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Abstract 

Lignocellulose as carbon source and oleaginous microorganisms including yeast, 

bacterium and fungi, has been studied extensively for oil and biodiesel production, 

however several bottlenecks and challenges still remain stuck biodiesel production with 

oleaginous seeds vegetable and commercial oil production from oleaginous 

microorganisms actually is not cost-effective and sustainable. Recently electric vehicles 

global market has increased, but some human activities requires heavy good vehicles for 

aviation and shipping, and biodiesel is necessary for powering those vehicles. In first 

stage of oil bioprocess is to get rich-sugars liquor from lignocellulose, but is highly difficult 

because lignin affect enzyme activity and oleaginous microorganism growth due to is a 

toxic compound, then hydrolysis is a process that easily could be fall out by several 

changes in adequate conditions that sometimes is almost impossible has the control as 

the strain ability to produce enzymes or cellulose polymerization degree by origin of 

lignocellulose. The oil production in the bioprocess is a challenge too, because 

fermentations of oleaginous microorganisms is aerobic this mean need constant oxygen 

supply consuming energy, besides lipid production is low and the lipid yield decrease in 

the extraction process. In this small review discuss about those troubles related to 

sustainable lipid production with oleaginous microorganisms and lignocellulose as carbon 

source. 
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1. Introduction 

Lignocellulose biofuel production mainly bioethanol and biodiesel has been a challenge 

since the scientific community and global policy government glimpsed lignocellulose as a 

carbon source to reach 2G biofuels due to its cheap and abundant material. However, the 

successful models at a commercial scale in biofuels implemented many years ago, do 

not use lignocellulose as a carbon source, the biofuels commercial production remains 

stuck in 1G biofuels, those successful models are bioethanol production in the USA and 

Brazil, where most of the commercial gasoline is a mix of 10 and 15% of bioethanol and 

fossil-derived gasoline [1], the question is ¿why bioethanol production is possible, but 

biodiesel production not? Firstly raw material for bioethanol is grain corn an abundant 

resource in the USA, the first place in worldwide corn production (USDA-ERS, 2023), and 

juice sugarcane in Brazil, sugarcane`s largest producer, however, corn grain and juice 

sugarcane is not enough for biofuels production because they are used for several 

purposes as animal feed, human consumption and others industrial applications. 

Lignocellulose is an abundant and economical raw material too, although farmers argue 

that they need corn stover to maintain and increased soil fertility, actually, lignocellulose 

is the most abundant raw material from different sources such as corn stover, wheat 

straw, barley straw, forest and industrial residues, energy plant cultures, etc., [2–5] 

However, today is not possible the sustainable and commercial biodiesel production. 

Grain corn requires pretreatment to get corn liquor, but an acid or enzymatic pretreatment 

is enough to relatively easily reach a sugars high concentration liquor, the juice sugarcane 

even does not need acid or enzymatic pretreatment, this is 1G biofuels production, 

however, to hydrolysis lignocellulose the energy consumed is greater than corn grain, the 
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energy consumed is for mill, chemical pretreatment for lignin separation, enzymes 

production, agitation along 2-3 days, heat to 50 ºC, centrifuge 5000rpm [6] and for 

increase sugar concentration evaporate in a distiller or rotavapor, also spend energy and 

resource for it, making very expensive the process. Then for bioethanol, the fermentation 

is an anaerobic process, which means no need for agitation or oxygen supply, this is one 

of the main differences between bioethanol and biodiesel, oleaginous microorganisms 

are aerobic, to get biomass as pellets, mycelium or chlamydospores, is required supply 

of oxygen and agitation this increases energy spend for the biodiesel production process. 

After fermentation of fungus or yeasts, the biomass recovery process from culture broth 

is an easy way by filtration or sedimentation, due to formation of pellets or any form of 

cells such as mycelium or chlamydospores, however, fatty acids are intracellular therefore 

is needed a cell disruption process for oil extraction [7], this stage increase the energy 

cost process too, because to separate protein fraction and lipid phase need 

centrifugation, then the solvent separation from oil usually is through a distillation process 

and more energy consumption for this stage [8].    

Introduction in the global market electric vehicles since some years ago, has being 

demonstrated as a viable alternative to petroleum fuels for powering small road vehicles 

and this help for reach neutral carbon emissions, however biofuels likely to continue for 

some time more, because of are necessary for powering large vehicles as those required 

for aviation, shipping and heavy good vehicles [9]. Even today if industrial production of 

biodiesel could be cost-effective, biodiesel from oleaginous microorganism should be 

running on actuality. 
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This small review paper discusses the oil production from lignocellulose and fermentation 

with oleaginous microorganisms, on main factors that hinder this bioprocess, to 

summarize are high energy consumption and resources, difficult to scale to large 

volumes, and low lipid yield, the deep analysis could give guidelines for continuing 

research to overcome bottlenecks that today hinder biodiesel production with 

lignocellulose and oleaginous microorganisms. 

2. Fermentation process 

2.1. Oleaginous microorganisms 

An oleaginous microorganism is able to store at least 20% of lipids by dry cell weight [10–

12] although some fungi and yeast species store up to 85% of lipids [13], due to theoretical 

yield, they are not able to efficiently convert sugars into lipids, as ethanologenic yeasts 

convert sugars into ethanol [14]. For example Sacharomyces cerevisiae is able to reach 

0.47g-ethanol/g-glucose consumed [15], thus, the research carried out with oleaginous 

yeasts focuses on lipid yield increase; mainly by metabolic engineering [16,17] although 

have also been used other strategies such as, alternative carbon sources and 

fermentation systems in semi-continuous mode, [18] high cell density cultures in fed-

batch mode [19–21] and extracellular oil capture [22].  

2.1.1. Fungi 

The most studied oil fungi are: Mortierella alpine [23,24], Mortierella isabellina [25–27], 

Cunnhinghamella echinulata [28,29], Aspergillus oryzae [30,31] and Mucor circinelloides 

[32,33]. The oleaginous yeasts workhorses are Yarrowia lipolytica [22,34], Lipomyces 

starkeyi [19,35–38], Rhodosporidium toruloides [39,40], Trichosporon fermentans [41]  

https://doi.org/10.26434/chemrxiv-2023-jfccx ORCID: https://orcid.org/0000-0003-3981-3685 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jfccx
https://orcid.org/0000-0003-3981-3685
https://creativecommons.org/licenses/by-nc-nd/4.0/


Rhodotorula [42–44] Candida sp. [45] Cryptococcus curvatus [46], Trichosporon 

cutaneum [47,48] and Cutaneotrichosporon oleaginosus [49], recently Cryptococcus 

curvatus, Trichosporon cutaneum and Cutaneotrichosporon oleaginosus are considered 

same microorganism [49,50] .   

2.1.2. Bacteria 

The bacteria able to produce lipids are Rhodococcus, Streptomyces, Bacillus, 

Acinetobacter, Nocardia, among others, some authors consider that bacteria are poor 

lipid producers. However, this potential is argued in other studies, because they are fast-

growing microorganisms, in addition to, their flexibility to grow in various carbon sources, 

for example, Rhodococcus opacus, can use lignin as carbon source [51]. 

Rhodococcus opacus is the most tested for lipid synthesis, high cell density cultivation 

process at pilot-scale in fed-batch mode was developed, the biomass yield can reach 

37.5g-biomass/L, and triacylglycerol content 52% in fed-batch fermentations from 3% w/v 

of sugar molasses as carbon source [52], this lipid yield is similar to oleaginous fungi 

genus Mortierella isabellina  [25,27]. 

2.1.3. Algae 

The microalgae genus able to produce biofuels are Chlorella, Nannochloropsis, 

Dunaliella, Desmodesmus and Scenedesmus [53,54], this algae can be grown in fresh 

water, either in ponds or photobioreactors, however the process is costly and energy 

produced is less than energy generated from biofuel [55]. In other study Chlorella vulgaris 

was cultivated in a fluid bed bioreactor, packed with polyurethane foam cubes, this 

support material enhance the adhesion of microalgae and  the yield was 812 and 376mg-
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lipids/L, more than 60% was C16-C18 fatty acids [56], these results are higher than 142 

mg-lipids/L obtained by Sharma et al. [57] who cultivated Chlorella in open raceway pond, 

therefore a test for effect of support material at pilot-scale is need. 

The microalgae Nannochloropsis gaditana and Nannochloropsis salina have a yield of 

13-18g-biomass/L and 37% lipid content [58]. And the microalgae Scenedesmus 

incrassatulus produces 1.8g-biomass/L-culture medium with 19.5% lipid content, the 

main components were methyl palmitate (26%) and methyl linoleate (49%) [59]. 

The oleaginous microorganisms produce a lipid yield actually very low (less than 20g-

lipids/L), except for metabolic engineering yeast, but in industrial terms scaling up for 

great volumes as 10 m3 or even more, results in a real oil quantity get from dry cell weight 

that is not enough for cover the energy and resources spend to whole production process. 

 

2.2. Carbon source 

Carbon source have a roleplay key in fermentation of oleaginous microorganisms, this is 

due to oil quantity obtained has a direct relationship with sugar quantity consumed, the 

sugars like disaccharides for example sucrose, lactose, cellobiose, and monosaccharides 

as glucose, xylose, fructose and arabinose, are refined sugars that allow easy and fast 

consumption by oleaginous microorganisms, the refining process increases the cost 

besides is argued that should be used for human consumption and not use for biofuels 

production, however human health troubles as obesity and hypertension related with 

excessive sugar intake should redirect sugars refined production for biofuels, as also 

sugars used for alcohol beverages like beer, tequila and others could be convert in oil for 
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biodiesel, and reduce human health troubles related with alcohol intake too, this option 

proposed is not possible as market prices of beverages are higher than biofuels and 

government policies not allow it. 

2.2.1. Corn and sugarcane (1G Biofuels) 

Corn starch and sugarcane could be useful to oil production with oleaginous 

microorganisms, but the availability of them is specific for every country, USA is the 

greatest country corn producer worldwide and Brazil get sugarcane surplus at a certain 

time of the year. Therefore ¿Why not produce oil as raw material to biodiesel from 

sugarcane juice surplus? Socol et al. [40] made a research on biodiesel production in 

pilot scale with sugarcane juice as carbon source and the findings were economically 

viable oil production and that even compete with fossil biodiesel prices, this is a cheaper 

bioprocess than bioplastics production as polyhydroxy-alcanoate. 

However besides of USA, Brazil, China, Russia and Argentina in the most of countries 

demand of corn and sugarcane is greater than offer, and the governments in Latin 

America for example, Mexico and Colombia every year should import huge amounts of 

corn grain from countries big producers to satisfy the demand, besides even in countries 

as Brazil needs corn and sugarcane for ensure the security for bioethanol demand due 

to that, the corn and sugarcane production is not enough for biodiesel production. Also 

the corn grain is used as animal feed for meat production, the suddenly change to biofuel 

production could be a risk for food security [60].  
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2.2.2. Lignocellulose from agricultural and forest residues (2G Biofuels). 

The world's annual lignocellulose production is 109-1012 Ton, composed of 20-40% 

hemicellulose, 10-25% lignin and 40-60% cellulose [61,62], due to this abundance has 

been suggesting the production of biodiesel from single cell oil, produced from oleaginous 

microorganisms and rich sugars hydrolysate from lignocellulose. The hydrolysis of 

cellulose to glucose is performed by the system called cellulase which includes 3 

enzymes [63],  consequently, a three stages process is required: 1. Hydrolysis of 

amorphous areas by endo-glucanases, which causes short chains of cellulose 

(Cellodextrins), 2. Hydrolysis of cellodextrins by exo-glucanases enzymes 

(Cellobiohydrolases) to cellobiose and 3. Hydrolysis of cellobiose by the enzyme beta-

1,4-glucosidase originating glucose units [64]. For hemicellulose the hydrolysis of xylan 

is performed with the enzymes endo 1,4-Beta-Xylanases and Beta 1,4-Xylidases [65]. 

The main cellulolytic microorganisms are Aspergillus niger, Aspergillus oryzae [66] 

Aspergillus fumigatus [67], Trichoderma reesei [68], Myceliopthora thermophila [69], 

Cellulomonas flavigena [70] among others. 

Although lignocellulose production is abundant, the real situation for oil production is that 

difficulties and bottlenecks do not overcome yet due to a physicochemical phenomenon 

called recalcitrance, the meaning of the concept is possible understand when despite of 

submit lignocellulose in aggressive depolymerization process, could be hydrothermal 

treatments at very high temperatures as steam explosion, or chemical treatment with 

highly  oxidant reagents or acids and biological treatment with cellulolytic, xilanolytic and 

ligninolytic enzymes, always remain a lignocellulosic residue without degrading [71], just 

combustion is the process able to transform completely the lignocellulose in small 
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molecules in one stage, acid or enzymatic process are suitable for liquors with high sugars 

concentration from starch or cellulose and xylan purified polymers but not for 

lignocellulose.  

Lignin is the big trouble, because lignin hydrolysis release phenolic compounds, whose 

structural basis is benzoic acid or similar, the salt of this acid is sodium benzoate used as 

food conservator in very small concentrations due to inhibit microbial growth, in 

fermentative process exactly that effect has the phenolic compounds, does not allow 

microbial growth of oleaginous microorganisms, and those is not easy problem to solve 

because of pretreatment by itself release phenolic compounds, sodium hydroxide is good 

pretreatment to remove lignin however has two inconvenient produce a contaminant and 

toxic liquor and does not remove completely the lignin, therefore one step for filtration 

should be add at the process or reagents as the polyethylene glycol could reduce inhibitor 

effect of phenolic compounds [72]. All those high energy and chemical requirements, also 

environment challenges, joined at remain lignin due to partial lignin fraction still hindered 

its further utilization. 

Since lignin hydrolysis releases the most toxic compounds that represent a real risk to 

fermentation by yeasts and oleaginous fungi, the feasible option is use lignin as a 

compound from which obtains derivatives of high value with applications in textiles, 

lubricants, adhesives and personal care products and even some bacteria can use it as 

a carbon source for the production of PHA (Polyhydroxyalkanoate) [73].  

Some pretreatments to remove lignin are sodium hydroxide extraction, microwave 

assisted depolymerization, supercritical fluids depolymerization, electrostatic separation 
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[74], attrition mill to reduce corn stover particles less than 100μm [75], ionic liquids and 

deep eutectic solvents extraction [76] and potent ligninolytic enzymes to remove lignin as 

a biological pretreatment with Pleurotus stratus, Phanerochaete crysosporium and 

Aspergillus oryzae [77,78]. If three lignocellulose components are usable for high-value 

chemicals or biofuels, it could be a zero-residue and environmentally friend process [79]. 

However the bottleneck is that separation of three components of lignocellulose is not 

completely selective and always remain a fraction of every one of them, and the phenolic 

released are extremely toxic for microorganisms growth and for enzyme activity still in 

very low concentrations as 50µg-phenolics/mL [72].  

2.2.2.1. Inhibitors: Furfural and hidroximetilfurfural 

The furan aldehydes compounds mainly furfural and hydroxymethylfurfural are produced 

due to pentose and hexose dehydration, they are very strong growth cell inhibitors, are 

released while lignocellulose hydrolysis release reducing sugars. Maybe lipid yields 

produced from lignocellulose biomass decreases, because of inhibitors released from 

pretreatment and enzymatic hydrolysis, however  M. isabellina has some resistance to 

furfural and hydroxymethylfurfural, the yield decreases, but the fungus can growth up to 

88.8% with furfural released and 76.9% with hydroxymethylfurfural compared to a test 

control without inhibitor, resistance to these inhibitors maybe due to the ability of the 

fungus to convert them to less toxic compounds [80].  
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2.2.2.2. Inhibitors: phenolic compounds and aldehydes. 

p-coumaric acid, syringic acid and ferulic acid,  

The acids p-coumaric acid, syringic acid and ferulic acid, are main inhibitors of 

fermentation process, however could be used as carbon sources to produce lipids in 

some bacteria, the key intermediate compound is protochatechuic acid, which is obtained 

by specific enzymes activity, for example, enzyme 4-acid hidroxibenzoic, 3-hydrolase, 

react on p-coumaric acid to produce afore mentioned protochatechuic acid, that is 

converted to acetyl CoA, the syringic acid also is converted to acetyl CoA, through a 

demetylation to covert first to 3-Omethyl gallic acid and then transformed into 2-pyranone-

4,6 dicarboxylic acid  to finally enter the cycle TCA. The ferulic acid has commonly an 

intermediate, the vanillic acid, demethylated by a demethylase and transformated in 

protochatechuic acid, then acetyl CoA and enter the cycle TCA [81].  

Bacterium Rhodococcus opacus, and others like Acinetobacter calcoaceticus and 

Pseudomonas putida can metabolize phenolic compounds, however Wang et al. [51] 

used as carbon source liquor of corn stover pretreated with ammonia, the lignin 

concentration was 4g-lignin/L and inoculated with Rhodococcus opacus, after 114h of 

fermentation the intake of lignin by the microorganism just was 20%. 

The pointed out key factor to phenolic compounds, overall is that inhibition effect strongly 

depend of phenolic compounds concentration in hydrolysate, when concentration is 

around of 0.2g-phenolic-compoundss/L, several microorganisms could resist and 

continue growing, but when concentration around 2g-phenolic-compounds/L the most of 

microorganisms stop growing completely [82].  
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Table 1 

Lignin extraction methods. 

Lignin extraction 
method. 

Lignin extracted 
% 

Sugar 
concentration 
g/L 

Disadvantage Refs 

Sodium hydroxide 

NaOH 

55 87.9 Toxic and expensive [6] 

Sodium chlorite 

NaClO2  

92.1  22 Highly toxic [83] 

Steam explosion 3 47.6 Small lignin extraction 

percentage 

[6] 

Attrition mill 84 20  High energy cost [84] 

Deep eutectic 

solvent 

44.65 2.29 High solvent cost [85] 

Electrostatic 

separation 

54 43.5 Patented process [74] 

Ligninolytic 

enzymes 

30 12.7 Very slow process 

Small lignin extraction 

[86,87] 

Ammonia fiber 

expansion 

47.6 44.8 

 

Expensive [51] 

 

Besides phenolic compounds also inhibit enzyme activity of CMCase and xylanase, little 

concentrations as 0.05g-phenolic-compounds/L has direct effect on hydrolysis, therefore 

pretreatment of lignocellulose should remove at least 95% of lignin to avoid phenolic 

compounds release and other compounds like furfural, which also has toxic effect, but in 

real practice every stage release phenolic compounds, and as mentioned above does not 

exist any pretreatment to remove lignin completely just in one stage and the highest 

removal lignin percentage do not reach 95% (See table 1), even for every one of the 

lignocellulose components is not possible complete separation and/or hydrolysis in 

pretreatment, according with Zhao et al. [6] the pretreatment to remove lignin with sodium 

hydroxide 2% pretreatment, however need 120 ºC for 30min, and for reach 120ºC is 
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necessary increases pressure for it, due to the low density, the lignocellulose takes up a 

lot of space, therefore large volume containers will require huge energy quantity for reach 

high pressure and actually is not economically viable, to reduce space needs, the mill 

through different size grids to get less than 1mm particles of lignocellulose could reduce 

volume of lignocellulose but bring other difficulties as high energy consume and the 

suspension as a fluid easily remain stuck in tubing causing troubles for handle. 

The bio-refining process means fraction, separation and essentially purification, therefore 

the component of lignocellulose that should be firstly purified is cellulose, to avoid 

technical problems and bottlenecks this is the critical step, due to its importance a 

physicochemical purification is more appropriate and more efficient than biological, 

However, also the clear disadvantages are visible, the most hemicellulose fraction is 

loosed together lignin, a liquor toxic is produced, but this liquor also contains sugars in 

low concentrations. After alkali pretreatment lignin residues are remain and at least two 

unit operations are needed for whole cellulose purification, this process waste almost 60% 

of origin lignocellulose raw material and this demand a lot of energy but,  as 

aforementioned the lignocellulose pretreatment unavoidably needs energy, it can be 

proposed that due to the abundance of lignocellulose the most of energy consumed could 

be get from the lignocellulose combustion, for example, to lignin extraction should be heat 

120ºC, lignocellulose combustion could be used for that purpose, and any process like 

dried or heat. Under this assumption in reference to abundance of lignocellulose ever 

stage that needs heat could be solve in this way. 
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2.3. Enzymatic hydrolysis 

As aforementioned several microorganisms has the cellulolytic enzyme production ability, 

and has been studied extensively, the specific and specialized process make the enzyme 

cost very expensive and frequently is recommend that enzyme production be with same 

substrate due to enzyme specificity, this mean on site enzyme production. However the 

total reducing sugars yield in hydrolysate can be from 1.19 to 180 g-glucose/L [88,89] this 

huge difference could be caused by culture conditions, microbial strain, lignocellulose 

origin, cellulose polymerization degree and even metabolic state of the microorganism 

[90] due to it a bottleneck in real lab conditions could be that enzymes has not good 

performance. According to Gutierrez et al. , cellulose is not soluble when there are 6-8 

glucose molecules joined, this feature and considering that gen regulating mechanisms 

are not similar for all those cellulolytic microorganisms, if besides the structural complex 

of lignocellulose pretreated, where lignin and xylan residual polymers are hindering 

enzyme activities, is highly possible that enzymes will be inhibit, instead two process has 

been studied as alternative, first cellulose processing and its derivatization into 

carboxymethylcellulose [91] and second acid maleic treatment as mimetic enzyme to 

xylanase and cellulase [92], the disadvantages as aforementioned could be that for this 

pretreatments first cellulose should be purified which is a laborious and highly energy and 

resources consume process, plus the chemical reagents needed for 

carboxymethylcellulose preparation increase cost, the advantage is cellulose 

depolymerization really is possible and produce rich-sugar hydrolysate. 
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2.4. Submerged fermentation  

2.4.1. Agitation and aeration 

Agitation and aeration are both essential due to microorganisms are aerobics, in 

research´s lab for small bioreactors oxygen supply and agitation is possible, for example 

in airlift bioreactors of 2L even oxygen supply also has agitation function, however for oil 

production with oleaginous microorganisms the scaling up 10-100m3 is essential, and 

airlift no looks like an scalable option due to, although the best oxygen supplier or air 

compressor could satisfy oxygen necessary for agitation in a 100m3 bioreactor or even 

600m3 Bisgaard et al. [95], today there is not an industrial process for oil production with 

oleaginous microorganisms, this could be due to high energy cost and also because in 

the stationary phase of fermentation the high biomass cell concentration do not allow 

broth recirculation. For continuous stirrer tank bioreactors scaling up could be possible 

however for them, also high energy consume is required, because of agitation and 

aeration should be continuous. The high expense for fermentation process such as 

aeration and agitation, coupled with relative low lipid productivity, have limited the 

economic competitiveness of this technology.   

2.4.2. Sterilization  

An relevant point is the energy cost due to sterilizing the bioreactor with culture medium 

therefore the fermentation should be carried out in an unsterilized bioreactor to reduce 

production costs [96]. Some few studies address this topic, but in real life conditions, for 

produce biomass from a microorganism in bioreactors, unavoidably the contamination 

risk is present, scalable options increased that risk, great volume bioreactor more 
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complicated to sterilize. Very easy contamination by any microorganism if bioreactor is 

not sterilized. 

It could be possible increase the percentage of inoculum to avoid contamination effect, 

however although the target microorganism could win for highest biomass production, the 

contaminant microorganism is present in less quantity but enough for decrease biomass 

and lipid production.  

2.5. Solid state fermentation 

Since solid state fermentation do not need continuous agitation and aeration as 

submerged fermentation, this great advantage looks like the best way for oil production 

with oleaginous microorganisms however it is very far to be true, actually this way is too 

extremely complex to get single cell oil due to more time for fungal growth, small 

percentage of bioconversion, need for high contact surface and lipid recovery. 

The solid state fermentation as an alternative option to avoid submerged fermentation 

costs has the advantage that not required energy for the fermentation, but today neither 

is a sustainable and viable bioprocess, Liu et al. [97] studied a solid state fermentation 

process with Phanerochaete crysosporium  to lipid production, this bioprocess does not 

need oxygen supply and agitation, however is a very slow process of around 12 days, 

besides the chlamydospores growth only occur in the surface layer where the 

microorganisms has oxygen, but in deeper layer fungus does not growth, the optimal 

thickness layer is 1.5cm, when layer increases thickness, deeper cells not growth due to 

lack of oxygen. To scaling up solid state fermentation, supply oxygen through remove 

daily as in compost process could be an option, but this break chlamydospores. The solid 
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state fermentation with 1.5cm thickness layer is not viable option because huge 

superficial area is needed, scaling up could be possible with great superficial area.  

3. Lipid yield 

An aspect important in oil production with oleaginous microorganisms is yield. To date, 

even the highest yield is insufficient for commercial lipid production [98], although 

advances in research tend to increase [16,99,100] the maximum stoichiometry yield 

limited by acetyl CoA, hinder enhance it, under ideal fermentation conditions the lipid yield 

for single cell oil (SCO) production is around 0.22g-lipids/g-glucose consumed [101], the 

theoretical yield is higher and has been calculated from sugars stoichiometry such as 

glucose and xylose, 100g of catabolized glucose generated 1.1 mol of acetyl CoA (MW = 

809.57g/mol) so if all this acetyl CoA, is channeled into lipid synthesis, the theoretical 

maximum yield is 0.32 g-lipids/g-glucose consumed; in the case of xylose, the metabolic 

pathway of α-ketoglutarate is the most efficient 1.2 mol of acetyl CoA is produced per 100 

g of catabolized xylose, with a maximum theoretical yield of 0.34g-lipids/g-xylose 

consumed [102] although the pentose phosphate pathway is the most common pathway 

used by microorganisms to catabolize xylose [103], this pathway produces 1 mol of Acetyl 

CoA for every 100g of xylose consumed, generating a maximum theoretical yield of 0.3 

g-lipids/g-xylose consumed. Recently a synthetic pathway was found, which consists of 

recycling Nicotinamide Adenine Dinucleotide Phosphate (NADPH), with this, theoretical 

yield increases to 0.351g-lipids/g-glucose consumed [98]. 

Achieve theoretical yield is very difficult because acetyl CoA is used in several metabolic 

pathways [104], for example, the mevalonate pathway consumes acetyl CoA and ATP 

(Adenosine triphosphate) to produce carotenoids and sterols [44]; significant advances 
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have been made with Yarrowia lipolytica by achieving 0.27g-lipid/g-glucose consumed 

[105] and later with an oil capture strategy, a yield of 0.33g-lipid/g-glucose consumed was 

achieved [22], but the oil production was 12g-lipid/L-culture medium, very low compared 

to 98.9g-lipid/L obtained in research carried out by Qiao et al. [105] and in a context of 

viable production of SCO, increase yield in g-lipid/L as well as yield in g-lipid/g-sugar 

consumed, are important to decrease economic and energy costs. The above-mentioned 

yields were obtained using pure glucose, however should be use lignocellulose sugars 

but yield is less, around 0.22 g-lipids/g-sugar (See table 2) and according to the NREL 

(National Renewable Energy Laboratory), to make biodiesel production viable it is 

necessary to achieve a yield of 0.28 g-lipids/g-lignocellulose sugar, and  1.3 g/L/h 

productivity. 

For fungal oleaginous microorganisms is very important reach at least 80-100g-glucose/L 

in hydrolysate to produce 18-22g-DCW/L and  12g-lipids/L, here a key point whereas 

several papers report 36g-biomass/L and 18-20g-lipids/L[27,93,94], is truth that around 

10g-glucose/L, yield overall 3±0.5g-DCW/L, however increase to 100g-glucose/L and 

produce 30±5g-DCW/L, this is a surpassed and no reproducible or repeatable result. 
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Table 2 

Highest yield g-lipid/L of different oleaginous microorganisms in submerged fermentation. 

Type  Oleaginous 
microorganism 

Yield  
g-lipid/L 

Yield g-
lipid/g-sugar 
consumed 
 

Lipid 
accumulation 
percentage % 

Sugar 
consumed 
g/L 
 

Yield g-
biomass/
L 

Refs  

Fungi M. alpine 
M. Isabellina 
M. Isabellina 
M. Isabellina 

18.6     
18.5     
18.1     
17.8     

0.19 
0.18 
0.18 
0.23 

53 
64.5 
55 
61 

98.2 
100 
100 
80 

35.12 
28.8 
35.9 
29.5 

[23] 
[27] 
[93] 
[94] 

Yeasts 
 
 
 

Y. lipolytica 
R toruloides 
Y. lipolytica 

115      
89.4     
85  

0.16 
0.22 
0.21 
 

59.3 
75.6 
77 
 

 
367 
430 

194 
148 
118.4 

[100] 
[107] 
[108] 

Algae 
 

C. vulgaris 
S. incrassatulus 
D. tertiolecta 

0.15 
0.41 
0.48 

 16.6 
23.1 
0.33 

 0.9 
1.8 
1.44 

[56] 
[109] 
[110] 

Bacterium 
 

R. opacus 3.04 0.2 16 80 19 [111] 

 

 

3.1. Lipid extraction 

The fatty acids of oleaginous microorganisms are intracellularly, therefore cell disruption 

pretreatment is needed, sometimes acid treatment is enough for release lipids, but 

enzymatic pretreatment also be useful, both acid and enzymatic treatments requires 

agitation and temperature increased causing plus energy consumption (See table 3), next 

solvent extraction spend energy  for agitation and centrifugation, and distillation in solvent 

recovery stage. To bacterium lipid extraction is highly difficult even more than algae, due 

to peptidoglycan of cell wall is very strong. 
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Table 3  

Differences between several cell disruption and lipid extraction methods. 

Cell disruption 

method 

Recovery 

percentage 

Oleaginous 

microorganism 

Process with highly 

Energy spend 

Disadvantages Refs. 

High pressure 

homogenization 

55.9 Rhodosporidium 

toruloides 

High pressure 600bar High energy 

spend 

[112] 

Mineral acids 

wetting 

99% Rhodosporidium 

toruloides 

Agitation 

Centrifugation 

Distillation 

60rpm 

6000g 

 

Environmentally 

toxic 

[40] 

Enzymes 86.9 Mortierella 

alpine 

Heat  80ºC High enzymes 

cost 

[7] 

Extraction 

method 

      

Microwave-

assisted 

extraction 

77% Scenedesmus 

obliquus 

Microwave 95ºC High cost 

equipment 

[113] 

Ultrasound-

assisted 

extraction 

19.49% Mortierella 

isabellina 

Distillation  65-70ºC Low oil recovery [114] 

Blight and Dyer 88.6% Chlorella 

pyrenoidosa 

Distillation 

Agitation 

 

65-70ºC Laborious  

Time-consuming 

High toxic 

[115,116] 

Folch 77.15% Chlorella 

pyrenoidosa 

Distillation 

Agitation 

 Laborious 

High toxic 

[115,116] 

Soxhlet 63.4% Mortierella 

isabellina 

Distillation 65-70ºC High toxic 

No able for wet 

samples 

[117] 

Supercritical 

fluids 

92% Scenedesmus 

obliquus, 

Chlorella 

vulgaris 

High pressure 220bar High energy 

spend 

[118] 
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4. Industrial Scaling up  

The most problems in biodiesel production with oleaginous microorganisms 

aforementioned, are the bottleneck to scaling up the process. International companies or 

state enterprises, surely has the economic power to install the infrastructure need to 

biorefinery, but the oil production capacity is limited, and a continuous process 

development is highly difficult to coordinate every stage in a sequential process, for 

example if enzyme production is not enough, surely don`t get rich sugars liquor, this 

means time and resources lost. The plants of biofuels like bioethanol 2G was shut down 

due to technical and economic problems, the establishment of this industry has clearly 

been challenging [119]. 

 

5. Fossil-fuels production and prices 

Since fossil fuels production is a continuous process and petroleum is an abundant 

resource, is very easy to produce huge volumes to fill completely the demand of the 

market, however biofuels production cannot be a continuous process at least not in 

conventional way, multiple stages like pretreatment, hydrolysis, fermentation, and 

extraction make almost impossible establish the line production, just in a way. As a final 

result fossil fuel prices are cheaper than biofuels. 
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6. Conclusions 

Due to lignin is highly toxic for oleaginous microorganisms and enzyme activities, it is 

essential delete of the hydrolysate, this a critical step to release the bottlenecks that 

hinder cell growth and oil synthesis. The oil production with oleaginous microorganisms 

could not be sustainable by lipid yield increase, rather the way is a process development 

able easily scaling up and low energy cost and resources. It is necessary more research 

about a consolidated bioprocess for lignocellulose-lipids bioconversion. The lipid 

extraction method desirable is the one who does not need solvents and is low energy 

consume, the supercritical fluids extraction adheres to first one but consume high energy, 

therefore is needed to research out to reach those lipid recovery percentages from high 

toxic solvents. 
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