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1. Abstract 
Comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data present 
several challenges for analysis largely because chemical factors drift along the chromatographic modes 
across different chromatographic runs, and there is frequently a lack of reliable molecular ion measurements 
with which to align data across multiple samples. Tensor decomposition techniques such as Parallel Factor 
Analysis (PARAFAC2/PARAFAC2×N) allow analysts to deconvolve closely eluting signals for 
quantitative and qualitative purposes. These techniques make relatively few assumptions about 
chromatographic peak shapes or the relative abundance of noise and allow for highly accurate 
representations of the underlying chemical phenomena using well-characterized and scrutinized principles 
of chemometrics. However, expert intervention and supervision is required to select appropriate Regions 
of Interest (ROI) and numbers of chemical components present in each ROI. We previously reported an 
automated ROI selection algorithm for GC-MS data in Giebelhaus et al. where we observed the ratio of the 
first and second eigenvalues within a moving window across the entire chromatogram. Here, we present an 
extension of this work to automatically detect ROIs in GC×GC-MS chromatograms, while making no 
assumptions about peak shape. First we calculate the probabilities of each acquisition being in a ROI, then 
apply connected components segmentation to discretize the regions of interest. For sparse chromatograms 
we found the algorithm detected spurious peaks. To address this, we implemented an iterative ROI selection 
process where we autoscaled the moving window to the standard deviation of the noise from the previous 
iteration. Using three user-defined parameters, we generated informative ROIs on a wide range of GC×GC-
TOFMS chromatograms. 

2. Key words 
Comprehensive two-dimensional gas chromatography; Region of interest selection; Chemometrics; Fisher 
Ratio Analysis 

3. Graphical abstract 

 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2023-k1t7j ORCID: https://orcid.org/0000-0002-7625-3077 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k1t7j
https://orcid.org/0000-0002-7625-3077
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 3 of 12 
 

1 Introduction 
Comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) is a powerful 
separation technique that utilizes two columns with different stationary phase chemistries, connected by a 
modulation device [1]. GC×GC-MS offers more peak capacity, chromatographic resolution, and sensitivity 
compared to GC-MS separations, offering profound insight into the volatile and/or semi-volatile chemistry 
of a variety of sample types. Recently, GC×GC-MS has been utilized in metabolomics, the study of all 
metabolites in a biological sample [2,3], to analyze challenging biological samples including plants and 
bodily fluids such as urine [4–6], and in environmental studies to detect trace contaminants [7,8]. While 
incredibly powerful, GC×GC-MS data presents several challenges for processing and analysis. These stem 
largely from high sample complexity, drift of chemical factors along the chromatographic modes between 
chromatographic runs, and a lack of reliable molecular ion measurements to align peaks across multiple 
samples. 

A number of approaches have been proposed for the analysis of GC×GC-MS data, many of which have 
been deployed as part of commercial software [9–12]. Chemometric methods such as Multivariate Curve 
Resolution (MCR), Independent Component Analysis (ICA), or Parallel Factor Analysis 
(PARAFAC/PARAFAC2) have been utilized for the decomposition of multiple GC-MS and GC×GC-MS 
samples [12–15]. Parallel Factor Analysis allows for analysts to deconvolve closely eluting signals for 
quantitative and qualitative purposes, while making few assumptions about chromatographic peak shape or 
the abundance of the signal, providing accurate representations of the underlying chemical phenomena. 
Recently, Armstrong et al. described a PARAFAC algorithm, dubbed PARAFAC2×N, which allows for 
the direct decomposition of 4th order tensors, making GC×GC-MS data easily amenable to multiway 
decomposition [12]. While PARAFAC2×N is a powerful technique for analyzing GC×GC-MS data, it 
requires pre-defined regions of interest (ROIs) within each of the chromatograms, and an appropriate k-
component number for each region. These are difficult determinations to automate with GC×GC-MS data. 

Region of interest selection is a broad field in computer science and statistics, which focuses on selecting 
regions in data that contain useful data [15,16]. Automated ROI selection is popular in signal and image 
processing as it selects ROIs and provides an output based on a series of predefined metrics, eliminating 
bias and subjectivity that is introduced by manual ROI selection [16,17]. In Giebelhaus et al. we described 
a novel method for automated ROI selection in GC-MS data, where we used a pseudo Fisher ratio moving 
window to compute the probability of an acquisition containing chemical components [15]. Here, we 
present an extension of this work to automate ROI selection on GC×GC-MS data, requiring only three user-
defined input parameters. Two ROI selection approaches using the pseudo Fisher ratio-moving window are 
described here; the first is a direct extension of Giebelhaus et al. where we compute the probabilities over 
each modulation then reconstruct the data to represent the GC×GC-MS data. The second approach is 
iterative, where the ROIs are computed then the standard deviation of the noise regions of the chromatogram 
is used to auto-scale the moving window in subsequent iterations. We found the iterative approach is 
necessary for most GC×GC-MS data due to the higher chromatographic resolution and peak capacity, 
resulting in more noise acquisitions than in GC-MS data, artificially inflating the auto-scaled values of the 
moving window in noise regions of the chromatographic plane. 

2 Experimental 
2.1 Data preprocessing 
Development and application of the region of interest algorithm was performed in Matlab® R2022a. Each 
chromatogram was imported into Matlab as a data matrix, X ∈ RM×N, where M is individual acquisitions 
and N is ions. These data matrices were then folded into an I × J × K tensor, where I is acquisitions in the 
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first separation dimension, J is acquisitions in the second dimension, and K is individual ions. Each i, j, k 
entry describes the relative abundance of a particular molecular fragment at a particular moment in time 
along both dimensions of separation. 

2.2 Region of interest selection algorithm 
2.2.1 Fisher ratio moving window 
Our region of interest algorithm for GC-MS data described in Giebelhaus et al. was adapted to detect 
regions of interest in comprehensive two-dimensional gas chromatography mass spectrometry [15]. In brief, 
the pseudo F-ratio moving window for GC-MS data works as follows: data contained within the moving 
window with size wndw is auto-scaled, and then the first two singular values are computed. An 
approximation of a Fisher ratio is then computed as the ratio of the squares of the first two singular values. 
This process is then repeated in each iteration of the algorithm as the window is shifted along the raw data 
by one spectrum in each iteration. A vector of pseudo F-ratios is generated, which is then used to generate 
a vector of probabilities that each spectrum is within a ROI based on the F cumulative distribution function 
with wndw-1 numerator degrees of freedom and wndw-2 denominator degrees of freedom. For each value 
in the vector of probabilities, the χ2 was calculated using the χ2 inverse cumulative distribution function, 
with one degree of freedom, and stored as a vector. This function is computationally intensive, and is called 
from a MEX file reduce computational time. Vector addition was then performed, combining this vector 
with the previously summed χ2 values, with indexing adjusted to account for the moving window. The 
probability for each mass spectrum was then calculated from the χ2 values using the χ2 cumulative 
distribution function. The number of degrees of freedom for this calculation was the number of instances 
where the acquisition was considered by the moving window; for instance, the first mass spectrum has one 
degree of freedom, while a mass spectrum in the middle of a sufficiently large chromatogram (where n > 2 
× wndw) will have wndw degrees of freedom. 

2.2.2 GC×GC-MS region of interest selection 
Two different algorithm modes for GC×GC ROI selection are reported here (Figure 1). The first is a direct 
extension of the GC-MS algorithm reported in Giebelhaus et al. [15], where probabilities are computed for 
each modulation then reconstructed into an I × J matrix of probabilities. The second mode of ROI selection 
uses an iterative approach to calculate ROIs. In this mode, an initial set of ROIs are computed across the 
chromatogram with a wndw size of wndw×2, with the window auto-scaled to the standard deviation of the 
entire chromatogram rather than auto-scaling to the standard deviation of the spectra in the moving window. 
Once these initial ROIs are computed, the noise regions are extracted by selecting acquisitions below the 
user input probability threshold cut-off, and the standard deviation of all noise is computed. The ROI 
calculation is then performed again, auto-scaling to the standard deviation of the noise from the first ROI 
calculation. This process is then repeated as many times as desired by the user. 

2.2.3 Connected components segmentation 
To discretize the ROIs within the chromatographic plane, connected components segmentation was utilized. 
First, the I × J matrix of probabilities was binarized. The bwconncomp() Matlab function was then used to 
calculate the individual connected components. Finally, the labelmatrix() function was then applied to 
create a label for each unique connected component, assigning each component a number starting from 1. 
The connected component labels are then used to extract each individual ROI from the chromatogram as a 
tensor. A figure can be generated with the ROIs labeled as individual colors to represent their discretization. 
Some ROIs, which are not connected share the same color, which is a result of the limited color palette of 
Matlab.  
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Figure 1. Algorithm flowchart demonstrating the two region of interest selection (ROI) algorithm modes 
developed for GC×GC-MS data. Mode 1 computes ROIs as an extension of the GC-MS algorithm and 
mode 2 uses an iterative approach, where the moving window is auto-scaled to the noise regions of the 

previous ROI calculation. 
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2.3 Algorithm inputs 
The ROI algorithm only requires the raw chromatographic data and five input parameters to perform ROI 
selection. Users upload the raw chromatographic data as an I × J × K tensor, where I is acquisitions in the 
first separation dimension, J is acquisitions in the second dimension, and K is individual ions. The moving 
window (wndw) size is an integer value. The probability threshold cut-off (cutOff) is the minimum 
probability (between 0 and 1) for a spectrum to be deemed to be within a ROI. The mode is a binary input 
(1 or 2) which selects the ROI selection algorithm mode (Figure 1). Users can select to plot the 
chromatogram after ROI selection by setting plot as 1. If users select mode 2 for ROI selection, the number 
of iterations must be input (itters), which is an integer value greater than 1. If mode 1 is selected, itters can 
be set to any integer. The file gcxgcROIMain.m handles all inputs for this algorithm. 

2.4 Algorithm outputs 
All algorithm outputs are stored in the structure dataOut. The original chromatogram as a tensor with the 
non-ROI regions removed is stored as the tensor noiseDropped. The probabilities across the entire 
chromatographic plane are stored as an I × J matrix, arrayPvals, with probabilities on a scale of 0 to 1. The 
probabilities above the user defined probability threshold are stored in the I × J matrix pValCutOff. The two 
dimensional total ion chromatogram (TIC) is stored as ticDataReshaped. The original chromatogram is 
stored as the tensor originalTensor. An I × J matrix of Boolean values (0 or 1) denoting which acquisitions 
are in an ROI is stored as boolArray. The ROI number for each acquisition is stored in the I × J matrix as 
labMatrix. The number of ROIs detected in the data is stored as an integer as numROIs. The user input 
moving window size, probability cut-off, mode, and number of iterations are stored in the table metaData. 
Additionally, each ROI is excised from the chromatogram and stored as a tensor in the structure subTensors. 
As most ROIs are not rectangular, the excised tensor is padded with zeros to allow for storage as a tensor.  

2.5 GC×GC-TOFMS datasets 
All data used in the development of this algorithm was collected on a Pegasus 4D TOFMS (LECO, St. 
Joseph, MI, USA), with an Agilent 7890 (Agilent Technologies, Palo Alto, CA, USA) gas chromatograph 
and a quad jet liquid nitrogen-cooled thermal modulator. In all cases, the first dimension (1D) column was 
a 5% phenyl polysilphenylene-siloxane phase (Rtx®−5MS; 60 m × 0.25 mm i.d.; 0.25 µm film thickness) 
connected by means of a SilTiteTM µ-Union (Trajan Scientific and Medical, Victoria, Australia) to a 
second dimension (2D) trifluoropropylmethyl polysiloxane-type phase (Rtx-200; 1.6 m × 0.25 mm i.d.; 0.25 
µm film thickness). All columns were from Restek Corporation (Restek Corp., Bellefonte, PA, USA). The 
2D column was installed in a separate oven located inside the main GC oven. 

The derivatized algae data was previously published in Armstrong et al. [6]. Blueberry samples were 
collected using a dynamic headspace (DHS) method previously reported in Dias et al. [4]. An alkane 
standards mix from C7 to C30 in hexane (Sigma-Aldrich, Oakville, Ontario, Canada) was analyzed using a 
liquid injection method previously reported in Nam et al. [5].  

3 Results and discussion 
3.1 Iterative approach for auto-scaling moving window 
Our initial ROI algorithm for GC×GC-MS data, which is a modulation-by-modulation extension of our 
GC-MS ROI algorithm described in Giebelhaus et al., successfully identified peaks in busy chromatograms 
(Figure 2). However, when this approach was applied to the simple linear alkanes chromatogram, the 
algorithm performed poorly, describing the majority of the chromatogram as being within ROIs (Supporting 
Figure 1). 
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Figure 2. ROI selection on a derivatized algae sample [6] using the modulation-by-modulation extension 
of the GC-MS ROI detection algorithm. (a) The GC×GC-TOFMS chromatogram of the algae sample and 

(b) the probability values of the chromatogram, and (c) the ROIs overlaid on the chromatogram. 

We hypothesized that this was a result of the moving window’s auto-scaled spectra being artificially inflated 
from low standard deviation (σ). Auto-scaling (Equation 1) is mean centering followed by scaling the data 
to σ of the data. If a moving window encounters a large section of a modulation absent of any chemical 
components, σ will be low, which has the potential to artificially inflate the values of the auto-scaled data, 
especially if only a limited number of xij are significantly different from 𝑥௜. This phenomenon is well known 
in chemometrics, where auto-scaling is known to lead to inflation of measurement errors [18]. 

𝑥௔௦ =  
𝑥௜௝ − 𝑥௜

𝜎௜
  (1)  

To eliminate this issue, we first modified our ROI algorithm to auto-scale the moving window using σ of 
the entire chromatogram. This reduced the false positives in ROI selection, but reduced the sensitivity, due 
to mass spectra containing chemical components inflating σ. To improve the sensitivity, we then performed 
the same ROI selection but auto-scaled all moving windows to σ of the non-ROI portions of the 
chromatogram, equating this to chromatographic noise. We performed this in an iterative process, with each 
iteration auto-scaling with the σ of the previous ROI calculation. This process is summarized by Figure 1. 
To decrease false negatives in the initialization step where the moving window is auto-scaled to σ of the 
entire chromatogram, the moving window size wndw is set to wndw×2. We found that this approach 
correctly selected ROIs after about three iterations, with the number of ROIs staying consistent even after 
10 iterations (Figure 3). Additionally, to speed up processing of multiple samples, the σ of noise from one 
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sample after the iterative approach could be used to calculate ROIs in subsequent homogenous samples, 
circumventing the need to perform multiple iterations for each sample. 

 

Figure 3. The number of ROIs detected with each iteration of the iterative GC×GC-MS ROI algorithm on 
a chromatogram of alkanes, with a moving window size of 10 and a probability threshold of 0.8. After 

five iterations, the number of ROIs remain unchanged. 

This iterative approach correctly assigned ROIs in a chromatogram of linear alkanes after 5 iterations, with 
a moving window size of 10 and a probability cut-off of 0.8 (Figure 4). Spurious ROIs in Figure 4 were 
identified as real chemical components upon manual inspection, and are likely siloxanes or contaminants 
in the hexanes solvent. 

 

 

Figure 4. ROI selection on a chromatogram of linear alkanes. (a) Chromatogram of linear alkanes and (b) 
ROIs overlaid on the chromatogram. 

https://doi.org/10.26434/chemrxiv-2023-k1t7j ORCID: https://orcid.org/0000-0002-7625-3077 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k1t7j
https://orcid.org/0000-0002-7625-3077
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 9 of 12 
 

3.2 Optimal settings for region of interest selection 
A major advantage of this approach compared to other strategies, including the watershed algorithm [19], 
is that this algorithm only requires 3 user specified parameters (probability cut-off, moving window size, 
and iterations), and 2 inputs to select ROI selection mode and the output of a figure. Much like in our GC-
MS ROI selection algorithm [15], probability increases rapidly around a ROI, causing the cut-off to have 
little impact on the size of ROIs (Supporting Figure 2). Decreasing the probability can increase the 
sensitivity of the ROI algorithm by selecting ROIs with lower probabilities, but this can also increase the 
size of ROIs and lead to the amalgamation of multiple ROIs into one large ROI, which could make 
decomposition more challenging. We found a probability cut-off between 0.60 to 0.85 was appropriate for 
the GC×GC-TOFMS data analyzed in this study. 

A moving window size that is approximately the 2D peak width of the average peak over its most intense 
modulation. We found that the appropriate window size for the GC×GC-TOFMS data explored here was 
between 10 to 20. Similar to our GC-MS ROI algorithm, larger window sizes help to increase the sensitivity, 
however this comes with the risk of producing larger ROIs which may not be suitable for multiway 
decomposition [15]. Additionally, we found that a larger window size is also more sensitive to noise, 
resulting in the selection of spurious ROIs (Figure 5). A smaller window size may be helpful in resolving 
peaks eluting closely to the column bleed (Figure 5a). Both the probability cut-off ad the moving window 
size require minimal user optimization to obtain informative ROIs from GC×GC-TOFMS data. 

 

Figure 5. Effects of changing the moving window size on ROI selection. 

For GC×GC-TOFMS data we suggest trying the modulation-by-modulation ROI selection algorithm first 
to determine if the data are amenable to this approach. If this approach performs poorly (Supporting Figure 
1), we then suggest trying the iterative approach as previously described, with approximately 5 iterations 
(Figure 3).  

https://doi.org/10.26434/chemrxiv-2023-k1t7j ORCID: https://orcid.org/0000-0002-7625-3077 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k1t7j
https://orcid.org/0000-0002-7625-3077
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 10 of 12 
 

3.3 Performance on complex samples 
To assess the performance of this algorithm on GC×GC-TOFMS data representative of real metabolomics 
studies, two GC×GC-TOFMS datasets analyzing complex mixtures were subjected to ROI selection [4,6]. 
Our ROI selection algorithm successfully assigned all chromatographic features to an ROI in the complex 
derivatized algae mixture (Figure 2), with a moving window size of 15 and a probability cut-off of 0.8. The 
ROI selection on the algae data was performed without the need for the iterative ROI selection approach, 
likely given the complexity of the chromatogram. We explored the iterative approach on this data, however 
we found the ROIs became amalgamated (Supporting Figure 3), due to the increased sensitivity of this 
approach, which would make the data less amenable to multiway decomposition methods. 

The blueberry chromatogram [4] is considerably less busy than the algae chromatogram, and therefore 
performed poorly with the traditional modulation-by-modulation approach, even after trying a wide range 
of window sizes and probability cut-offs, necessitating the need for the iterative approach (Figure 1). Using 
10 iterations, with a moving window size of 15 and a probability cut-off of 0.8, our ROI algorithm 
successfully selected ROIs in the blueberry chromatogram (Figure 6). 

 

Figure 6. ROI selection on a chromatogram of blueberries [4]. (a) The TIC and (b) ROIs overlaid on the 
chromatogram. 

Complex samples, with closely eluting peaks, often produce irregularly shaped ROIs. Our algorithm 
extracts the irregular ROIs by extracting the ROI as a cuboid tensor indexed to the ROIs minimum and 
maximum acquisitions in 1D and 2D. Excess acquisitions in the cuboid are zero-filled. This also addresses 
the case where an ROI may completely encircle another ROI. A number of strategies have been developed 
for handling excess zeros when performing decomposition methods, such as MCR and PARAFAC [20,21]. 
Additionally, we did not encounter peak splitting when computing ROIs, a common issue with the 
watershed algorithm [19]. This is because our algorithm makes no assumptions about chromatographic 
peak shape, and uses the mass spectra to select ROIs rather than relying on the TIC [15].    

4 Conclusion 
This work demonstrates the application of pseudo-Fisher ratio analysis for sensitive, untargeted ROI 
selection in GC×GC-MS data, by building on our previous GC-MS ROI selection algorithm. Additionally, 
we addressed the issues of detecting spurious peaks when the GC×GC chromatogram is relatively sparse 
through our implementation of the iterative ROI selection approach. We generated informative ROIs using 
only three user-defined input parameters, moving window size, probability cut-off, and number of 
iterations. Complex samples are efficiently handled by the algorithm, successfully incorporating all 
chromatographic peaks into ROIs. Our algorithm makes no assumptions about peak shape, making it 
amenable to a wide range of complex samples and peak shapes. The ROIs are extracted into individual 
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cuboid tensors, which are agnostic to the ROI shape, allowing for further chemometric analysis. This 
approach demonstrates an effective component in a workflow for fully automated GC×GC-MS data 
analysis. 

4. Supporting information 
All code for this project is available in GitHub at https://github.com/ryland-chem/2d_gc_region_of_interest 
as release v1.1.  
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