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ABSTRACT: Eq-4-O-acyl group directed β-rhamnosylation and β-mannosylation are achieved in carborane or BARF anion 
formed weakly nucleophilic environment with the assistance of a 2,3-orthocarbonate group. The 4-O-acyl group plays a critical 
role in directing the β-selectivity, and the weakly coordinating anion is essential to amplify this direction. The orthocarbonate 
group could be readily removed with 1,3-propanediol in the presence of BF3.Et2O. 

β-L-Rhamnosides and β-D-mannosides are two distinct types of glycosides. β-L-Rhamnoside is a common poly-

saccharide building block widely distributed in bacterial polysaccharides, such as lipopolysaccharides,1 exopolysac-

charides,2 and capsular polysaccharides.3 β-D-Mannosides mainly occur in the common pentasaccharide core of the 

N-linked oligosaccharides,4 and are also found as subunits of glycosphingolipids,5 lipopolysaccharides or other poly-

saccharides from microbial cell walls.6 While they are not quite related in biological occurrences, the stereocontrolled 

synthesis of either β-rhamnopyranosides or β-mannopyranosides confronts similar synthetic challenges because of 

their similar chemical structures. They are one of the most difficult goals in oligosaccharide synthesis. None of the 

anomeric effect, the axial orientation of 2-O-substituent, or the 2-O-acyl neighboring group participation prefers β-

selectivity. Many approaches have been investigated including using electron-deficient 2-O-substituents,7 regenerat-

ing 2-O-axial hydroxyl after glycosylation,8 utilizing 1,2-O-cis-stannylene acetal donors,9 and with heterogeneous 

Kornigs-Knorr glycosylation10 but with limitations. The 4,6-O-benzylidene restricted the conformation of mannopy-

ranoside affording excellent β-selectivity.11 Lately, 2,6- or 3,6-lactone restricted mannopyranosides were also proved 

to facilitate β-selective mannosylation.12, 13 However, missing the 6-oxygen occludes the above β-mannosylation be-

ing applied to β-rhamnosylation. Manipulation of the rhamnopyranoside conformation was also investigated,14 but 

comparable results have yet achieved through these strategies. 

Different strategies have been developed in solving both β-mannosylation and β-rhamnosylation. Using a natural 

occurred β-L-Rhap-(1→4)-D-Glcp linkage as a benchmark, yields and β-selectivity of these strategies are shown in 

Fig	1a including a two-step 2-naphthylmethyl-mediated intramolecular aglycone delivery (IAD) (Fig.	1,  

 

https://doi.org/10.26434/chemrxiv-2023-sg04q ORCID: https://orcid.org/0000-0001-5192-9520 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-sg04q
https://orcid.org/0000-0001-5192-9520
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 1  a) Examples of previously established β-rhamnosylation; b) 4-O-acyl groups barely contributing the β-selectivity in 
previous glycosylations; c): proposed β-rhamnosylation with the assistance of a 4-O-acyl and a 2,3-O-fused ring in this work. 

a-1, β only, 68%),15 1,2-anhydro-rhamnoside coupled with sugar boronates (Fig. 1, a-2, β only, regioselectivity O4:O6 = 

16:1, 87%),16 gold(I)-BARF-catalyzed SN2-like glycosylation,17 (Fig. 1, a-3, β:α = 5.6:1, 67%),18 and hydrogen bond me-

diated aglycone delivery (HAD) including picoloyl type groups (Fig. 1, a-4, β:α = 15:1, 88%)19 and 2-(diphe-

nylphosphinoyl)acetyl group.20 (Fig. 1, a-5, β only, 94%), and these strategies also work well in β-mannosylation.17, 21 Other 

than substrate control, external chirality from bis-thiourea could also efficiently catalyze β-L-rhamnosylation and β-D-man-

nosylation (Fig. 1, a-6).22  

  Here, we are interested in addressing this challenge through 4-O-acyl group direction. Acyl group directed glycosylation has been 

extensively investigated, and a 2-acyl or a distal eq-3-O-, ax-3-O-, ax-4-O, or 6-O-acyl group is capable of directing the corresponding 

1,2-, 1,3-, 1,4-, or 1,6-trans glycosylation with good to excellent selectivities.23 However, a general acyl group directed glycosylation 

strategy is incomplete due to missing eq-4-O-acyl group direction. β-Mannosylation and β-rhamnosylation through eq-4-O-acyl group 

direction are unfeasible, rather, α-glycosides are predominating products even in the presence of 4-O-acyl group (Fig. 1b)24 although 

several surrogate strategies are used for some glycosides.12, 25, 26 The dioxacarbenium ion from eq-4-O-acyl group has been observed 

under high vacuum as “naked” glycosyl cations.27 However, “naked” glycosyl cations are inaccessible in solution since most current 

glycosylation methods involve triflate or other stronger nucleophilic anions as counter anions of oxocarbeniums via covalent bonds 

or closed ion pairs (CIPs).28 Non-coordinating anions are weaker nucleophiles used in many metal-catalyzed reactions and several 

glycosylation as counterions,17, 18, 29 but have not been used in conjunction with acyl group direction. We propose that non-coordinat-

ing anions readily interact with oxocarbenium cations and allow formation of dioxacarbenium ions akin to “naked” glycosyl cations 

even in solutions. In this study, we demonstrate that eq-4-O-acyl group-directed 1,4-trans selectivity can be achieved under non-

coordinating anions provided weakly nucleophilic environments in conjunction with a suitable 2,3-O-ring substitution. 

Starting with 2,3-O-isopropylidene-4-O-acetyl thiorhamnoside (1), we found that NIS/TfOH promoted glycosylation of 1 and iso-

propanol (6) preferred β-selectivity in Et2O solution, which is consistent with Pedersen’s observation30 (Table 1, entry 1, and sup-

porting information, Table S1).  
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Table	1. Optimization	of	2,3,4‐O‐substituents.	
	

 
 

Entry Donor Solvent Yield (%)[a] β:α[b] 

1 

 

Et2O 
Et2O:CH2Cl2 (3:1) 

92 
95 

7 (2.0:1) 
(2.0:1) 

2 

 

Et2O:CH2Cl2 (3:1) 96 8	(1.6:1) 

3 

 

Et2O:CH2Cl2 (3:1) 85 9 (2.2:1) 

4 

 

Et2O:CH2Cl2 (3:1) 95 10 (2.6:1) 

5 

 

Et2O:CH2Cl2 (3:1) 95 11 (3.0:1) 

[a] isolated yield. [b] Determined by 1H NMR analysis of the crude reaction mixture. 
 

      In the absence of 2,3-O-ring fusion, 2,3-di-O-benzylated 2 gave poorer stereoselectivity demonstrating the significance of 2,3-

O-ring fusion (Table 1, entry 2). We thus screened existing 2,3-O-fusion protections but none could further improve the β-selectivity 

(supporting information, Table S2). To our surprise, 2,3-O-orthoester 3 afforded slightly increased β-selectivity (2.2:1, Table 1, entry 

3). After excluding the steric effect from the less bulky monosubstituted ring (supporting information, Table S2), we anchored the 

role of the extra-oxygen of orthoester. Since it is unstable and possesses a stereoelectronic effect, we prepared donors 4-5 bearing a 

stable and symmetrical orthocarbonate, 2,3-O-benzo[1’,3’]dioxol-2’-ylidene, via a reaction of rhamnoside 2,3-diol with commercially 

available 2,2-dichlorobenzo[1,3]dioxole31 in the presence of pyridine (supporting information). Delightfully, donor 4 with 4-O-acetyl 

protection gave a better β-selectivity (β:α = 2.6:1), which was further improved with donor 5 bearing the pentaflurobenzoyl (F5Bz) 

protection (β:α = 3.0:1, 5) (Table 1, entry 4-5). The anomeric configuration of 11α or β was determined through the direct bonded 

C1-H1 coupling constant (1JC1-H1, 11β: 1JC1-H1 = 156.6 Hz; 11α: 1JC1-H1 = 171.0 Hz, supporting information).32 

In the rhamnosylation of less reactive alcohols, such as 4-hydroxyl glucoside (12), the selectivity is not ideal. The NIS 

activation mainly afforded α-rhamnoside (β:α = 1:4.7) (Table 2, entry 1). We therefore examined different reaction condi-

tions. Activation with p-TolSCl/AgOTf 11, 33 afforded more β-rhamnoside (β:α = 1:1.4) (Table 2, entry 2). We next explored 

reaction conditions under weakly nucleophilic conditions. In conjunction with sulfenyl chloride, an array of silver salts with 

non-coordinating counter anions including AgSbF6, AgBArF
4 (silver BARF), and AgCB11H12 (silver carborane)34 in the 

order of decreasing nucleophilicity were evaluated. Encouragingly, when treated with p-TolSCl/AgSbF6 or p-

TolSCl/AgBArF
4 at -30 oC, improved β-selectivity was obtained (α:β = 1:3.5 or 1:4, respectively) (Table 2, entries 3 and 

4). Furthermore, decreasing the glycosylation temperature to -78 oC, p-TolSCl/AgBArF
4 can still activate donor and afford 

much improved β-selectivity (α:β = 1:16, Table 2, entry 5). At -78 oC, AgCB11H12 provided the highest β-selectivity (α:β = 

1:22, Table 2, entry 7), which is in line with its lowest nucleophilicity. Hence, AgBArF
4 and AgCB11H12 were used as proof 
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of concept in this study, although weaker nucleophilic anions such as halogenated carboranes35 may further improve the β-

selectivity. In addition, β-thioether 5β also resulting in excellent β-selectivity (α:β = 1:11) eliminated the possibility of an 

SN2 process as such in Au(I) catalyzed glycosylation (Table 2, entry 6).17, 18 

Table	2.	Impacts	of	Weakly	Nucleophilic	Counter	Anion	in	Glycosylation.	

 
Entry Donor and conditions Yield (conv)(%)[a] α:β [b] 

1 5,	NIS/TfOH 95 (100) 4.7:1 

2 5,	p‐TolSCl/AgOTf, -78 to 0oC 75 (100) 1.4:1 

3 5,	p‐TolSCl/AgSbF6, -30 oC 46 (56) 1:3.5 

4 5,	p‐TolSCl/AgBArF4, -30 oC	 85 (89) 1:4 

5 5,	p‐TolSCl/AgBArF4, -78 oC 58 (77) 1:16 

6 5β,	p‐TolSCl/AgBArF4, -78 oC 33 (40) 1:11 

7 5,	p‐TolSCl/AgCB11H12, -78 oC	 73 (80) 1:22 

[a] Isolated yield and conversion. [b] Determined by 1H NMR analysis of the crude reaction mixture. 

 

Subsequently, we investigated the application scope of donor 5 as depicted in Table 3. Under the two weakly nucleophilic conditions, 

particularly the carborane anion, we observed excellent β-selectivities of both primary and secondary acceptors (α:β = 1:9-30, 13, 21-

27, Table 3; β isomers: 1JC1-H1 = 156.6-163.8 Hz; α isomers: 1JC1-H1 = 171.0-175.2 Hz, Supporting information). Improved β-selectiv-

ities were obtained at lower temperatures, yet similar results observed in the presence or absence of a hindered base (DTBP, 27b,  

Table	3.	β‐Rhamnosylation	with	Donor	5	

	

O O

RO OR

F5BzO
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RO OR

F5BzO
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BnO

OMe
BnO

OBn

O
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F5BzO O Br

O

RO OR

F5BzO
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OBn

OBn

OMe
OBn

O O

RO OR

F5BzO

O

BnO

OBn

OMe
OBn

O O

RO OR

F5BzO

O

BnO

OBz

OMe
OBz

O

O

RO OR

F5BzO

O

OBn
OAc

OMe

AcO

O

O

R2O
R2O

MeO

BnO

OO

R1O OR2

F5BzO

O

R2O
R2O

MeO

O

BnO

O

R1O OR1
F5BzO

21 R = OO
92%, = 1:7a

70%, = 1:30c

21b R = H 78%

13 R = OO
75%, = 1:0.7a

82%, = 1:17b (1 mmol)

74%, = 1:22c

13b R = H 91%

11 R =
OO 86%, = 1:6.5a

11b R = H 91%

27 R1 = OO 80%, = 1:1.5a

69%, = 1:8b

77%, = 1:8b, -60°C, DTBP

95%, = 1:14c

27b R1 = R2 = H 60%a

25 R =
OO 95%, = 1:7a

84%, = 1:13b, -50°C

25b R = H 90%

R2 = Ph

26 R1 = OO 83%, = 1:3a

73%, = 1:8b

70%, = 1:9.2c

26b R1 = R2 = H 67%a

R2 = Ph

24 R = OO 90%, = 1:8a

95%, = 1:11b

70%, = 1:20c

24b R = H 88%

23 R = OO 70%, = 1:7.0a

82%, = 1:10.0b

80%, = 1:20.0c

23b R = H 81%

22 R = OO 95%, = 1:9a

89%, = 1:20b

75%, = 1:30c

22b R = H 86%

	

[a] Ag2O (1.0 equiv), AgOTf (1.0 equiv), p-TolSCl (1.1 equiv), CH2Cl2/Et2O (1/3), then ROH, -78 oC gradually to 0 oC. [b] ROH, AgBArF
4 

(1.0 equiv), p-TolSCl (1.1 equiv), CH2Cl2/Et2O (1/3), -78 oC. [c] ROH, AgCB11H12 (1.5 equiv), p-TolSCl (1.5 equiv), CH2Cl2/Et2O (1/3), -
78 oC. DTBP, 2,6-di-tert-butylpyridine. 

https://doi.org/10.26434/chemrxiv-2023-sg04q ORCID: https://orcid.org/0000-0001-5192-9520 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-sg04q
https://orcid.org/0000-0001-5192-9520
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 3). In the p-TolSCl/AgOTf condition, only primary alcohols exhibited good β-selectivities (α:β = 1:7-14, 21-25, Table 3). 

The 2,3-O-benzo[1’,3’]dioxol-2’-ylidene group proved stable toward Brønsted acids, DDQ, or CAN oxidation, but was readily 

removed by BF3•Et2O (3.0 equiv) and 1,3-propanediol (5.0 equiv). We again measured the 1JC1-H1 of 13b, 21b-27b, and their coupling 

constants were in the range of 157.8-163.8 Hz, matching that of β-isomers in chair conformation. 

With success in β-rhamnosylation, we turned our attention to β-mannosylation. To a 4,6-benzylidene protected thiomannoside S14, 

the 2,3-orthocarbonate was installed, followed by successive reduction of 4,6-benzylidene and installation of the 4-O-acyl group to 

afford donor 28 (Supporting Information, Scheme S2). The mannosylation was conducted by adding 3.0 equiv of p-TolSCl/AgBArF
4 

to a solution of 28 and acceptor at -78 oC, then slowly warming up to 0 oC. Several typical acceptors were assessed under this 

condition, including primary alcohols and secondary alcohols. For all acceptors, the β-selectivities were greater than 30:1 (31-36), 

with the two primary alcohols displaying exclusive β-selectivity as shown in Table 4. The deprotection proceeded smoothly using 

the same conditions utilized for β-rhamnosides.36 

	

Table	4.	β‐Mannosylation	with	Donor	28	

 

O
OMe
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OBnBnO
OBn

O
MeO
BnO

O
OR2R2O

O
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O

R2O OR2

O
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O
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O

BnO
BnO

BnO O

OMe

O OAc

AcO
BnO

O

OBn

F5BzO
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O

OBn

F5BzO
OR

RO

O

OBn

F5BzO
OR1

R1O

O

OBn

F5BzO
OR

RO

O

OBn

F5BzO
OR1

R1O
O

OBn

F5BzO
OR

RO

34 R = OO R2 =

34b R1 = R2 = H 81%a

Ph

84%, 1:40

35 R = OO

35b R = H 87%b

78%, 1:30

31 R = OO

31b R = H 88%b

81%, 1:30 32 R = OO

32b R = H 91%b

61%, only

36 R1 = OO

36b R1 = R2 = H 77%a

75%, = 1:30

33 R = OO

33b R = H 85%b

63%, only

R2 =

	

[a] The reaction was carried out at 0 oC [b] The reaction was carried out at room temperature. 

 

Since no direct evidence can prove the participation of the eq-4-O-acyl group in glycosylation,12, 25, 27, 37, 38 we identified the necessity 

of the 4-O-acyl group for this reaction. An armed 4-O-benzyl group (37) or a disarmed 4-O-tosyl group (38) was installed, respec-

tively, and in both cases, dominating α-selectivities were observed (Fig. 2a). These results demonstrate that the 4-O-acyl group is 

indispensable in the β-selectivity. Whether the 4-O-acyl group could form a bridged bicyclic dioxacarbenium was then explored. We 

prepared a 4-O-trichloroimidoyl 41,25, 38 which was successfully converted into a bridged bicyclic product 42 in an excellent yield 

(90 %, Fig. 2b, including the crystal structure of 42). Whereas efforts to capture the bridged bicyclic dioxacarbenium intermediate 

using 4-O-Boc, hemiphthalate, t-butyl phthalate, and ortho-(t-butoxy)phenylcarbonate were not successful. It is consistent with that 

the participation of 4-O-ester is a weak interaction and the further study of the stereodirecting mechanism is necessary (Scheme S3, 

Supporting information).27 
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37, R = Bn
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40, R = Ts , only, 59%

12

(a)

 

                                                                                     

Figure 2. Mechanism Exploration. a) Glycosylation with Various 4-O-Substituents. b) Formation of Bridged Cyclic Product. 

 

In summary, readily prepared, shelf-stable thiorhamnoside and thiomannoside donors with 2,3-O-benzo[1,3]-dioxol-2-ylidene and 

4-O-acyl protections gave excellent β-selectivities with both primary and secondary alcohols. The reaction conditions were critical 

for the β-selectivity, and weakly coordinating anion from AgBArF
4 or AgCB11H12 in conjunction with p-TolSCl could facilitate the 

directing effect from the 2,3-O-orthocarbonate and 4-O-acyl group.  
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