble or harmonic oscillators,23,43 we propose to periodically reset, with a fre-

quency ω � EAF , the scaling ladder according to the iterative scheme

∆si+1
k = ∆sik + cσi(P

i
acc(k)− 〈P i

acc〉) (4)

where ∆sik = sik − sik+1 are the n − 1 positive differences between contiguous scaling factors for

the n states, P i
acc(k) is the acceptance probability for the k ↔ k + 1 exchange at iteration i,

〈P i
acc〉 = 1

n−1
∑
P i
acc(k) is the mean acceptance probability at iteration i and σi is the corresponding

standard deviation. For an optimal balance of the Pacc, the final value of σi should be as small

as possible. According to Eq. 4, the differences ∆si+1
k are corrected by a factor that is strictly
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proportional to the product of the standard deviation σi and difference between the actual value

of Pacc(k)i and the mean acceptance ratio. As the sum of the differences,
∑n−1

k ∆sik = 1− smin, is

invariant due to the fact that at each iteration

n−1∑
k

σi(P
i
acc(k)− 〈P i

acc〉) = 0, (5)

the update scheme of Eq. 4 is designed to constantly reducing the variance σ2i thereby gradually

balancing the acceptance probabilities Pacc(k). The c constant, along with the frequency of the

scaling reset, regulates the speed of the balancing of the probabilities Pacc(k). The probabilities

P i
acc(k) can be evaluated each few hundreds of attempted exchanges, and hence, with EAF’s of

the order of 20-30 ps−1, a good balancing may be obtained in few ns or less with 1 < c < 2 and

0.001× EAF < ω < 0.01× EAF.

As stated in Ref.,42 one should be aware of the fact that in complex systems long term transition

probabilities are usually different from observed acceptance rates, that are affected by short-time

properties. Balancing the acceptance ratio, while avoiding bottlenecks in the replica diffusion, may

not necessarily lead to flux linearization.

3 Methods

3.1 Compounds

In Figure 1, we show the structures of the macrocycles 1 and 2 and of the ligand ODR of the

first bromodomain of human BRD4. The structures of 1 and 2 were obtained from Cambridge

Crystallographic Data Centre, CCDC 205148325 and CCDC 1950443.26 The phenyl[5]-cage 1 is

characterized by two rapidly exchanging structures due to the flipping of the three phenyl side-

walls.25 The two conformation can be distinguished in NMR experiments when 1 selectively binds

to quarternary ammonium ions via an induced fit mechanism. Compound 2 (Amide naphtotube)

has five different conformations due to the flipping of the non equivalent naphtyl moieties around

the amide and aminomethyl junctions. These five conformations are reported in Fig. 2e of Ref.26

Experimentally, only two (out of five) conformations of the apo form of amide naphtotube in apolar

7

https://doi.org/10.26434/chemrxiv-2023-13v9t ORCID: https://orcid.org/0000-0003-2667-3847 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-13v9t
https://orcid.org/0000-0003-2667-3847
https://creativecommons.org/licenses/by/4.0/


solvents can be distinguished from NMR experiments, indicating that in 2 the exchange occurs in a

time scale that exceeds that of NMR (ns to ms). The structures represented in Fig. 1, taken from

the Cambridge Structural Database, correspond the most symmetric ones for compounds 1 and 2.

Compound ODR is known to be a moderate binder of the BRD4(I) protein with an affinity of

4.8 µM44 The initial structure of the complex was obtained form the 3svg PDB file.

Figure 1: Macrocycles 1 and 2 and the BRD4 ligand ODR

We used the GAFF2 force field for the two macrocycles and the ligand ODR. Assignment and

AM1-BCC45 charge calculations were done using the PrimaDORAC web interface.46 The BRD4

protein was modeled using the AMBER99SB-ildn force field.47

3.2 Simulation details

Compound 1 and 2 were simulated in vacuo. This was done to sample the full attainable con-

formational space without mediation of intercalated apolar solvent molecules (such as CHCl3 or

C2H2Cl2) experimentally favoring the symmetric forms.25 For both 1 and 2, simulations were hence

conducted on a single macrocyclic molecule at constant temperature using a Nosé thermostat.48

The HREM simulations for compound 1 and 2 were done using a protocol23 with scaling of all

intramolecular interactions (except for stretching and bending) with smin = 0.1 corresponding to

a maximum “temperature” of 3000 K. We used eight or twelve states/replicas depending on the

system, with scaling protocol given by sk = s
(k−1)/(n−1)
min and an EAF of 20 ps−1. HREM produced

16 ns on the target state, for a total of 128 ns or 192 ns of simulations. In a second series of
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HREM simulations on compounds 1 and 2, the scaling protocol was optimized in the first 1.6 ns by

balancing the acceptance ratio on the fly using the iterative scheme of Eq. 4 (c = 2 and ω = 1/160

ps−1 with ten iteration cycles).

For the ODR-BRD4(I) complex, starting from the 3SVG PDB structure we performed a pre-

equilibration stage at the constant pressure of 1 atm and constant temperature of 300 K for 1 ns in

a cubic box containing ' 7500 water molecules (modeled using the TIP3P potential).49 Constant

pressure was enforced using a Parrinello-Rahman Lagrangian for isotropic stress tensor.50 Constant

temperature was imposed using two Nosé thermostats coupled to the internal coordinates and center

of mass coordinates of the molecules.48,50 Long range electrostatics were treated using the Particle

Mesh Ewald technique.51 For the BRD4(I) complex we used a solute-tempering HREM with a

“hot zone” including the ODR ligand and the nearby residues (namely MET43, TRP81, PHE83,

GLN85, VAL87, LEU92, LEU94, TYR97, TYR139, ASN140, ASP145, ILE146, MET149). The

HREM simulations was performed using 12 replicas for 24 ns on the target state (288 ns in total)

with the standard scaling protocol sk = s
(k−1)/(n−1)
min with smin = 0.1 and n = 12. In a second

HREM simulation of the complex, acceptance ratio was balanced on the fly for the first 1.6 ns. In

Eq. 4, we used c = 2 and ω = 1/160 ps−1 with ten iteration cycles.

All simulations were performed using the program ORAC6.152

4 Results

4.1 Compound 1: induced fit

Compound 1 adapts its conformation to the binding guest via an induced fit mechanism.25 In Fig. 2

we show the two main conformations of macrocycle 1. The two cage structures can be distinguished

by the value of any of the three angles α involving equivalent phenyl carbons (in orange color) on

the three sides of the cage. In the most symmetric conformer a (on the left in Figure 2) the three

angles are in the range 55-70 degrees, while in the twisted structure b (on the right in Figure 2),

one of the angles is around 45 degrees. One of the two rapidly exchanging conformations is in

general selected when 1 bind specifically to quarternary ammonium cations.25
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Figure 2: Main conformers in compound 1 in the gas-phase

4.1.1 HREM simulations

We performed two HREM simulations, each lasting 16 ns, of the compound 1 in vacuo at 300 K. In

both cases, due to the relatively low conformational barriers between the two structure (see Figure

6 further on) , we used only eight replicas and a minimum scaling factor of 0.1. In one of the

HREM simulations, the scaling protocol was given by Eq. 3. In the other, we used the acceptance

ratio balancing algorithm of Eq. 4 starting from the default scaling protocol of Eq. 3. In Table 2,

we report the acceptance probability (in percent) for the HREM simulations with and without Pacc

balancing. In the standard HREM simulation, with the default scaling Eq. 3, Pacc balance is poor,

Table 1: Acceptance probability (%) for the unbalanced and balanced HREM simulations in compound
1

Eq. 4 1↔ 2 2↔ 3 3↔ 4 4↔ 5 5↔ 6 6↔ 7 7↔ 8
no 2.6 3.3 7.6 12.5 18.4 25.7 32.9
yes 8.0 10.5 12.4 12.7 11.8 11.2 11.4

with Pacc at the end of the ladder being more than one order of magnitude larger with respect to
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exchanges 1↔ 2 involving the target state. In the adaptive HREM simulation, excellent balancing

was reached after ten iteration of Eq. 4 (taken at regular interval in the first 1.6 ns simulation) at

the expense of the mean acceptance ratio which dropped from 14.4% to 11.2 %.

As shown in ref.,42 well balanced acceptance ratio, while avoiding bottlenecks in the replica dif-

fusion, do not guarantee efficient HREM sampling in conformationally complex systems. Sampling

efficiency can be assessed precisely by evaluating the replica flux, Eq. 2, strictly related to the mean

round trip times (RTT) in the two HREM simulations. An estimate of the flux is evaluated, rather

than directly using the slowly convergent Eq. 2, using the approach described in Ref.42 based on

the mean first passage times (MFPT) within the scaling factor ladder (see Eq. 6-11 of Ref.42 ). In

the latest ORAC beta distribution,52 (publicly available on https://zenodo.org/record/8224111 )

we provide a simple awk script, replica flux.awk, to compute the flux in HREM using the MFPT

approach proposed by Nadler et al..42 In Figure 3, we report the flux as a function of the nodes

for the HREM simulations sampled during the 16 ns HREM simulations with (green) and without

(dark green) the balancing of the scaling factors according to Eq. 4. As the figure shows, the

equalization of the acceptance ratio using Eq. 4 produced only a modest improvement on the flux.
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Figure 3: Upward flux (Eq. 2) in the HREM simulations of compound 1 estimated using the MFPT
(see text). Dashed dark green: standard HREM with fixed scaling (Eq. 3). Solid green: HREM with
iterative acceptance ratio balancing (Eq.4). In the inset we report the scaling factors as a function of
the nodes with an without the adaptive scheme of E. 4

The mean absolute deviation with respect to the ideal flux is 0.15 and 0.16 for the balanced

and unbalanced HREM simulation, evidencing the fact that well behaving short-time properties

such as Pacc equalization do not necessarily imply an ideal or near-to-ideal flux across the replica

progression.42 Efficiency of the flow in a HREM simulation can also be assessed by measuring the

fraction of the total simulation time that a replica spends on a given state. Ideally, each replica

should spend the same fraction of time on each node/state given by τ(k) = 1/n. Deviation from

the ideality can be measured by evaluating the quantity

S(k) = n

n∑
i

τ2i (k)− 1 (6)

where the sums are on all replica walkers (8 in our case). S(k) corresponds to the variance of the

variable τi(k)/(1/n) expressing the ratio between the observed and ideal fraction of time the i-th

replica walker have spent on the node k. Ideally S(k) = 0 ∀k. In Figure 4 we show the results
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obtained in the two HREM simulations. The variance S(k) are similar with no significant gains

when using the adaptive scheme based on Pacc equalization, hence confirming the moderate impact

of Pacc on-the-fly balancing on replica flow.

Figure 4: Variance as a function of the node index of the ratio τ(k)/(1/n) (see text) in unbalanced
(dark green) and balanced (green) HREM simulations of compound 1

Metrics for the two HREM simulation are finally collected in Table 2.

Table 2: HREM metrics with and without Pacc balancing in compound 1.

Eq. 4 Nrep smin 〈Pacc〉 (%) δPacc RTT/ns ∆fup 〈S〉1/2
no 8 0.1 14.7 10.6 0.71 0.16 0.16
yes 8 0.1 11.2 1.4 0.62 0.15 0.22

As it can be seen, notwithstanding the fact that the standard deviation of the of Pacc is reduced by

one order of magnitude, Pacc balancing has a marginal positive effect on the RTT and the deviation

from the ideal flux ∆fup = 1
n−1

∑
k f(k)− (1− k/n), and a negative effect on the mean acceptance

ratio and 〈S〉. The benefit of ratio balancing via E. 4 for the replica flow is very likely negatively
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compensated by the significant decrease of the balanced mean acceptance ratio.

In Fig. 5, we show the time record of the angle α in the target state for two HREM simula-

tions lasting 16 ns. Unlike in standard MD (see Fig. 8 further on), the swaps between the two

conformations are frequent. In the HREM simulation with on-the-fly balancing of the acceptance

ratio (bottom plot), swaps between the twisted and symmetric conformation appear to occur more

frequently.

Figure 5: Time record of the α angle (see Fig. 2 in a HREM simulation with fixed scaling of Eq. 3
(dark green) and with adaptive scaling according to Eq. 4 (green).

We finally examine the effect of Eq. 4 in the two HREM simulations with respect to the

free energy difference between the two conformations of compound 1, a quantity that is highly

relevant for host-guest binding free energy calculations. To this end, in the Figure 6a we report

calculated the potential of mean force (PMF) along the α coordinate computed as VPMF(α) =

−RT ln(P (α)/max(P (α)) where P (α) is the probability distribution of one of the three equivalent

angles α defined by the three atoms highlighted in Figure 2 during the simulation of the gas-phase

molecule. The green and dark green curves refer to the HREM simulation with and without Pacc
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balancing, respectively.

Figure 6: a) Potential of mean force along the α angle in compound 1; Green-dashed: standard
HREM green: HREM with acceptance ratio balancing. The minina labeled 1) and 2) correspond to the
structures of compound 1 shown in Fig. 2. 2D PMF as a function of two angles (see text) computed
by way HREM without (b) and with (c) acceptance ratio balancing.

The two minima in the HREM simulations (referring to the symmetric and twisted conforma-

tions) differ by less than 0.2 kcal mol, separated by a barrier of about 1 kcal/mol. The quality of the

sampling in the two HREM simulations can be further assessed by evaluation of the 2-dimensional

PMF with respect to any pair of the angles of the triangle defined by the three atoms highlighted

in Figure 2. Due to quasi-C3h symmetry of the structure 1 in Figure 2, we expect three minima

for the cumulative 2D PMF with respect to any pair, with two equivalent minima with one angle

of 45 degrees corresponding to the twisted structure and wide minimum with angles in the range

' 55-70. The 2D PMF are reported in Figure 6b and 6c for the standard and acceptance ratio

balanced HREM simulation, respectively. The latter PMF is closer to the expected landscape,

showing that the quality of sampling has been somewhat enhanced by the usage of Eq. 4.
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4.1.2 Standard MD simulations

In Figure 7 we show the time records of one of the three the α angle (see Figure 2) in a standard

MD lasting for 128 ns, i.e. using the same amount of CPU time of the HREM simulations. No

abrupt changes of the angle are observed during the first 50 ns of simulation implying that no

flipping of the two involved phenyl moieties has taken place during this time. Flipping in the first

50 ns do occur only on the third phenyl side probed by the other two α angles (data not shown).

Note that phenyl flipping as probed by the angle occurs only three times during the whole 128 ns

time span, in striking contrast (see Figure 5) with the two HREM simulations where many angle

swaps are observed in the target state in only 16 ns of sampling.

Figure 7: Time record of the α angle in compound 1 (see Fig. ?? in a 128 ns standard MD simulation)

As authoritatively noted more that two decades ago, “individual [long MD] trajectories sample

only a fraction of the conformational distribution generated by ten [much shorter] independent MD]

trajectories”.53 This fact can be understood by considering that, while a single long trajectory may

get stuck in one of the conformational attractors for a long time before it can jump to a different
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conformational state, many short trajectories started from infinitesimally different initial conditions

have a better chance of concurrently sampling several attractors.32,36

In Figure 8, we show the time record of one of the three equivalent angles in the triangle of

Figure 2 for eight replicates of standard MD simulations of compound 1 each lasting 16 ns, with a

cumulative sampling time of 128 ns, i.e. the same amount of time of the standard MD simulation

of Figure 7.

Figure 8: 8 replicates of 16 ns MD simulation of compound 1

The rare event of the switching of the two conformations as probed by one of the α has been

observed six times in the cumulative 128 ns, compared to the three times only observed in the

standard MD simulation of Figure 7.
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In Figure 16 we report the PMF with respect to the α angle obtained with standard MD

simulations. For comparison we also included in the plot the PMF obtained using HREM with

acceptance ratio balancing. None of the approaches based on standard MD is apparently able to

produce reliable Boltzmann weights for the two conformations of compound 1 whose binding is

characterized by the induced fit mechanism. We recall that in alchemical free energy simulations,

a correct sampling of the apo state, or of states with small alchemical coupling, is an essential

requirement for delivering reliable binding free energies. Phenyl flipping in compound 1 as probed

by α never occur in a standard 16 ns MD simulations, while is severely undersampled by extending

the simulation up to 128 ns. The best results (i.e. those the are close those obtained with the two

HREM simulations) are obtained using 16 ns replicates of standard MD simulations confirming the

moderate effectiveness of this straightforward enhanced sampling approach.32,36

Figure 9

Figure 10: Potential of mean force along the α angle in compound 1 computed using standard molecular
dynamics simulations (black color) and HREM using Eq. 4 (green color).
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4.2 Compound 2: conformational selection

Compound 2 is characterized by two non equivalent couples of stacked naphtyl moieties whose

flipping is regulated by torsions around two carbon-carbon sp3 bonds connected in one case to

amide and in the other case to methylene moieties (see Figure 11). Because of the bulky naphtyl

sides, torsional barriers for the switching between conformers are in the case of compound 2 much

higher than they are in compound 1 with phenyl groups, hence giving rise to long-lived meta-stable

conformational states determining the conformational selectivity of this host molecule.26

Figure 11: Compound 2 in configuration I with C2 symmetry.26 The torsions around sp3 bonds con-
necting methylene or amide moieties are shown in green and black colors, respectively.

4.2.1 HREM simulations

Due to the presence of higher torsional barriers, the HREM simulation of compound 2 in vacuo

required a minimum of 12 replicas with a minimum scaling factor of smin = 0.1 to allow for at least

one round trip on the average per replica during 16 ns of simulation. As for the case of compound 1,

we launched two 16 ns HREM simulations with and without on-the-fly balancing of the acceptance

ratio according to Eq. 4 with the starting standard scaling protocol given by Eq. 3. In Figure 12
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Figure 12: Upward flux (Eq. 2) in the HREM simulations of compound 2 estimated using the MFPT
(see Sec 4.1.1). Dark green: standard HREM with fixed scaling (Eq. 3). Solid green: HREM with
iterative acceptance ratio balancing (Eq.4). In the top-right inset we report the scaling factors as a
function of the nodes with an without the adaptive scheme of Eq. 4. In the bottom left inset, we report
the acceptance ratios with and without the adaptive scheme of Eq. 4.

we show the flux (Eq. 2), the acceptance ratio and the scaling protocols obtained with the standard

(Eq. 3) and adaptive (Eq. 4) HREM approaches. As observed for the case of compound 1 (see

Sec. 4.1.1), the use of the adaptive scheme Eq. 4 for acceptance ratio equalization leads to an

overall decrease of the mean Pacc dropping to 18.3 from 28.0. Nonetheless, ratio equalization has

a positive effect on the measured flux with a mean deviation from ideality (∆fup ) decreasing to

0.11 from 0.14 of the standard HREM algorithm based on Eq. 3. Replica flow improvement with

Eq. 4, while marginal for compound 1, is significant in compound 2 where the torsional barriers

for sidewall flipping are much higher than they are in the host 1 (see Figure 14 further on). As

shown in Table 3,
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Table 3: HREM metrics with and without Pacc balancing in compound 2.

Eq. 4 Nrep smin 〈Pacc〉 (%) δPacc RTT/ns ∆fup 〈S〉1/2
no 12 0.1 28.0 17.5 2.68 0.14 0.39
yes 12 0.1 18.3 3.2 2.12 0.11 0.50

the adaptive algorithm in Eq. 4 has a positive and significant effect on the mean round trip time.

In Table 3 we have collected the main metrics for the two HREM approaches in the simulation of

compound 2. The mean round-trip time is found to be 2.12 ns for the adaptive scheme, i.e. nearly

20% less that that obtained (2.68 ns) with the standard HREM scaling. Concerning the variance

S (Eq. 6) i.e. the mean deviation of the time spent on any given node/state by each walker with

respect to the ideal fraction of 1/12, we observe an increase when using the adaptive scheme as

already noticed for the case of compound 1 (see Table 2).

Figure 13: Time record of the T1 and T2 torsional angles (in degrees) in compound 2 (see Figure 11)
for the HREM simulation with (bottom plot) and without (top plot) balancing of the acceptance ratio
probability using Eq. 4

In Figure 13 we show the time record of the dihedral angles T1 and T2 (see Figure 11) regulating
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the flipping of the two non equivalent naphtyl moieties in compound 2 using HREM with and

without the adaptive scheme of Eq. 4. Flipping events are somewhat enhanced using the adaptive

scheme.

In Figure 14 we finally show the PMF along the dihedral angles T1 and T2 obtained using the

two HREM protocols in the simulation of compound 2. The two PMFs are quite similar especially

for the T1 torsion involving the naphtyl side walls connected by amide moieties (see Figure 11).

For the T2 torsion, there are non-negligible discrepancies with the two minima differing by ' 1

kcal/mol in the case of the HREM with the adaptive scheme of Eq. 4 and ' 1.5 kcal/mol for the

standard HREM simulation.

Figure 14: PMF of the T1 (black) and T2 (green) dihedral angles (see Figure 11) obtained with standard
HREM (dashed lines) and with adaptive HREM using Eq. 4 for Pacc balance.

Given the better behavior of the flow and the shorter RTT’s obtained in the case of HREM with

the adaptive scheme, we can assume that the usage of Eq. 4 is somewhat improving the sampling

efficiency, hence providing a more accurate PMF with respect to the T2 collective coordinate.

As expected, the torsional barriers for the flipping of the naphtyl groups exceed in both cases 4
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kcal/mol, hence giving rise to long lived meta-stable states in compound 2. Quite surprisingly

in both the HREM simulations, the higher barrier is detected for the T2 torsion involving the

methylene moieties (see Figure 11).

4.2.2 Standard MD simulations

In Figure 15, we show the time record of the T1 and T2 dihedral angles during a 128 ns long

standard MD simulation of compound 2. We observed one naphtyl flipping as probed by T1 and no

flipping for the methylene connected naphtyl moieties, during the entire simulation. Standard MD

is apparently unable to reliable sample the conformational states of compound 2 even extending

the simulation time beyond 100 ns. In the bottom plot of Figure 15, we show, sequentially, the

time record of the T1 and T2 dihedral angles obtained in 8 MD simulation replicates, each lasting

16 ns only. Flipping of the T1 torsion is observed in six

Figure 15: Time record of the T1 and T2 torsional angles (in degrees) in compound 2 (see Figure 11)
for a standard MD simulation of 128 ns (top plot ) and for 8 replicates of 16 ns standard MD (bottom
plot). Red vertical lines mark the beginning/end of the MD replicates.
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out of the eight replicates, while again the T2 dihedral is stuck to the initial value of ' −60◦ in

each of the replicates. The rare event of naphtyl flipping occurs, as observed for the phenyl flipping

in compound 1, in a sub-picosecond time scale.

In Figure 16 we finally show the PMF obtained for the torsional potential of the T1 (black color

lines) and T2 (green color lines) dihedral angles using standard MD and replicates of much shorter

standard MD simulations. In the Figure, the PMF obtained with the adaptive HREM (in blue and

cyan color) is also superimposed for comparison. For the T1 torsion, characterized by a barrier of

' 5 kcal/mol, we notice that the statistics collected in the 8 replicates MD simulations (128 ns in

total) produces a PMF that closely follows that obtained with the 16 ns of HREM simulation. For

the T2, standard MD simulations, whether using short replicates or a single long lasting run, are

unable to sample the secondary minimum detected in HREM at θ = 60◦, showing the limitations

of the straightforward replicates approach when dealing with long-lived meta-stable states.

Figure 16: PMF of the T1 (a) and T2 (b) dihedral angles (see Figure 11) obtained with 128 ns long
standard MD (dashed black line) and eight 16 ns long standard MD replicates (solid black line). The
PMF obtained using the adaptive HREM simulation is shown in green.
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4.3 BRD4(I) in complex with the ODR ligand

We finally compare conformational sampling using HREM, adaptive HREM (Eq. 4) and MD

replicates for the simulation of the BRD4(I) in complex with the ligand ODR (see Figure 1).

Technical details of the simulation are provided in Sec. 3.2. In Figure 17 we show the two main

poses of the ODR ligand in the BRD4(I) scaffold sampled during the MD runs. Figure 17a refers to

the crystallographic pose in the 3SVG PDB file. The pose on the left, with ODR rotated by ' 180◦

around an axis passing through position 3, 6 of the central phenyl moiety in ODR, is observed in

both HREM and MD replicates simulations.

Figure 17: a) Crystallographic and primary pose of the ODR ligand in complex with BRD4(I); b)
secondary pose of the ODR ligand sampled in the HREM and standard MD simulations

In Table 4, we have collected all relevant parameters for the HREM simulation of the ORD-

BRD4(I) complex in explicit solvent. The sub-system, involved in 12-fold scaling down to smin =

0.1, includes the ligand and the hot-zone residues for a total of 183 atoms, comparable to the

number of atoms in compound 2 (157), which was simulated using the same HREM protocol. As

a trivial consequence of this fact, we observe the same pattern in the acceptance ratio using the

standard scaling Eq. 3 in the the BRD4(I) complex and in compound 2 with Pacc(k) steadily
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Table 4: HREM metrics with and without Pacc balancing in the complex of ODR-BRD4(I)

Eq. 4 Nrep smin 〈Pacc〉 (%) δPacc RTT/ns ∆fup 〈S〉1/2
no 12 0.1 29.1 13.3 1.60 0.14 0.36
yes 12 0.1 28.3 7.6 0.97 0.10 0.47

increasing with the node index k and with nearly identical mean values (29.1% for BRD4(I)-

ODR and 28% for compound 2). As observed for the HREM simulations of compound 2, also in the

case of the BRD4(I)-ODR complex, flux and RTT are improved by implementing the acceptance

ratio balancing via Eq. 4. In the BRD4(I)-ODR complex we observe only a moderate degradation

of the mean acceptance ratio upon ten cycles (during 1.6 ns) of implementing Eq. 4, at variance

with what was observed in compounds 1 and 2 (see Tables 2 and 3). As in compound 1 and 2, the

variance S (Eq. 6) increases when using Eq. 4.

In Figure 18

Figure 18: Time record of the distance between the center of mass of BRD4(1) and of ODR using
standard HREM (top) and adaptive HREM using Eq. 4
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we report the time record of the distance between the centers of mass of the ligand and the receptor

(RCOM−COM) obtained in the HREM simulation with and without the use of the adaptive scheme

of Eq. 4 for Pacc balancing. The plot shows a clear prevalence of the crystallographic pose (see

Figure 17a) characterized by RCOM−COM ' 14−15 Å. The secondary pose at RCOM−COM ' 11−12

Å (see Figure 17b) is sampled five and and seven times in the standard and the adaptive HREM

simulation, respectively, with a probability around 7% in both cases.

In Figure 19 we report the time record of 12 juxtaposed replicates of standard MD simulations

each lasting 24 ns. The five magenta-highlighted replicates indicate independent 24 ns MD simula-

tions where the secondary pose was never observed. The secondary pose was sampled 10 times in

the total 288 ns time span of standard MD replicates, with a probability of 7% (as in HREM). In

the bottom plot of Figure 19, we show a zooming of the 10th MD replicate where the pose switch

was observed. Note that the duration of this rare event occurs in less 200 ps, despite the fact that

ligand must rotate by ' 180◦ around the phenyl axis with a shift of the COM of nearly 3 Å. Again,

we are dealing also in this case with a rare event that occurs on a fast time-scale.

Figure 19: Time record of the distance between the center of mass of BRD4(1) and of ODR using 12
replicates of standard MD simulation, each lasting 24 ns
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In Figure 20 we finally compare the probability distribution (and the associated PMF) of the

poses of the ODR ligand in the BRD4(I) complex obtained in HREM and using MD. Inspection

of Figure 20a shows that standard and adaptive HREM produces essentially the same probability

profile and PMF. This probability and PMF can only be recovered using 12 replicates of MD (for

a total of 288 ns), while a simple 24 ns vanilla simulation (first of the 12 replicates in Figure 19) is

missing completely the sampling of the secondary pose.

Figure 20: a) Ligand-receptor COM-COM distance distribution and associated PMF (in the inset) using
standard HREM (dashed line) and HREM with adaptive scaling using Eq. 4 (solid line). HREM simu-
lation lasted in both cases 24 ns; b) Ligand-receptor COM-COM distance distribution and associated
PMF (in the inset) obtained with a 24 ns standard MD (dashed line) and with 12 replicates of 24 ns
MD simulations (solid lines). In green we show the distribution obtained withe the adaptive HREM

If on one hand it is indeed encouraging that MD replicates are able to collectively sample the two

ligand poses with the same probability obtained in HREM simulations investing the same amount

of CPU time, on the other hand its quite disheartening that we needed, in total, 288 ns of standard

MD simulation for such result. In a FEP approach, there is no reason to believe that such amount

of time is required only to sample effectively the initial state of the ligand-receptor complex. If we

change the nature of the ligand-receptor interactions, as it occurs in the alchemical intermediate

states of a standard FEP calculation, we very likely alter the probability ratio of the two poses,

with an impact of the free energy change. For example, the oxygen of the isoaxozole moiety of ODR

is engaged in a strong hydrogen bond with a hydrogen of the NH2 group of ASN100 in the primary
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pose. This H-bond is lost when the ligand switches to the secondary pose. Hence, when, e.g., the

electric charges on the alchemical ligand are turned off as commonly done in a FEP calculations

where electrostatic and Lennard-Jones interaction are sequentially switched off, the probability

ratio of the two main poses in the BRD4(I)-ODR complex is likely to change significantly, with a

direct effect on the free energy change.

In the MD-based alchemical approach for drug design, a simple way of overcoming such stum-

bling blocks in the sampling of complex conformational landscapes of hosts or ligand receptor

systems is that of limiting the enhanced sampling simulations to the sampling of the end-states

only, and then connecting these end-states by a swarm of fast (few ns at most) nonequilibrium (NE)

alchemical simulations,38,54,55 recovering the free energy change from the resulting NE work distri-

bution using the Jarzynski56 or the Crooks theorems.57 This approach, by forcing the occurrence

of fast rare events exploiting the replica diffusion in the scaling ladder or the sampling efficiency

of many short and independent MD replicates on parallel platforms, in some sense restores the

thermodynamics, hence avoiding to rely on an often unattainable ergodicity on each intermediate

alchemical state in a single extended simulation of a single molecular systems characterized by a

rugged free energy landscape.

5 Conclusion

We have performed extended MD simulations using Hamiltonian Replica Exchange and standard

MD on two macrocyclic hosts, compound 1 (see Figure 2)and compound 2 (see Figure 11) that

selectively bind small guest molecules via an induced fit and a conformational selection mechanism,

respectively. HREM and MD simulations have been also performed on the ODR-BRD4(I) complex

in TIP3 water, with the ligand occupying two competing poses (see Figure 17). In all cases, we

used standard HREM based on the scaling protocol defined in Eq. 3 and an adaptive HREM with

on-the-fly balancing of the acceptance ratio as provided by Eq. 4. Adaptive HREM seems to have

a moderate positive impact on the average round-trip-time and on the replica flux, resulting in an

improved sampling efficiency. “One off” MD simulations, even with a total simulation time exceed-

ing by one order of magnitude that of the HREM simulations, are unable to reliably sample the
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conformational space in the two macrocyclic hosts and in BDR4(I)-ODR complex. By distributing

the total simulation time in a series of short independent standard MD replicates, the sampling effi-

ciency is restored in the case compound 1 and in the BRD4(I)-ODR complex where conformational

sub-states or secondary poses are separated by free energy barriers not exceeding 1-2 kcal/mol. For

compound 2, characterized by long-lived meta-stable structures separated by barrier exceeding 4

kcal/mol, HREM appears to be the only viable alternative for a reliable canonical sampling. The

present results shows that in complex systems with a manifold of possible conformations, a fully

converged and reproducible FEP-based approach would require costly HREM simulations on each

of the intermediate alchemical states. This severe sampling issue can be in part circumvented by

limiting the enhanced sampling to the end-states alone (the complex with the fully coupled ligand

and the receptor in the apo structure) and recovering the binding free energy via nonequilibrium

fast alchemical transformations connecting these end states.

Data and Software Availability

PDB trajectory files from MD and HREM simulation (target state only), ORAC input files and

force field parameter files are available at the general-purpose open-access repository Zenodo

(https://zenodo.org/record/8224111) A beta version of the ORAC program with implementation

of Eq. 4 in the rem module is also provided as a compressed tar archive in the same Zenodo

repository.
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