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ABSTRACT16

Computing binding affinities is of great importance in drug discovery pipeline and its prediction using advanced machine
learning methods still remains a major challenge as the existing datasets and models do not consider the dynamic features of
protein-ligand interactions. To this end, we have developed PLAS-20k dataset, an extension of previously developed PLAS-5k,
with 97,500 independent simulations on a total of 19,500 different protein-ligand complexes. Our results show good correlation
with the available experimental values, performing better than docking scores. This holds true even for a subset of ligands that
follows Lipinski’s rule, and for diverse clusters of complex structures, thereby highlighting the importance of PLAS-20k dataset
in developing new ML models. Along with this, our dataset is also beneficial in classifying strong and weak binders compared
to docking. Further, OnionNet model has been retrained on PLAS-20k dataset and is provided as a baseline for the prediction
of binding affinities. We believe that large-scale MD-based datasets along with trajectories will form new synergy, paving the
way for accelerating drug discovery.

17

Background & Summary18

High-throughput screening plays a crucial role in the drug discovery process. However, this approach to identifying lead19

molecules is time-consuming and labour-intensive. On the other hand, computational methods offer a promising solution by20

significantly reducing the cost, time, and resources required for physical experiments in screening potential hit molecules.21

High-throughput docking and molecular dynamics (MD) simulations provide an appealing virtual screening approach to22

expedite the discovery of biologically active hit compounds1. Despite the advantages of these methods, certain limitations23

and drawbacks still exist in docking. These include a restricted sampling of both protein and ligand conformation during pose24

prediction and the use of approximated scoring functions that often yield docking scores with poor correlation to experimental25

binding affinities2. On the other hand, MD simulations offer several benefits for investigating the structural and dynamical26

properties of a Protein-Ligand (PL) system and accurately predicting binding affinities. However, screening of umpteen27

molecules consumes prohibitively expensive computational resources rendering the prediction of binding affinity (MD based)28

on a large scale infeasible3.29

In recent years, machine learning (ML) has emerged as a powerful tool to accelerate various aspects of drug development4.30

ML has already shown to be successful in the hunt for antibiotics,5 drug re-purposing for emerging diseases6, 7, virtual31

screening8, 9, bio-molecular interactions, prediction of binding site and protein folding10–14. Notably, enormous ML models32

have been developed to predict PL binding affinity15. These data-driven approaches have been successful in attaining a33

high level of accuracy by learning the binding modes directly from rapidly growing experimental three-dimensional (3D) PL34

structural data deposited in Protein Data Bank (PDB)16, 17. Numerous attempts have been made to enhance the performance35

of machine learning (ML) models through different types of encoding, topology, spectral sequence, and atom pairs. These36
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approaches have predominantly relied on feature engineering from static 3D structures18. However, this static picture of PL37

interactions often lacks dynamic features. Incorporating dynamic properties can provide crucial insights into bio-molecular38

processes such as protein folding, conformational changes, and ligand binding. In addition, considering dynamic features can39

help address fundamental questions related to binding affinity and specificity19, 20. The greatest strength of MD simulations lies40

in their ability to reveal dynamic effects of the bio-molecules that go beyond the experimentally determined structures available41

in PDB21, 22. Furthermore, MD simulations capture the interactions and energy exchanges between the protein, ligand (solute),42

and solvent(water, buffer ions) to dictate the binding event through both long-range and short-range interactions23–26. While43

existing ML models have shown promise in predicting binding affinity, they often rely on training datasets composed of only a44

few hundred static binding poses of PL complexes. With the continuous growth in the number of ligands and proteins, there is45

an increasing demand for massive and dynamic data to improve the ML model’s accuracy in predicting binding affinities.46

By integrating MD simulations with ML techniques, researchers can leverage the dynamic nature of biomolecular systems47

and incorporate a broader range of data, leading to more accurate and reliable predictions of binding affinities. The combination48

of MD simulations and ML holds great potential for accelerating drug discovery efforts in an ever-expanding chemical space.49

To this end, in our previous work, we developed a MD-based dataset called PLAS-5k27. This dataset included binding affinities50

averaged over conformations of each of 5000 PL complexes, representing various classes of enzymes. In addition to the binding51

affinities, the dataset also included energy components contributing to the binding free energy.52

When attempting to accurate prediction of PL interactions through ML models, a labyrinth of interactions needs to be53

accounted for. In continuation of our previous dataset, the current work focuses on expanding heterogeneous proteins and a54

large spectrum of ligand types, including small organic molecules and peptides. The extended dataset, encompasses 19,500 PL55

structures, providing protein-ligand affinities and non-covalent interaction components, along with accompanying trajectories56

suitable for machine learning applications.57

The creation of the PLAS dataset was primarily motivated by the need for high-quality datasets that can support the58

development of advanced algorithms and drive significant advancements in drug development. The PLAS-20k dataset59

comprises a diverse collection of protein-ligand (PL) complexes, providing a valuable resource for researchers in the field.60

To assess the performance of calculated binding affinities, we conducted comparisons by calculating correlation coefficients61

between experimentally determined values and the affinities obtained through molecular mechanics/Poisson-Boltzmann surface62

area (MM-PBSA) and docking methods. This evaluation allowed us to validate the accuracy and reliability of the computational63

approaches employed. Based on the experimental binding affinities within the PLAS-20k dataset, we categorized the complexes64

into strong binders (SB) and weak binders (WB). This classification helps to differentiate between PL complexes with high and65

low affinities, providing valuable insights into the range of binding strengths within the dataset. Furthermore, we assessed the66

ligand’s adherence to Lipinski’s Rule of 5, which offers insights into their drug-like properties. As a baseline for comparison,67

we retrained the OnionNet framework using our dataset. The availability of large datasets is often considered essential for68

successful deep learning applications. Thus, we believe that the PLAS-20k dataset will serve as a catalyst for the development69

of data-driven methods in various drug design tasks, including hit identification, lead optimization, and de novo molecular70

design. By providing a comprehensive and diverse dataset, the PLAS-20k dataset empowers researchers to more effectively71

explore and apply data-driven approaches, leading to advancements in drug discovery and design processes. The dataset’s72

availability will drive further innovation and contribute to significant progress in the field of drug development.73

Methods74

Data Curation75

In this article, we have chosen a set of 14,500 complexes from the Protein Data Bank (PDB)17, expanding upon our previous76

PLAS-5k27 dataset. The selection criteria for these complexes focused on proteins that are complex with small molecules77

(ligands) or peptides.78

Dataset Preparation79

In this study, we followed the preprocessing and calculation protocol similar to our previous work27. A brief account of the80

methods is given here. The initial structure of the complexes was taken from PDB17. Protein chains with missing residues were81

modelled as loop regions using UCSF Chimera?, 28. Further, the protein chains were protonated at a physiological pH, 7.4 using82

H++ server29. The tleap program of ambertools30, 31 was used to build the input files of each complex system (protein-ligand,83

cofactors and crystal water molecules) files required for MD simulations. The crystal waters were modelled using a TIP3P84

force field32 The proteins were modelled using Amber ff14SB force field33 in the all-atom model, and parameters of the ligand85

and cofactors were taken from General AMBER force field (GAFF2)34 using antechamber program35. Each complex was86

solvated in an orthorhombic TIP3P water box with a 10 Å extension from the protein surface. More detailed information on the87

dataset preparation is discussed in our earlier work with 5k complexes27 and the flowchart for data preparation is shown in88

Figure 1. The counter ions were added to maintain the charge neutrality of the system.89
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MD simulations were performed using OpenMM 7.2.0 program36. The simulation protocol involved several steps as90

described below. To initiate the simulations, we performed a minimization process using the L-BFGS minimizer with a91

harmonic potential applied to the atoms of the protein backbone. The force constant for this potential was set to 10 kcal/mol/Å2.92

The minimization consisted of 1000 steps, and after every 10 steps, the restraint force on the backbone atoms was reduced by93

half. Subsequently, an additional 1000 steps of minimization were conducted after removing the harmonic potential entirely.94

During the simulation, a time step of 2 fs was used, and constraints were applied to the bonds involving hydrogen atoms.95

We implemented a Langevin thermostat with a friction coefficient of 5 ps−1 to maintain the temperature. The system was96

gradually heated from an initial temperature of 50 K to the target temperature of 300 K, increasing by 1 K every 100 steps (20097

fs). The backbone atoms of the protein were restrained using harmonic potentials during this heating process. Once the target98

temperature was reached, the simulations were performed for 1 ns in the NVT ensemble.99

In the next step, the systems were equilibrated in NPT ensemble at 300 K and 1 atm using a Langevin thermostat and100

Monte Carlo barostat for 2 ns. Finally, a production run of 4 ns in NPT ensemble is performed and the trajectory is saved every101

100 ps for post-processing analysis. The final coordinates of the systems were subjected to minimization for 4000 steps. The102

coordinates at every 1000 steps were saved and used as the initial structures to start the four more independent simulations.103

MD trajectories from five independent simulations were used to calculate the binding affinity using MMPBSA (Molecular-104

Mechanics Poisson Boltzmann Surface Area) method. Here we used a single trajectory approach to estimate the contribution of105

the complex, ligand, and receptors separately. We considered two explicit water molecules near the active site. The binding106

affinity is calculated as follows:107

∆GMM−PBSA = ∆EMM + ∆GSol (1)

108

Electrostatic interaction energy ∆Eele, and Van der Waals interaction energy ∆Evdw contributs to ∆EMM (equation (2)) and109

∆GSol , is defined as sum of polar ∆Gpol , and non-polar contributions ∆Gnp (equation (3))110

∆EMM = ∆Eele +∆Evdw (2)
∆GSol = ∆Gpol +∆Gnp (3)

111

Data Records112

The PLAS-20k dataset is available publicly and can be accessed at (https://healthcare.iiit.ac.in/d4/plas20k/plas20k.html). The113

list of PDB ids that are part of PLAS-20k is provided and can be downloaded from the website. The PDB id search icon in114

the database opens a specific 3D structure along with energy components (Van der Waals interaction energy, electrostatic115

energy, polar and non-polar solvation free energies in conjunction with binding affinity) from the MD trajectories using the116

MM-PBSA method. An example of HIV-1 protease complex (PDB id: 1hxw) is shown in Supplementary Figure S1. The117

binding affinity and energy components for all the complexes can be accessed through https://figshare.com/s/118

05a562608b47d1682b8f in csv format.119

Technical Validation120

Overall Structures of the Protein-Ligand Complexes121

Though there are a lot of advances in predicting PL binding affinity through machine learning methods, the incorporation of122

receptor flexibility remains a major bottleneck. In the present work, we propose a novel dataset based on binding affinities of PL123

complexes retrieved from MD simulations. The binding affinities were calculated by considering the flexibility of both protein124

and ligand. The simulated complexes were validated by calculating the RMSD with respect to the experimental structure. The125

protein structures were superimposed to calculate RMSDs of protein and ligand. These calculations have been performed126

over 200 frames (40 from each simulation trajectory) and the corresponding distributions are shown in Supplementary Figure127

S2. The long tails of RMSD distributions of protein and ligand are evident due to the flexibility of the complex during the128

simulations.129

Comparison of experimental vs computed binding affinities130

Experimentally, the binding affinity of a protein-ligand complex is expressed in terms of dissociation constant (Kd) or inhibition
constant (Ki). This experimentally determined binding equilibrium constant is related to binding free energy as,

∆Gexpt =−kBT lnKi =−kBT ln(1/Kd) (4)
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In this work, for a comparison study, we selected a subset of 6842 complexes of the PLAS-20k dataset, whose experimental131

binding affinities are available. To assess the performance of our dataset, the Pearson correlation coefficient (Rp) and Spearman132

rank correlation coefficient (Rs) were calculated. Both these correlation coefficients showed that, studies based on MM-PBSA133

have superior performance with (Rp) of 0.50 and (Rs) of 0.56 compared to docking studies whose (Rp)&(Rs) are 0.39 and 0.41134

respectively. The corresponding plots are shown in Figure 2. The results highlight the importance of considering both protein135

and ligand flexibility. We expect that ML-based scoring functions developed using the PLAS-20k dataset could be more reliable136

than classical scoring functions. The distribution of the calculated binding affinity is shown in Supplementary Figure S3.137

Classification of Binders138

Drug discovery is the process by which lead molecules are identified by screening chemical space based on binding affinity. The139

existing ML models or scoring functions were formulated based on several assumptions but they still have certain limitations.140

Mostly, researchers are interested in identifying only strong binders (SB), and one of the major reasons for neglecting weak141

binding molecules in drug discovery is because of its cross reactivity37, 38. However, these weak binders (WB) are also equally142

important as they play a key role in fragment-based drug design39 and they serve as a foundation towards the development of143

more potent and selective drug candidates with improved therapeutic efficacy.144

In our dataset, 4343 PL complexes with experimental Ki/d fall into SB and WB categories. This subset is used to classify145

SB and WB based on experimental vs MMPBSA and experimental vs docking binding affinities. For experimental binding146

affinities, the strong and weak binders were classified with a predefined cut-off value of -8.18 kcal/mol. The corresponding147

MMPBSA and docking cut-offs are -38.70 kcal/mol and -6.35 kcal/mol respectively. A brief discussion of the binding affinity148

cutoff values is given in detail in Supplementary Information.149

The classification based on MMPBSA and Docking is shown in Figure 3 and the qualitative performance was evaluated150

using the metrics given in Tables 1-2. In Figure 3, the diagonal elements of the confusion matrix represent the number of151

correct predictions, while the off-diagonal elements represent incorrect predictions. Based on the evaluation metrics, given in152

Tables 1-2 and correlation coefficients (Supplementary Figure S4) it can be observed that MMPBSA classification is performing153

better compared to docking scores. Also, the confusion matrix revealed that the majority of SB (true positives) and WB (true154

negatives) were correctly identified with respect to MMPBSA, indicating the dataset is good enough to distinguish SB and WB.155

The definitions of the evaluation metrics are provided in SI.156

Performance of Diverse Protein Sequences157

The central goal of any machine learning (ML) model is to get the best model, and its performance depends on training data.158

More diverse the training data, one can expect a better model. We have collected a humongous number of complex structures159

for this dataset preparation. Our dataset covers 1856 protein families which are of functional significance and a pie chart of the160

highly populated family is shown in supplementary Figure S5. Proteins with sequence similarity of ≤ 40% are grouped and the161

correlation coefficients are shown in Supplementary Figure S6. The results highlight the importance of the PLAS-20k dataset162

as it shows a good correlation for a diverse set of proteins.163

Performance Based on Ligand Structural Properties164

In the field of drug discovery, prediction of bio-active molecules are based on several rules such as Lipinski,40 MDDR-like165

rule,41 Veber rule,42 and Ghose filter43. The physicochemical properties like molecular weight and hydrogen bonding capacity166

are important to design drug-like molecules. For a comparison study, we chose a set of ligands with drug-like properties167

(Molecular weight ≤ 500, number of hydrogen bond donors ≤ 5, number of hydrogen bond acceptors ≤ 10) and evaluated the168

performance of those complexes based on docking and MMPBSA calculations.169

As seen in Figure 4, MMPBSA calculations showed good correlation with (Rp) of 0.55 and (Rp) of 0.57 compared to170

docking with (Rp),(Rs) 0.41 and 0.43 respectively. Also, for each of the individual components of drug-like properties,171

MMPBSA showed a good correlation compared to docking and the results are shown in Supplementary Figure S7-S9. Further,172

as seen in Supplementary Figure S10 our dataset holds diverse ligands highlighting a few molecular descriptors, as they play an173

important role in drug discovery.174

Components of the Binding Free Energies175

Binding free energy is the most important initial indicator of drug potency and remains a major challenge in predicting affinities.176

In this work, we have provided binding energies for 19,500 PL complexes along with energy components (∆Eele, ∆Evdw,177

and ∆GSol). This PLAS-20k dataset could be helpful in training ML models for predicting the binding affinities and energy178

components. The knowledge of these components can help in lead optimization. The distribution of the energy components is179

shown in Supplementary Figure S11. Moreover, the availability of dynamic binding poses from the PLAS-20k dataset can help180

in building ML models that can screen lead compounds in a more efficient manner compared to existing methods.181
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Machine Learning Baseline182

PLAS-20k data was also trained and tested using a deep Convolutional Neural Network (CNN) based model, OnionNet. As ML183

and deep learning methods have begun to make significant contributions in predicting the binding affinity of a PL complex. The184

OnionNet model extracts various features from the 3D molecular structure of each PL complex and corresponding binding185

affinities as input, it then predicts the binding affinity of unknown complexes using deep CNN. The model trained on PLAS-20k186

data gave an Rp of 0.91 with an RMSE of 8.15 kcal/mol as shown in Figure 5. This further shows that the PLAS-20k dataset187

can be used effectively for training various ML and deep learning models.188

Code availability189

There is no in-house code used for ML model. We used OnionNet44 http://github.com/zhenglz/onionnet/ ML190

model to train on PLAS-20k dataset.191
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Figures & Tables291

Exp. vs MMPBSA Precision Recall f1-score support
Strong Binders 0.86 0.78 0.82 2579
Weak Binders 0.72 0.81 0.76 1764
Accuracy 0.79 4343
Macro Average 0.79 0.79 0.79 4343
Weighted Average 0.80 0.79 0.79 4343

Table 1. Performance metrics from confusion matrix to evaluate the classification models performance in distinguishing
strong and weak binders based on MMPBSA calculations.

Exp. vs Docking Precision Recall f1-score support
Strong Binders 0.79 0.74 0.76 2579
Weak Binders 0.65 0.72 0.68 1764
Accuracy 0.73 4343
Macro Average 0.72 0.73 0.72 4343
Weighted Average 0.74 0.73 0.73 4343

Table 2. Performance metrics from confusion matrix to evaluate the classification models performance in distinguishing
strong and weak binders based on docking simulations.
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Figure 1. Protocol for input preparation and simulations. A similar approach to our earlier work has been followed.27

Figure 2. Correlation plots between the experimental and calculated binding affinities for a subset with 6842 (includes 2000
data points from PLAS-5k dataset27) pdbids. The calculated binding affinities are calculated (a) using Auto-dock Vina, and (b)
using MM-PBSA.
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Figure 3. Confusion matrix to distinguish strong and weak binders (a) Experimental vs MMPBSA, (b) Experimental vs
Docking.

Figure 4. Correlation plots for a set of PDB ids from PLAS-20k (which follows Lipinski rule of five - Molecular weight,
number of donors and number of acceptors of the ligand) for which experimental binding affinities are known - (a)
Experimental vs Docking, (b) Experimental vs MM-PBSA
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Figure 5. Pearson correlation coefficient of OnionNet trained on PLAS-20k dataset.

11/11

https://doi.org/10.26434/chemrxiv-2023-mg07d ORCID: https://orcid.org/0000-0001-7114-3955 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-mg07d
https://orcid.org/0000-0001-7114-3955
https://creativecommons.org/licenses/by-nc-nd/4.0/

	References

