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Abstract

Chiral ligands are important components
in asymmetric homogeneous catalysis, but
their synthesis and screening can be both
time-consuming and resource-intensive.
Data-driven approaches, in contrast to
screening procedures based on intuition,
have the potential to reduce the time and
resources needed for reaction optimization by
more rapidly identifying an ideal catalyst.
These approaches, however, are often
non-transferable and cannot be applied
across different reactions. To overcome this
drawback, we introduce a general featurization
strategy for bidentate ligands that is coupled
with an automated feature selection pipeline
and Bayesian ridge regression to perform
multivariate linear regression modeling. This
approach, which is applicable to any reaction,
incorporates electronic, steric, and topological
features (rigidity/flexibility, branching,
geometry, constitution) and is well-suited
for early-stage ligand optimization. Using only
small datasets, our workflow capably predicts

the enantioselectivity of four metal-catalyzed
asymmetric reactions. Uncertainty estimates
provided by Bayesian ridge regression permit
the use of Bayesian optimization to efficiently
explore pools of prospective new ligands. Using
this procedure, a new library of 312 chiral
bidentate ligands was screened to identify
promising ligand candidates for a challenging
asymmetric oxy-alkynylation reaction.

1 Introduction

Statistical methods accelerate the discovery
and optimization of chemical reactions in
homogeneous catalysis.1–17 Employing these
“data-driven” approaches requires abundant,
high-quality data,18–20 that is often scarce.
Ligand optimization, in particular, suffers from
this problem, since most experimental datasets
tend to be size limited as a result of ligand
screening campaigns that often consist of fewer
than a dozen experiments. In such “low data”
regimes, nonlinear statistical models perform
poorly due to overfitting. On the other hand,
multivariate linear regression (MLR) models
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offer data-efficient alternatives that can be
developed from only a few samples, yet, are
robust, interpretative, and extrapolative to
unseen ligands.
To develop MLR models, catalysts are

usually first optimized using DFT and
then featurized.12,15,16,21–26 The resulting
molecular features (e.g., atomic charges, local
stretching frequencies, cone/bite angles) are
low-dimensional and highly interpretable,16,27–29

which allows design principles and hypothesized
reaction pathways to be derived from the
fitted models.17,21,23–26,30 This established
approach, however, suffers from two significant
drawbacks: first, specific features for the
chemical problem of interest must be selected
for the MLR model and second, only the
most relevant of these features are used in
developing the final model. As a result, MLRs
are often not transferable to different settings
(e.g., a similar reaction incorporating a different
family of ligands) as those features previously
selected may not be defined. To overcome this
problem Gensch et al.31 recently introduced
a comprehensive featurization strategy for
monodentate organophosphorus ligands that
facilitates the creation of MLRs for any possible
reaction class. Establishing this paradigm for
more complex ligand types is of great interest
for developing transferable predictive models
across catalyst families and reaction classes.16

To this end, here we present a
reaction-agnostic workflow applied to
bidentate ligands that employs, amongst
others, seldom-used topological-based features.
Coupling this featurization strategy with an
automated feature selection pipeline using
Bayesian ridge regression (BRR)32 allows
development of models that capably predict
the enantioselectivity of four different reaction
classes while highlighting the importance of
using topological-based features. Moreover,
by leveraging the calibrated uncertainty
estimations from BRR we demonstrate
Bayesian optimization (BO) for optimal ligand
screening33–39 by examining an original set
of 312 ligands extracted from the Cambridge
Structural Database (CSD). Overall, this work
demonstrates that linear models are indeed

more accurate and data-efficient than nonlinear
methods in the “extremely low” data regime.

2 Methods

2.1 Datasets

To develop, train, and test our pipeline, four
asymmetric reaction classes that previously
underwent extensive experimental ligand
screening were selected for examination
(Scheme 1, top): copper-catalyzed
oxy-alkynylation of diazo compounds
with hypervalent iodine reagents (OA),40

copper-catalyzed cyclopropanation of
styrene with diazo esters (CP),41

nickel/photoredox-catalyzed cross-electrophile
coupling of styrene oxides with aryl iodides
(CC),21 and a copper-catalyzed Diels-Alder
ligand benchmark reaction with cyclobutadiene
and an imide (DA).42–48 Table 1 gives an
overview of these datasets. For each reaction,
the reactants, reagents (except the ligand),
and solvent were kept constant, while reaction
conditions (metal loading, time, temperature,
etc.) varied among experiments. For this
reason, the datasets are small (ranging from 19
to 30 data points) as they include only ligand
screening experiments (see SI Section S2 for
details). For three of the four curated datasets,
all ligands originated from a single publication
while the fourth dataset (DA) contains
ligands taken from seven different publications,
which introduces additional noise in the data
resulting from different experimental setups.
For the OA dataset, additional ligands with
enantiomeric excesses not part of the original
publication,40 were included from electronic
laboratory notebook entries (see SI Section
S2.1).
Combining all four datasets gives a total

of 100 unique bidentate ligands, which were
curated as a ligand pool for exploration
(see Section 3.2). Most reactions (across
all datasets) used bis-oxazoline (BOX)
type ligands (see Table 1), but other
ligand classes [bi-2-imidazolines (B2IM),
α-diimines, phosphorous-oxazolines (PhosOX),
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and pyridine-oxazolines (PyOX, Scheme 1,
bottom)] are also present in smaller numbers.
In addition, bidentate ligands bound to Cu(I)
or Cu(II) found in the Cambridge structural
database (CSD)49,50 from an unbiased curated
subset were extracted with Cell2mol,51

which yielded an additional 312 new ligands
possessing at least one chiral atom. These
ligands were used as a separate pool for further
exploration (vide infra).

Scheme 1: (a) Candidate asymmetric reactions used
to develop and test the presented pipeline. (b) Ligand
families used in these reaction classes. The number of
unique ligands per class is shown in parentheses.

2.2 Bidentate ligand featurization

Molecular features (i.e., molecular descriptors)
were split into three categories: electronic,

Table 1: Overview of the datasets used in this work.

Dataset OA CP CC DA
# of datapoints 19 30 29 30
# of publications 1 1 1 7
Oxazoline ligands 16 30 20 21

steric, and topological (Figure 1a) and further
categorized based on their intensive or extensive
nature. To maximize generality, the only
local features used describe the ligand’s two
complexing atoms (that bind the metal), which
are present in all bidentate ligands. Steric
features were computed using a consistent
alignment for all ligands that allows ligand’s
molecular volume to reproducibly split into
octants, quadrants, and halves (see SI Section
S4.1). Full and buried volumes were computed
following the recommendations of Cavallo et
al.52

Topological features, seldom exploited in
multi-linear regression models for homogeneous
catalysis, were determined from vertex and edge
information of the ligand’s molecular graph
that were generated using covalent radii to
assign bonds based on the DFT optimized
geometry. This category includes global
topological feature (e.g. Wiener, Hosoya Z, and
Balaban J indices),53–55 bond-fragment based
descriptors (e.g., the indices introduced by
Kier and Hall),56–63 and bond-order quantities
(e.g., local and global simple indices and
the CREST flexibility index).64,65 Variants
of existing topological descriptors, originally
used for drug design, were also developed and
included to capture catalyst rigidity/flexibility.
Summed together, this strategy yields a

total of 232 features for each ligand, which
constitutes a representation of bidentate ligand
space. The tSNE plot of the featurized ligands
in Figure 1b showcases how these features
successfully group ligands belonging to the
same family (see Scheme 1b) while keeping
related ligand families adjacent, in agreement
with chemical intuition. Note that, by design,
all features can be obtained for any possible
bidentate ligand using the Moltop package
and associated scripts available at https:

//github.com/lcmd-epfl/rafbl. Further
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Figure 1: Featurization of bidentate ligands. (a) Alignment of the bidentate ligands in space and features classes.
(b) T-distributed stochastic neighbor embedding (tSNE) map of the feature space for all ligands with all available
features.

details and a complete description of all 232
features are given in the SI (Section S4).

2.3 Regression & optimization
methods

In this work, Bayesian ridge regression
(BRR, a regularized variation of least-squares
fitting) was used to fit the MLR models
whose parameters were estimated using
Bayesian inference, which provides a calibrated
uncertainty for each prediction. To avoid
overfitting, model complexity was limited to
one feature from each class (electronic, steric
or topological) with an additional requirement
that, at minimum, at least one of these features
must be extensive. Employing these constraints
reduced (by several orders of magnitude) the
possible number of combinations with respect
to brute-force exploration, which leads to a
manageable screening to determine the best
features (see SI Section S5.1 for details).
We find that this approach leads to highly
interpretable, robust models that outperform
non-linear models (see SI Section S5.2 for a

detailed comparison).
To guide ligand screening a pool-based

Bayesian Optimization (BO), in which
prospective ligands are run through the
BRR-fitted model, was employed. For each
ligand x in the pool the Expected Improvement
(EI)66 defined as

EI(x) = σ(x)(ZΦ(Z) + ϕ(Z)) (1)

Z =
(
µ(x)− µ+(x)

)
/σ(x) (2)

was computed. Here, µ represents the
predicted value, µ+, the current best value,
σ the standard deviation, Φ the cumulative
distribution function, and ϕ the probability
density function. New results are subsequently
incorporated into the training set and the
process repeated until unexplored ligands each
have EI scores lower than those already seen
by the model. This implies that no further
improvement (i.e., no better ligand) is expected
within the pool.
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Figure 2: General workflow for model selection. (1) Ligands are optimized with a metal center to obtain the desired
geometry. (2) 232 features are extracted from the metal-free structure. (3) The most promising feature combinations
are identified through testing. (4) The best features undergo cross-validation and the best Bayesian ridge regression
(BRR) model is obtained. (5) This resulting model is used for ligand screening with BO.

2.4 General workflow

Figure 2 overviews our proposed workflow.
In step 1, CuCl2L structures are optimized
at the PBE0-D3(BJ)/def2-SVP level (see
Computational details) followed by automatic
feature extraction for each structure (Step 2).
The Eyring equation then is used to convert
enantiomeric excesses (for experimentally
available data) to energies (∆∆G‡) with
the corresponding reaction temperature.
Pre-selected feature combinations (see Section
2.3) are then evaluated with ordinary
least-squares, first with no cross-validation
(CV), to reduce computational time (Step 3).
Those combinations with the best R2 are then
re-evaluated with BRR and the leave-one-out
(LOO) CV scheme (Step 4). R2

LOO is then
calculated for all left-out points and used to
score the final models. With the final model
a pool of ligands is screened and BO used to
identify the most promising candidates, which
should next be tested (Step 5).

3 Results & Discussion

3.1 Generation of MLR models

Using the above pipeline, an interpretable
MLR model was generated for each of the
four Scheme 1 datasets (Figure 3). Recall
that the MLR expressions contain, by design,
one feature from each of the different classes
(electronic, steric, and topological) and that
no additional human input was required for
featurization or feature selection (i.e., all

reactions used the same initial features and
were run through the pipeline in an automated
fashion). In general, the models perform well,
with MAELOO not being higher than 0.29
kcal/mol. As in standard MLR, examining
the normalized weights of these models reveals
insight into the key aspects of the ligand that
lead to high enantioselectivity (Figure 3).
For the oxy-alkynylation of diazo compounds

model (OA, Figure 3a) the selected features
are: the lone-pair NBO energies of the smaller
ligand half (−x, electronic), the hydrogen-free
volume of the other larger half (x, steric), and
the normalized atom Kier 2κα index (lower
values-more rigid, topological). The large
topological feature weight indicates that a
rigid catalyst structure is the most crucial
element in determining enantioselectivity with
sterics and electronics relegated to smaller roles.
Taken together, these design principles indicate
that Indane-derived BOX (IndaBOX) ligands
are well suited for this reaction, as they are
simultaneously both bulky and rigid. We
hypothesize that catalyst rigidity favors more
selective transition states.
For the cyclopropanation of styrene with

diazo esters model (CP, Figure 3b) the
selected features are: the lone-pair NBO
energies (electronic), a buried octant (−x, y, z,
steric) and the normalized Hall 2χ index
(higher values-more rigid, topological). Here,
sterics play a more important role than
either electronics and rigidity, in agreement
with previously proposed models.41 A closer
examination of the model reveals that the
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Figure 3: Fitted models for the four datasets, where N is the number of points, adj. R2 the adjusted coefficient
of determination, MAE the mean absolute error and the LOO subscript indicates the scores for the leave one
out cross-validation. The model equation is represented in each plot with a depiction of the normalized weights.
Electronic features are represented in teal, steric in orange, and topological in red. (a, OA dataset) Lone-pair NBO
energies of the smaller half, hydrogen-free volume of larger half (along positive x-axis), and relative atom Kier 2κα

index. (b, CP dataset) Product of lone-pair NBO energies, volume of buried octant 2 (−x, y, z), and relative 2χ. (c,
CC dataset) Absolute difference of lone-pair NBO energies, relative buried volume of the south-west quadrant Q3

(−x,−y), and Balaban J index. (d, DA dataset) Absolute difference of lone-pair NBO energies, buried volume of
octant 5 (x,−y,−z), and relative 3χv index. See SI Section S4 for a complete description of all features.

−x, y, z octant (O2
Bur.) is important for

enantioselectivity. This fact, in addition
to the benefits of having lower electron
occupancy near the chelating atoms, indicate

that aza-BOX ligands should be good for this
reaction.
For the cross-electrophile coupling of styrene

oxides with aryl iodides model (CC, Figure
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3c) the selected features are: the difference
of lone-pair NBO energies (electronic), the
normalized south-west quadrant (−x,−y,
steric), and the Balaban-J index (higher
values-more branched, topological). Here,
the most important feature is steric (Q̂3

Bur.)
and indicates that the southwest quadrant
should be kept free, which aligns with
previous postulations regarding the origin of
stereoselectivity.21 Overall, the family of B2IM
ligands with closed, more rigid, backbones
match well with the features of the model.
Note that the adjusted R2 of 0.73 of our
model is similar to the adjusted R2 of 0.74
previously reported for CC,21 which shows
that our pipeline yields similar predictivity
and analogous interpretation without requiring
information about reaction intermediates.
Finally, for the Diels-Alder reaction of

cyclobutadiene an imide model (DA, Figure
3d) the selected features are: the NBO energies
(electronic), a buried hydrogen-free octant
(x,−y,−z, steric), and the normalized 3χv Hall
index (higher values-more rigid, topological).
Here, as in the OA dataset, the topological
feature is found to be dominant. Being built
from seven different publications, this reaction
is particularly challenging. Nevertheless, our
model has cross-validated errors of less than
0.3 kcal/mol.
The MLR models obtained from our pipeline

for each of the four reaction datasets discussed
above are both simple and interpretable
owing to their limited number of features
and selected composition. The importance
of topological features that describe catalyst
rigidity/flexibility (which, recall are typically
absent in multi-linear regression models for
homogeneous catalysis) across all four reactions
is noteworthy, as in all cases these factors
play, at minimum, an equally important
role to electronic features (as seen through
examination of the normalized weights).

3.2 Pool-based ligand optimization
with BRR and BO

As illustrated above, the fitted BRR models
can be used to elucidate design principles

by analyzing the selected features/weights
and interpreting the trends. Additionally,
they may also be directly employed for
ligand optimization (e.g., to predict ligands
that will impart higher selectivity). In this
context, the ability to accurately extrapolate
to unseen samples is crucial, particularly for
cases where the training set contains only
ligands with low enantioselectivities (e.g., an
initial batch based on similar reactions). To
simulate this situation, we performed a 80/20
train/test split on the OA dataset to test
the model on out-of-range predictions. As
shown in Figure 4a, the test set includes the
four best experimental ligands (red points),
while the training set contains ligands with
similar or worse performance (teal points).
The complete pipeline was then rerun using
the reduced training data (teal points only),
which produced a similar (but not identical)
model to that shown in Figure 3. Overall,
this re-fit model shows low errors (MAE
of 0.15 kcal/mol) for unseen samples and
well-calibrated uncertainties that are nearly
within 1σ from the reported experimental
values. The enhanced uncertainty estimation,
powered by BRR, coupled with the low
prediction error on the test set, demonstrates
that our pipeline yields models capable
of extrapolating towards unknown ligands,
including those anticipated to have greater
selectivity.
Ideally, the newly developed BRR model

can be used to more rapidly identify an
ideal catalyst, which would avoid performing
experiments that yield no improvement past
the optimum. To assess this, we constructed
a timeline depicting the original experimental
reporting of each ligand (teal, Figure 4b). Here,
the best performing ligand was found during the
seventh experiment; all subsequent attempts
did not yield any further improvement. Having
established the model’s ability to reliably
predict out-of-range ligands with calibrated
uncertainties (vide supra), we conducted BO to
efficiently find the optimal ligand from a pool of
candidates using the same initial three ligands
as the training set. As shown in red (Figure
4b), the acquisition function identifies the best

7
https://doi.org/10.26434/chemrxiv-2023-pknnt ORCID: https://orcid.org/0000-0002-6006-671X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-pknnt
https://orcid.org/0000-0002-6006-671X
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Retrospective and prospective experiments for OA dataset. (a) 80/20 train (teal)/test (red) split.
Error bars correspond to 1σ. The selected features are: lone-pair NBO energies of the smaller half, hydrogen-free
volume south-west quadrant Q3 (−x,−y), and constitutional Kier α. (b) Retrospective BO analysis. The “Report”
line follows the original optimization timeline. New batches of ligands are represented as black crosses. Bar plots
represent the ∆∆G‡ values of each ligand in the batches. The BO starts with the three points from the first batch.

ligand as the third candidate to be tested (sixth
total ligand, including the three included in
the initial training set), faster than in the
original experimental optimization procedure.
From that point forward, five additional ligands
were (incorrectly) predicted to bring potential
improvement, however, given the uncertainty
of these predictions, these additional species
did not ultimately demonstrate improved
selectivity. At this point, the stop criterion was
met as no other ligand in the pool was predicted
to provide further improvement, in agreement
with experimental observations.
Compared to the original purely experimental

screening, using the BO pipeline reduced the
amount of required resources for the ligand
screening by roughly a factor of two. Thus, BO
was successful at rapidly finding the best ligand
from the candidate pool while avoiding wasteful
experiments. All of this while operating in the
low data regime.
With these promising results in hand,

we screened those ligands reported in the
CP, CC, DA reactions (Scheme 1) to test
their enantioselectivity for the OA reaction.
Figure 5a (top left) shows the best ligand
found experimentally as well as the top three

“not-yet-sampled” ligand candidates derived
from the other three reaction classes that
were predicted by the BRR. Unfortunately,
none of these new ligands (2-4) significantly
improves the results for OA according to
predictions from the model. Undeterred, we
searched for more promising candidates by
considerably expanding the pool to include
312 chiral bidentate ligands extracted from
copper complexes in the Cambridge Structural
Database (CSD, see Section 2.1). Interestingly,
the most promising candidates include simple
molecules such as tartaric acid (5), as well
as amino acid derivatives from phenylalanine
(6). Other amino acids (tyrosine, alanine, and
tryptophan) also received good EI scores, as did
N,N-ligands (7,8) such as BOX ligands with a
sp2 carbon bridge. On one hand, considerable
differences in both the coordinating properties
and charge of these CSD predicted ligands from
those previously shown to be experimentally
viable might lead to the conclusion that these
new ligand would be incompatible with the
reaction of interest. On the other hand,
more “out-of-the-box” proposals may lead to
significant advances by revealing new regions
of ligand space to examine that had not been
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Figure 5: Predictions and analysis of literature and CSD extracted ligands for the OA reaction. (a) Top left:
Best ligand found experimentally. Top right: top three EI candidates from pool-based predictions for the reaction,
using the ligands from the three remaining literature datasets. Bottom: four diverse candidate ligands from the
CSD which exhibit a high EI score. The predicted ∆∆G‡ and its uncertainty are given. The used model is given at
the bottom. (b) tSNE map of the CSD extracted ligands using the same embedding as in Figure 1b (gray points).
The coloring corresponds to EI scores of each remaining CSD ligand (truncated to 10−6 for clarity). Red numbers
correspond to structures in panel (a). aOptimized reaction conditions with this ligand yield 90% ee.

previously considered.
The four newly identified ligand classes (5-8)

each possess distinct electronic properties (i.e.,
negative charges) from the original sets of
tested ligands, as well as high rigidities for 7
and 8. The presence of oxygen and electron
rich nitrogen atoms imparts substantially
higher NBO charges than the previously
tested ligands, which leads to higher predicted
enantioselectivities according to the linear
model. On the other hand, these ligands also
have higher prediction uncertainties (e.g., the
uncertainty is an order of magnitude higher
for tartaric acid than for ligands taken from
the literature set) which arise because the
CSD contains ligands that have not been
experimentally tested for the OA reaction. To
assess this increase in diversity, the CSD ligands
were plotted with the previously discussed
dimensionality reduction embedding (Figure
5b). In general, the previously known space
is well covered by the new dataset, meaning
that the ligands reported in the original four
reactions are all well represented within the
larger CSD set (but not vice versa). The
emergence of new clusters (e.g., in the top

right and bottom left) indicates the presence of
novel ligand families within the CSD set that
were unexplored in the experimental ligand
screenings. The most promising candidates
(with high EI scores) are found in the top right
cluster or along the right border, corresponding
to ligands with sp2 carbon bridges as well
as amino acid derivatives. Based on these
findings, we propose a series of follow-up
ligand optimization reactions (5,6,7,8) for
the OA dataset. While the uncertainties for
these predictions are high and the probability
to gain any additional improvements for
the OA reaction is low, the use of amino
acid derivatives67 could open the door to
inexpensive and sustainable ligands. In the
future, we intend to make use of the proposed
pipeline for ligand optimization of other OA
related reactions.

4 Conclusions

In this work, we introduced a general
workflow for constructing linear models from
small numbers of screening experiments that
predict enantioselectivity in reactions involving
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bidentate ligands. Datasets comprising four
different reaction classes (totaling 100 bidentate
ligands belonging to seven ligand families)
were curated to validate this approach and
supplemented with an additional 312 ligands
taken from the CSD that were used as a
pool for further ligand optimization. Our
workflow retrieves the best possible linear
model established from a combination of
electronic, steric, and (critically important
but frequently overlooked) topological features
that were determined using Bayesian Ridge
Regression (BRR). By coupling BRR with
Bayesian Optimization (BO) we were able to
efficiently screen ligands, even in limited data
scenarios, which allowed design principles to
be extracted and new ligands to be proposed
for the oxy-alkynylation reaction. Overall, the
approach presented here enables researchers
to optimize ligand selection and design at
any stage of experimentation, resulting in
more efficient and cost-effective enantioselective
reaction development.

5 Computational details

DFT computations of ligands were done
at the PBE0-D3(BJ)/def2-SVP level using
Gaussian16.68–70 For ligands extracted from the
literature, 3D coordinates were generated using
Openbabel, then optimized at the GFN2-xTB
level71 before final optimization with DFT.72

The desired structure (chelating groups
oriented towards the metal atom) was obtained
by adding CuCl2 to the molecules before the
optimization, as previously reported (see Table
S1 for comparison with CuCl geometries).22,41

Ligands used in the Ni-catalyzed reactions were
optimized with CuCl2 and NiF2 for comparison
(see Table S2). Similar to Cu(I) and Cu(II),
the RMSD for the tested structures was found
to be lower than 1 Å on average. All electronic
features, including NBO analyses,73 were
performed on the metal-free ligand structures.
Atoms for the different NBO charges (atom
itself and lone-pair) were defined based on
distance to the metal center. The optimized
or crystal structure coordinates were used

to compute the steric features and build the
molecular graphs. For the steric features,
both libarvo and Morfeus were used.74–76

Features derived from the molecular graph were
generated using the newly developed Moltop
Python package. Whenever bond orders are
required for a specific feature (such as the
Crest flexibility index), these have to be defined
explicitly. Supported bond orders currently
include ones from NBO analyses, xTB, and
RDkit. All Moltop instructions and scripts
used in this study are available on Github at
https://github.com/lcmd-epfl/rafbl. The
Sklearn package was used for linear models.77
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(8) Żurański, A. M.; Martinez Alvarado, J. I.;
Shields, B. J.; Doyle, A. G. Predicting Reaction
Yields via Supervised Learning. Acc. Chem. Res.
2021, 54, 1856.

(9) Hueffel, J. A.; Sperger, T.; Funes-Ardoiz, I.;
Ward, J. S.; Rissanen, K.; Schoenebeck, F.
Accelerated dinuclear palladium catalyst
identification through unsupervised machine
learning. Science 2021, 374, 1134.

(10) Rose, B. T.; Timmerman, J. C.; Bawel, S. A.;
Chin, S.; Zhang, H.; Denmark, S. E. High-Level
Data Fusion Enables the Chemoinformatically
Guided Discovery of Chiral Disulfonimide
Catalysts for Atropselective Iodination of
2-Amino-6-arylpyridines. J. Am. Chem. Soc.
2022, 144, 22950.

(11) Laplaza, R.; Gallarati, S.; Corminboeuf, C.
Genetic Optimization of Homogeneous Catalysts.
Chemistry–Methods 2022, 2 .

(12) Gallarati, S.; Laplaza, R.; Corminboeuf, C.
Harvesting the fragment-based nature of
bifunctional organocatalysts to enhance their
activity. Org. Chem. Front. 2022, 9, 4041.

(13) Schwaller, P.; Vaucher, A. C.; Laplaza, R.;
Bunne, C.; Krause, A.; Corminboeuf, C.; Laino, T.
Machine intelligence for chemical reaction space.
WIREs Comput. Mol. Sci. 2022, 12 .

(14) Torres, J. A. G.; Lau, S. H.; Anchuri, P.;
Stevens, J. M.; Tabora, J. E.; Li, J.; Borovika, A.;
Adams, R. P.; Doyle, A. G. A Multi-Objective
Active Learning Platform and Web App for
Reaction Optimization. J. Am. Chem. Soc. 2022,
144, 19999.

(15) Betinol, I. O.; Kuang, Y.; Reid, J. P. Guiding
Target Synthesis with Statistical Modeling Tools:
A Case Study in Organocatalysis. Org. Lett. 2022,
24, 1429–1433.

(16) Dotson, J. J.; van Dijk, L.; Timmerman, J. C.;
Grosslight, S.; Walroth, R. C.; Gosselin, F.;
Püntener, K.; Mack, K. A.; Sigman, M. S.
Data-Driven Multi-Objective Optimization
Tactics for Catalytic Asymmetric Reactions
Using Bisphosphine Ligands. J. Am. Chem. Soc.
2023, 145, 110.

(17) Wang, Y.-Z.; Wang, Z.-H.; Eshel, I. L.; Sun, B.;
Liu, D.; Gu, Y.-C.; Milo, A.; Mei, T.-S.
Nickel/biimidazole-catalyzed electrochemical
enantioselective reductive cross-coupling of aryl

aziridines with aryl iodides. Nat. Commun. 2023,
14, 2322.

(18) Strieth-Kalthoff, F.; Sandfort, F.;
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Carbó, J. J. Predicting the Enantioselectivity
of the Copper-Catalysed Cyclopropanation of
Alkenes by Using Quantitative Quadrant-Diagram
Representations of the Catalysts. Chem. Eur. J.
2012, 18, 14026.

(42) Evans, D. A.; Lectka, T.; Miller, S. J.
Bis(imine)-copper(II) complexes as chiral lewis
acid catalysts for the Diels-Alder reaction.
Tetrahedron Lett. 1993, 34, 7027.

(43) Davies, I. W.; Gerena, L.; Castonguay, L.;
Senanayake, C. H.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. The influence
of ligand bite angle on the enantioselectivity of
copper(II)-catalysed Diels-Alder reactions. Chem.
Commun. 1996, 1753.

(44) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.
Conformationally constrained bis(oxazoline)
derived chiral catalyst: A highly effective
enantioselective Diels-Alder reaction. Tetrahedron
Lett. 1996, 37, 3815.

(45) Davies, I. W.; Gerena, L.; Cai, D.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. A conformational
toolbox of oxazoline ligands. Tetrahedron Lett.
1997, 38, 1145.

(46) Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P.
Chiral Bis(oxazoline)copper(II) Complexes as
Lewis Acid Catalysts for the Enantioselective
Diels-Alder Reaction. J. Am. Chem. Soc. 1999,
121, 7559.

(47) Kanemasa, S.; Adachi, K.; Yamamoto, H.;
Wada, E. Bisoxazoline and Bioxazoline
Chiral Ligands Bearing 4-Diphenylmethyl
Shielding Substituents. Diels-Alder Reaction of
Cyclopentadiene with 3-Acryloyl-2-oxazolidinone
Catalyzed by the Aqua Nickel(II) Complex. Bull.
Chem. Soc. Jpn. 2000, 73, 681.

(48) O’Leary, P.; Krosveld, N. P.; De Jong, K. P.;
van Koten, G.; Klein Gebbink, R. J. Facile and
rapid immobilization of copper(II) bis(oxazoline)
catalysts on silica: application to Diels-Alder
reactions, recycling, and unexpected effects on
enantioselectivity. Tetrahedron Lett. 2004, 45,
3177.

(49) Groom, C. R.; Allen, F. H. The Cambridge
Structural Database in Retrospect and Prospect.
Angew. Chem. Int. Ed. 2014, 53, 662.

(50) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.;
Ward, S. C. The Cambridge Structural Database.
Acta. Crystallogr. B. Struct. Sci. Cryst. Eng.
Mater. 2016, 72, 171.

(51) Vela, S.; Laplaza, R.; Cho, Y.; Corminboeuf, C.
cell2mol: encoding chemistry to interpret
crystallographic data. npj Comput. Mater. 2022,
8, 188.

(52) Poater, A.; Ragone, F.; Mariz, R.; Dorta, R.;
Cavallo, L. Comparing the Enantioselective
Power of Steric and Electrostatic Effects

12
https://doi.org/10.26434/chemrxiv-2023-pknnt ORCID: https://orcid.org/0000-0002-6006-671X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-pknnt
https://orcid.org/0000-0002-6006-671X
https://creativecommons.org/licenses/by-nc-nd/4.0/


in Transition-Metal-Catalyzed Asymmetric
Synthesis. Chem. Eur. J. 2010, 16, 14348.

(53) Wiener, H. Structural Determination of Paraffin
Boiling Points. J. Am. Chem. Soc. 1947, 69, 17.

(54) Hosoya, H. Topological Index. A Newly Proposed
Quantity Characterizing the Topological Nature
of Structural Isomers of Saturated Hydrocarbons.
Bull. Chem. Soc. Jpn. 1971, 44, 2332.

(55) Balaban, A. T. Highly discriminating
distance-based topological index. Chem. Phys.
Lett. 1982, 89, 399.

(56) Kier, L. B. A Shape Index from Molecular Graphs.
Quant. Struct.-Act. Relat. 1985, 4, 109.

(57) Kier, L. B. Shape Indexes of Orders One and Three
from Molecular Graphs. Quant. Struct.-Act. Relat.
1986, 5, 1.

(58) Kier, L. B. Distinguishing Atom Differences
in a Molecular Graph Shape Index. Quant.
Struct.-Act. Relat. 1986, 5, 7.

(59) Kier, L. B. An Index of Molecular Flexibility
from Kappa Shape Attributes. Quant. Struct.-Act.
Relat. 1989, 8, 221.

(60) Hall, L. H.; Kier, L. B. Determination of
Topological Equivalence in Molecular Graphs from
the Topological State. Quant. Struct.-Act. Relat.
1990, 9, 115.

(61) Kier, L. B.; Hall, L. H. A Differential Molecular
Connectivity Index. Quant. Struct.-Act. Relat.
1991, 10, 134.

(62) Hall, L. H.; Mohney, B.; Kier, L. B. The
Electrotopological State: An Atom Index for
QSAR. Quant. Struct.-Act. Relat. 1991, 10, 43.

(63) Caron, G.; Digiesi, V.; Solaro, S.; Ermondi, G.
Flexibility in early drug discovery: focus on the
beyond-Rule-of-5 chemical space. Drug Discov.
Today 2020, 25, 621.

(64) Fisanick, W.; Cross, K. P.; Rusinko, A.
Characteristics of computer-generated 3D and
related molecular property data for CAS registry
substances. Tetrahedron Comput. Methodol. 1990,
3, 635.

(65) Pracht, P.; Bohle, F.; Grimme, S. Automated
exploration of the low-energy chemical space with
fast quantum chemical methods. Phys. Chem.
Chem. Phys. 2020, 22, 7169.

(66) Jones, D. R.; Schonlau, M.; Welch, W. J. Efficient
Global Optimization of Expensive Black-Box
Functions. J. Glob. Optim. 1998, 13, 455.

(67) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.;
Yu, J.-Q. From Pd(OAc) 2 to Chiral Catalysts:
The Discovery and Development of Bifunctional
Mono-N-Protected Amino Acid Ligands for
Diverse C–H Functionalization Reactions. Acc.
Chem. Res. 2020, 53, 833.

(68) Adamo, C.; Barone, V. Toward reliable
density functional methods without adjustable

parameters: The PBE0 model. J. Chem. Phys.
1999, 110, 6158.

(69) Weigend, F.; Ahlrichs, R. Balanced basis sets of
split valence, triple zeta valence and quadruple
zeta valence quality for H to Rn: Design and
assessment of accuracy. Phys. Chem. Chem. Phys.
2005, 7, 3297.

(70) Frisch, M. J. et al. Gaussian 16 Revision C.01.
2016; Gaussian Inc. Wallingford CT.

(71) Bannwarth, C.; Ehlert, S.; Grimme, S.
GFN2-xTB—An Accurate and Broadly
Parametrized Self-Consistent Tight-Binding
Quantum Chemical Method with Multipole
Electrostatics and Density-Dependent Dispersion
Contributions. J. Chem. Theory Comput. 2019,
15, 1652.

(72) O’Boyle, N. M.; Banck, M.; James, C. A.;
Morley, C.; Vandermeersch, T.; Hutchison, G. R.
Open Babel: An open chemical toolbox. J.
Cheminf. 2011, 3, 33.

(73) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;
Weinhold., F. NBO Version 3.1. 2001.
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