Chemically reversible CO\textsubscript{2} uptake by dendrimer-impregnated metal-organic frameworks

Rebecca B. Goncalves,† Carlos Cuadrado,‡ Christos D. Malliakas,† Zhiwei Wang,† Matthias Thommes,*‡ Randall Q. Snurr,*‡ and Joseph T. Hupp*,†

†Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
‡ Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
‡ Institute of Separation Science and Technology, Department of Chemical and Bioengineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, 91058, Germany

Supplementary information

Figure S1. Solid-state 13C CP MAS NMR of (A) NU-1000 and (B) NU-1000+G2. The aromatic and alkane regions of the spectrum are highlighted to differentiate between NU-1000 and the dendrimer. ... 3

Figure S2. (Left) SEM images and (right) corresponding EDS elemental mapping analysis for (top) NU-1000 and (bottom) NU-1000+G2. ... 4

Figure S3. EDS line scans of Zr and N for (A, B) NU-1000 and (C, D) NU-1000+G2. 5

Figure S4. XPS spectra of NU-1000 collected on the surface without etching: (A) Zr scans and (B) N scans. .. 5

Figure S5. XPS spectra of NU-1000+G2 collected (A, B) on the surface without etching and (C, D) with etching (345 sec, approximately 46 nm). (A, C) Zr scans and (B, D) N scans. 6

Figure S6. XPS spectra of NU-1000+G3 collected (A, B) on the surface without etching and (C, D) with etching (345 sec, approximately 46 nm). (A, C) Zr scans and (B, D) N scans. 7

Figure S7. Scanning Electron Microscopy (SEM) images of (A, B) NU-1000 and (C, D) NU-1000+G2. .. 8

Figure S8. Difference Fourier electron density map of NU-1000+G3. .. 9

Figure S9. (A) N\textsubscript{2} isotherms at 77 K and (B) the corresponding pore size distributions for NU-1000, NU-1000+G2, and NU-1000+G3. BET areas are indicated on plot A. 9
Figure S10. Log scale (A) N$_2$ isotherms at 77 K and (B) Ar isotherms at 87 K for NU-1000, NU-1000+G2, and NU-1000+G3.

Figure S11. N$_2$ isotherms at 77 K of NU-1000 following its synthesis and eight months after the synthesis. BET areas are indicated on plot A. Measurements were collected on different instruments.

Figure S12. Cumulative pore volume from (A) Ar at 87 K and (B) N$_2$ at 77 K isotherms for NU-1000, NU-1000+G2, and NU-1000+G3. (C) Cumulative pore volume for NU-1000+G2 and NU-1000+G3 with the mass of the dendrimer subtracted.

Figure S13. 1H NMR spectra of (A) NU-1000 and (B) NU-1000+G2. The samples were digested in 0.1 M NaOD/D$_2$O and diluted in D$_2$O. There are about 3.8 formate ions (at 8.46 ppm) per Zr$_6$ node in NU-1000 before dendrimer installation and about 0.5 formate ions (at 8.46 ppm) per Zr$_6$ after dendrimer installation.

Figure S14. Comparison of pore size distributions with Ar versus N$_2$ for (A) NU-1000, (B) NU-1000+G2, and (C) NU-1000+G3.

Figure S15. (A) N$_2$ isotherms at 77 K of NU-1000 before and after collecting a CO$_2$ isotherm and (B) the corresponding pore size distributions. BET areas are indicated on plot A. The sample was degassed after the CO$_2$ isotherm to collect the N$_2$ isotherm.

Figure S16. CO$_2$ adsorption isosteres for NU-1000 at (A) 273 and 293 K and (B) 293 and 313 K.

Figure S17. TGA data for NU-1000, NU-1000+G2, and NU-1000+G3.

Figure S18. Log scale CO$_2$ isotherms at 353 K for NU-1000, NU-1000+G2, and NU-1000+G3.

Figure S19. N$_2$ isotherms at 77 K of (A) NU-1000+G2 and (C) NU-1000+G3 before and after a CO$_2$ isotherm and (B, D) their respective pore size distributions. BET areas are indicated on plots A and B. The sample was degassed after the CO$_2$ isotherm to collect the N$_2$ isotherm.

Figure S20. Normalized DRIFTS spectra of NU-1000, NU-1000+G2, NU-1000+G3 at 30 °C after being activated at 80 °C on the instrument. The bridging-OH stretch from the Zr$_6$ node is still present.1

Figure S21. Normalized DRIFTS spectra of NU-1000 before CO$_2$ exposure at 30 °C and during exposure to CO$_2$ at various temperatures.

Figure S22. Normalized DRIFTS spectra of NU-1000+G3 before CO$_2$ exposure at 30 °C and during exposure to CO$_2$ at various temperatures.

Figure S23. 1st and 2nd cycle of water isotherms for (A) NU-1000, (B) NU-1000+G2, and (C) NU-1000+G3.

Figure S24. 1st and 2nd cycle of water isotherms for NU-1000+G2 before and after a CO$_2$ isotherm. (B) 1st and 2nd cycles of water isotherms for NU-1000+G2 after a CO$_2$ isotherm. The sample was degassed after the CO$_2$ isotherm.

Figure S25. Water isotherms of NU-1000+G2 and NU-1000+G3 compared to isotherms of formate-free NU-1000 with dendrimer, NU-1000-FF+G2 and NU-1000-FF+G3. Measurements of NU-1000-FF+G2 and NU-1000-FF+G3 were collected on a 3Flex (Micromeritics).

References:
Figure S1. Solid-state 13C CP MAS NMR of (A) NU-1000 and (B) NU-1000+G2. The aromatic and alkane regions of the spectrum are highlighted to differentiate between NU-1000 and the dendrimer.
Figure S2. (Left) SEM images and (right) corresponding EDS elemental mapping analysis for (top) NU-1000 and (bottom) NU-1000+G2.
Figure S3. EDS line scans of Zr and N for (A, B) NU-1000 and (C, D) NU-1000+G2.

Figure S4. XPS spectra of NU-1000 collected on the surface without etching: (A) Zr scans and (B) N scans.
Figure S5. XPS spectra of NU-1000+G2 collected (A, B) on the surface without etching and (C, D) with etching (345 sec, approximately 46 nm). (A, C) Zr scans and (B, D) N scans.
Figure S6. XPS spectra of NU-1000+G3 collected (A, B) on the surface without etching and (C, D) with etching (345 sec, approximately 46 nm). (A, C) Zr scans and (B, D) N scans.
Figure S7. Scanning Electron Microscopy (SEM) images of (A, B) NU-1000 and (C, D) NU-1000+G2.
Figure S8. Difference Fourier electron density map of NU-1000+G3. The yellow electron density isosurface is set at 0.15 $\overline{e}/\text{Å}^3$. (A) View along the c-axis and (B) along the a-axis. (C) PXRD data of NU-1000 with and without the Generation 3 PAMAM dendrimer.

Figure S9. (A) N_2 isotherms at 77 K and (B) the corresponding pore size distributions for NU-1000, NU-1000+G2, and NU-1000+G3. BET areas are indicated on plot A.
Figure S10. Log scale (A) N$_2$ isotherms at 77 K and (B) Ar isotherms at 87 K for NU-1000, NU-1000+G2, and NU-1000+G3.

Figure S11. N$_2$ isotherms at 77 K of NU-1000 following its synthesis and eight months after the synthesis. BET areas are indicated on plot A. Measurements were collected on different instruments.
Figure S12. Cumulative pore volume from (A) Ar at 87 K and (B) N₂ at 77 K isotherms for NU-1000, NU-1000+G2, and NU-1000+G3. (C) Cumulative pore volume for NU-1000+G2 and NU-1000+G3 with the mass of the dendrimer subtracted.
Figure S13. 1H NMR spectra of (A) NU-1000 and (B) NU-1000+G2. The samples were digested in 0.1 M NaOD/D$_2$O and diluted in D$_2$O. There are about 3.8 formate ions (at 8.46 ppm) per Zr$_6$ node in NU-1000 before dendrimer installation and about 0.5 formate ions (at 8.46 ppm) per Zr$_6$ after dendrimer installation.
Figure S14. Comparison of pore size distributions with Ar versus N₂ for (A) NU-1000, (B) NU-1000+G2, and (C) NU-1000+G3.
Figure S15. (A) N\textsubscript{2} isotherms at 77 K of NU-1000 before and after collecting a CO\textsubscript{2} isotherm and (B) the corresponding pore size distributions. BET areas are indicated on plot A. The sample was degassed after the CO\textsubscript{2} isotherm to collect the N\textsubscript{2} isotherm.

Figure S16. CO\textsubscript{2} adsorption isosteres for NU-1000 at (A) 273 and 293 K and (B) 293 and 313 K.
Figure S17. TGA data for NU-1000, NU-1000+G2, and NU-1000+G3.

Figure S18. Log scale CO$_2$ isotherms at 353 K for NU-1000, NU-1000+G2, and NU-1000+G3.
Figure S19. N\textsubscript{2} isotherms at 77 K of (A) NU-1000+G2 and (C) NU-1000+G3 before and after a CO\textsubscript{2} isotherm and (B, D) their respective pore size distributions. BET areas are indicated on plots A and B. The sample was degassed after the CO\textsubscript{2} isotherm to collect the N\textsubscript{2} isotherm.
Figure S20. Normalized DRIFTS spectra of NU-1000, NU-1000+G2, NU-1000+G3 at 30 °C after being activated at 80 °C on the instrument. The bridging-OH stretch from the Zr₆ node is still present.¹
Figure S21. Normalized DRIFTS spectra of NU-1000 before CO\textsubscript{2} exposure at 30 °C and during exposure to CO\textsubscript{2} at various temperatures.

Figure S22. Normalized DRIFTS spectra of NU-1000+G2 before CO\textsubscript{2} exposure at 30 °C and during exposure to CO\textsubscript{2} at various temperatures.
Figure S23. Normalized DRIFTS spectra of NU-1000+G3 before CO$_2$ exposure at 30 °C and during exposure to CO$_2$ at various temperatures.

Figure S24. 1$^{\text{st}}$ and 2$^{\text{nd}}$ cycle of water isotherms for (A) NU-1000, (B) NU-1000+G2, and (C) NU-1000+G3.
Figure S25. (A) Water isotherms for NU-1000+G2 before and after a CO$_2$ isotherm. (B) 1$^{\text{st}}$ and 2$^{\text{nd}}$ cycles of water isotherms for NU-1000+G2 after a CO$_2$ isotherm. The sample was degassed after the CO$_2$ isotherm.

Figure S26. Water isotherms of NU-1000+G2 and NU-1000+G3 compared to isotherms of formate-free NU-1000 with dendrimer, NU-1000-FF+G2 and NU-1000-FF+G3. Measurements of NU-1000-FF+G2 and NU-1000-FF+G3 were collected on a 3Flex (Micromeritics).
References:
