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Abstract

Machine learning has the potential to provide tremendous value to the chemical
and material sciences by providing models that promise to save time, energy, and
starting material. Model training requires large amounts of clean high-quality
data, and the methodology for transforming raw data to machine learning-ready
data should be robust, adaptable, and accessible. However, data is often cleaned
differently for different projects using proprietary code, making it difficult to com-
pare approaches and creating additional effort for other researchers who want to
work with literature-mined data. Herein, we present ORDerly, an open-source
Python package with a novel benchmark for reaction data and a highly customiz-
able pipeline for cleaning chemical reaction data stored in accordance with the
Open Reaction Database (ORD) schema. ORDerly contains standard cleaning
operations, such as frequency filtering and canonicalization checks, in addition to
chemically-informed assignment of reaction roles using atom mapping, bespoke
name resolution, and reproducible open-source benchmark generation. We use
ORDerly to generate a machine learning-ready benchmark dataset for the prediction
of reaction conditions, and through extensive analysis, we find the aforementioned
cleaning steps to be essential to provide a high quality dataset for machine learning.
In particular, we show that datasets missing key cleaning steps can lead to silently
overinflated performance metrics. We then demonstrate that ORDerly can be used
in an end-to-end pipeline that goes from raw data to a reaction condition prediction
model in less than a day. With this customizable open-source solution for cleaning
and preparing chemical reaction data, ORDerly is poised to push forward the
boundaries of artificial intelligence applications in chemistry by providing a novel
benchmark for chemical reaction conditions, and a data pipeline for researchers in
the chemical sciences to leverage large reaction datasets.
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1 Introduction

Advancements in chemistry and material sciences hinge on the availability of high-quality chemical
reaction data, and the advent of machine learning (ML) for science has highlighted the value that
data can bring to chemistry. One important application is in the pharmaceutical industry, where
figuring out how to make novel molecules remains a significant bottleneck, causing delays in the
"make" step of the "design, make, test" cycle [11]. Making a molecule (product) includes predicting
the reaction pathway (retrosynthesis) and the reaction conditions (e.g. solvents and reagents). ML
approaches can provide tools to assist in all of these tasks, and for reaction condition prediction (the
main intended application of the benchmark presented here), there already are a number of ML tools
available [8, 22, 23, 19].

However, building reaction prediction tools requires access to large datasets to train predictive models.
Historically, this data has been acquired through commercial databases such as Reaxys™[6]. The
advantage of these databases is both the scale of the datasets available (often millions of reactions)
and the annotation already completed by the publishers. Yet, these datasets are not freely available to
ML practitioners, stymieing advances in reaction condition prediction in both academia and industry.

Recently, efforts have been made to create openly-accessible databases for chemistry data. In
particular, the Open Reaction Database (ORD) [14] is promising due to its exhaustive schema for
describing chemical reaction data and breadth of data already incorporated. Yet, many of the datasets
in ORD (license: Creative Commons Attribution Share Alike 4.0 International) require further
processing before they can be used in ML pipelines, preventing practical use. This is especially true
for the largest dataset in ORD extracted from the US patent literature (the "USPTO dataset"). In this
work, we endeavor to close this gap.

We present ORDerly, a new framework for extracting and cleaning data from ORD and an accompany-
ing benchmark for reaction condition prediction. The motivation behind ORDerly is threefold: (1) To
create a pipline for the creation of ML-ready datasets from the growing number of chemical reactions
stored in the ORD format, both publicly and privately; (2) to determine a set of evidence-based
recommendations for the hyperarameters of this cleaning pipeline; and (3) to provide a benchmark
for reaction condition prediction. By offering an open-source and customizable solution for cleaning
chemical reaction data, ORDerly aims to contribute to the development of advanced ML models
in chemistry and materials science. In this work, we focus on cleaning data extracted from the US
Patent literature [18] (license: CC0), but the methods proposed could be equally valuable for any
ORD dataset. Furthermore, while our focus is primarily on reaction conditions, the tools here could
be also used for retrosynthesis[24] and forward prediction tasks[4].

The remainder of the paper proceeds as follows. After reviewing related work in section 2, we present
the extraction and cleaning methodology of ORDerly in section 3. This is followed by experimental
validation of the cleaned benchmark dataset using a previously published neural network architecture
[8]. We demonstrate how missing key cleaning steps results in a dataset with contamination of the

Figure 1: Overview of ORDerly.
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inputs with prediction targets and thus inflates the performance metrics on the test set. We finally
discuss the technical limitations of ORDerly in section 6 and present our conclusions.

2 Related Work

2.1 Relation to chemical reaction cleaning tools

Existing tools for cleaning reaction data are primarily targeted at retrosynthesis and forward prediction
tasks [13, 1, 28, 9] and have somewhat limited extensibility, given that they are built to take inputs
as csv files or the stationary XML files of the USPTO dataset. Furthermore, there is little to no
discussion of how decisions made during cleaning (e.g. restricting the number of components in a
reaction or the minimum frequency of occurrence) impact the datasets being cleaned or performance
of models trained on the datasets. We believe that this is in part due to data cleaning historically
being viewed as a ’low value’ task, and therefore not adequately discussed and published on. In this
work, we make recommendations for the available parameters in ORDerly, and thus this work also
serves as a blueprint for good cleaning practices for chemical reaction data.

Common cleaning operations on chemical reaction data include: (1) Restricting reactions to being
single-product and single-step (2) Ensuring that all molecules can be sanitized and canonicalized
by RDKit [15] (3) Restricting the maximum number of unique catalysts, solvents, and reagents
in a reaction (4) Enforcing a minimum frequency of components in the reaction to avoid rare
chemicals which would cause sparsity in the one-hot encoding (OHE) (5) Sanity checking the yield
(0%  yield  100%), temperature, and pressure, (6) Removing duplicates, and finally (7) Applying
a random split to create training/validation/test sets, carefully ensuring that any inputs present in the
train set (i.e. reactants and products for reaction condition prediction) are not also present in the test
set.

2.2 Relation to chemical reaction data benchmarks

USPTO, being the largest open-source chemical reaction dataset, has been cleaned a number of times
for different learning tasks. For example, the Therapeutics Data Commons (TDC) [10] contains a
number of benchmarks for chemical reaction prediction based on USPTO dataset. However, the code
used to generate all of these benchmarks was not published, and furthermore, none of the benchmarks
are suitable for the learning task of reaction condition prediction. The reaction condition prediction
benchmark presented in this work could therefore be integrated into frameworks such as TDC as a
novel benchmark.

2.3 Machine learning for reaction prediction

The outcome of a ML pipeline for reaction prediction is typically either a string representing
a molecule, a vector (e.g. a one-hot encoding) or a float (e.g. yield). The SMILES string is
arguably the most common representation of molecules used in ML [30], and reactions in ORD
are represented either as structured inputs or with reaction SMILES. While ORDerly is focused on
condition prediction, it can also prepare datasets for other tasks.

Catalyst prediction. Identification of a potent catalyst which balances selectivity and conversion is
critical for most of today’s organic reactions towards drug products. For the prediction task, both
reactant molecules and product molecules of the reaction were used as input with the aim to predict
the catalyst. Gao et al. [8] presented a strategy for data processing and created a catalyst prediction
benchmark, though the code for cleaning was not made public.

Molecule generation. There are a near infinite number of small molecules of potential pharmaceutical
relevance, and navigating this space is difficult. Algorithmic generation of novel molecules with
desirable properties is therefore of significant interest, and can be achieved by training ML models on
molecular characteristics from a large dataset. A few datasets and benchmarks exist, including ZINC
[25], MOSES [21], and ChEMBL[20].

Retrosynthesis. The process of tracing complex molecular compounds back to their initial commer-
cially available starting materials, retrosynthesis, is an extremely important strategy for assessing
synthesizability of promising drug molecules prior to experiments. Within the retrosynthetic pre-
diction task a complex molecule of interest is used as input and simple starting materials as well as
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the identified synthetic routes are obtained as output. The USPTO dataset has been used for such a
prediction task using either the full [18] or partial dataset (50k datapoints) consisting of extracted,
atom mapped reactions of 10 reaction types [32, 17].

Reaction outcome prediction Identification of potential reaction products (outcomes) given the
reactants and conditions (input) is a fundamental challenge and can be seen as the inverse process to
retrosynthesis. While pure experimental evaluation requires expert chemists and is a time intense
task, reaction outcome prediction can help as a tool to improve synthesis planning. Reaction outcome
prediction machine learning models can either be template-based [4] or template-free [12].

Condition prediction algorithms
While retrosynthetic prediction tools enable route planning towards a target compound as well as
identification of the commercially relevant starting materials, experimental evaluation requires de-
tailed condition information. Reaction condition recommendation using predictive machine learning
is a powerful tool for bench chemists to help them with defining starting points for experimental
campaigns. Typical variables to be predicted include the reagent(s), catalyst(s), solvent(s) as well
as reaction temperature. Gao et al. [8] used approx. 10 million reactions mined from Reaxys
using a combination of fingerprint and OHE representations to sequentially predict catalyst, reagent,
solvent and temperature. For training and evaluating the neural network-based model the data was
split randomly into train/validate/test 80/10/10 partitions, and a 50.1% top-3 accuracy of predicted
components was achieved. While a detailed data cleaning pipeline was not published, their model
architecture was, so it is this architecture that we use for experimental validation of the datasets
generated by ORDerly. It is worth noting that conditions suggested by a reaction condition algorithm
are likely to only result in a reaction with detectable yield; an optimisation campaign will often be
required to achieve a high conversion [27].

3 Extraction and cleaning methodology

Data is stored in ORD in accordance with the ORD schema. This is a structured data format, and
this labeling of information in the ORD files ostensibly makes it easier to extract data. However, we
found that further effort is required to transform a labeled dataset into a ML-ready dataset. ORDerly
is centered around a data extraction script and a data cleaning script, both of which take numerous
arguments that customize the operations.

We experiment with two approaches to extracting molecule roles from ORD: trusting the labeling of
the data in the input/outcome labeling in ORD (e.g., whether a molecule is a reactant) or applying
chemical reaction logic to identify the role of different molecules from the reaction string. Our
reaction logic identifies reactants (molecules that contribute atoms to the product(s)) and spectator
molecules (molecules that do not contribute atoms to the product(s)) based on their position in the
reaction SMILES string. Solvents are identified in the list of spectator molecules by cross checking
against a list of solvents compiled from prior research [2, 5, 7], while all other spectator molecules
are marked as agents. Note that, to ensure high data quality, only molecules with SMILES that are
canonicalizable by RDKit [15] are kept.

Most chemical reactions have only two reactants and a small number of agents, so reactions with
large number of participating molecules are likely due to transcription errors. Therefore, we set
thresholds for the maximum number of different molecules within each reaction role. Removing
reactions with excess components is done sequentially (reactants ! products ! solvents ! agents.
as in Table 1), so the threshold chosen in one filtering step will impact all downstream filtering steps.
For all of the datasets, reactions with up to two reactants, one product, two solvents, and three agents
were kept (see SI F.1). Finally, the sensitivity to the frequency threshold for solvents and agents to be
considered rare was investigated (see SI F.2), with the minimum frequency of occurrence being set to
100.

The distribution of solvent and agent frequency is long-tailed, so strategies are needed to avoid
sparsity in the OHE of solvents and agents used in the model architecture of Gao et al. [8] We
explore two different approaches to removing rare solvents and agents: deleting reactions with rare
molecules (rare!delete rxn) or keeping the reactions but mapping the rare molecules to an "other"
category (rare!"other") (see Figure 2). We conduct experiments with both the rare!delete rxn
and rare!"other" strategies. Deleting reactions with rare molecules may create a more cohesive
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Figure 2: We present two different approaches for handling rare molecules. Rare ! "other" is
investigated as a strategy to avoid deleting reactions with rare molecules.

dataset by removing outliers, while renaming rare molecules "other" allows more reactions to be kept,
offering more training data for the model. In total, we create four datasets for benchmarking based on
two options: extracting molecules from the labeling or from the reaction string; rare!delete rxn or
rare!"other" (2x2 options).

All extraction/cleaning operations described in this section were performed using a 2022 Mac Studio
with an Apple M1 Max chip and 32GB memory. 1.7 million reactions from ORD belonging to the
USPTO dataset were extracted to create condition prediction datasets, though of course additional
value of ORDerly is unlocked as ORD grows significantly beyond USPTO (currently USPTO makes
up 99% of ORD). Extracting and sanitizing the reaction components using the ORD labeling of
components was slightly faster than using our custom logic applied to the reaction string, taking 28
minutes and 48 minutes, respectively, with the cleaning steps taking 6-8 minutes.

4 Dataset composition

We used ORDerly to create four datasets, to which a random train/test split was applied. The four
datasets are signified by reaction role extraction method (using the reaction string or the labeling) and
handling of rare molecules (rare!delete rxn or rare!"other"):

• Dataset A: Labeling, rare!"other" (76,634 reactions)

• Dataset B: Labeling, rare!delete rxn (75,033 reactions)

(a) Reaction string dataset, reactant filtering (b) Labeling dataset, reactant filtering

Figure 3: Distribution of the number of reactants between the reaction string and labeling datasets.
The labeling dataset contains more reactants per reaction on average; this may be due to agents being
mislabeled as reactants.
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Table 1: Number of reactions left in the USPTO dataset after each filtering step using the labeling in
ORD and the reaction string. Reactions with rare molecules can be handled in two ways, as per Figure
2: either deleted (rare!delete rxn) as shown in the table below, or renamed to other (rare!"other"),
in which case the dataset size would not change during the final cleaning step.

labeling reaction string
rare!delete rxn rare!delete rxn

Full dataset 1,771,032 1,771,032
Too many reactants 1,470,060 1,631,394
Too many products 1,329,399 1,593,196
Too many solvents 1,222,381 1,388,312
Too many agents 1,202,790 1,279,833
No reactants or no products 1,202,758 1,262,333
No solvents 870,888 950,189
No agents 135,139 690,234
Inconsistent yields 126,948 658,071
Dropping duplicates 76,634 392,996
Removing rare molecules 75,033 356,906

• Dataset C: Reaction string, rare!"other" (392,996 reactions)
• Dataset D: Reaction string, rare!delete rxn (356,906 reactions)

Each dataset was saved in Apache Parquet format, and has the following column groups:

• Reaction SMILES (string), is_mapped (bool)
• Reactants & products (SMILES strings)
• Solvents and agents (rxn string data), or solvents, catalysts, and reagents (labeling data)

(SMILES strings)
• Temperature, reaction time, yield (floats)
• Procedure details (string)
• Grant date (datetime), date of experiment (datetime), file name (string)

Finally, a CSV file is also created to keep track of the frequency of non-SMILES names used to
represent molecules, so the most common molecule names could be added to the manual name
resolution dictionary. The four datasets are freely available and can be downloaded immediately from
FigShare or regenerated using the code in the ORDerly Github repository.

5 Experiments validating ORDerly

In this section, we compare the performance of the models trained on each of the four datasets
described above. The model architecture used for experimentally validating the ORDerly datasets is
from Gao et al.[8] with only minor adjustments, including the order in which components are being
predicted, and not including prediction of reaction temperature (see D) All models were trained on an
A10G cloud GPU instance provided by lightning.ai for 100 epochs to minimize cross entropy loss for
each reaction component. The best model by validation loss was chosen for evaluation.

5.1 Condition prediction accuracy across datasets

The reaction condition prediction model used in this work predicts five categorical variables: two
solvents and three agents. These five molecules form a set (order invariant), though the loss function
in the model used to predict the molecules considers them sequentially (with order) since this was
found to work better in practice [8]. The metric used to evaluate the accuracy of the model should be
order invariant, since the problem is order invariant, and for this reason the accuracy metrics used are
top-1 (see D) and top-3 (see table 2) exact match combination accuracy for each type of component
(i.e., solvent, agent). Beam search was used to identify the top-3 highest probability sets of reaction
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Table 2: Top-3 exact match combination accuracy (%): frequency informed guess // model prediction
// AIB%.

Dataset A B C D
labeling labeling reaction string reaction string

rare!"other" rare!delete rxn rare!"other" rare!delete rxn
Solvents 47 // 58 // 21% 50 // 61 // 22% 23 // 42 // 26% 24 // 45 // 28%
Agents 54 // 70 // 35% 58 // 72 // 32% 19 // 39 // 25% 21 // 42 // 27%
Solvents & Agents 31 // 44 // 19% 33 // 47 // 21% 4 // 21 // 18% 5 // 24 // 21%

conditions. The top-3 accuracy was compared to the baseline predictive accuracy of simply predicting
on the test set the most common molecules found in the train set.

Additionally, we define a metric inspired by Maser et al. [19] called the average improvement over
baseline (AIB%):

AIB% =
Am �Ab

1�Ab
⇤ 100 (1)

where Am is the exact match combination accuracy of the model and Ab is the exact match combi-
nation accuracy of choosing the top 3 most common values of a component in the respective train
set.

Table 2 shows the predictive performance on the test set using each of the four datasets. All models
show an improvement over the frequency informed baseline. The performance of the labeling datasets
at first appears to be better than those that use our custom logic to extract reaction components from
the reaction string. However, as shown in Figure 3, many of the reactions in datasets where we trust
the labeling in ORD have more than three reactants, while most reactions in organic chemistry only
have two reactants. Upon manual inspection, we found that many agents were mislabeled as reactants
and, therefore, the prediction problem was made significantly easier by only requiring a single catalyst
to be predicted. In contrast, our custom cleaning pipeline that defines components using the reaction
string avoided contamination of the desired prediction targets (i.e., the agents) in the inputs, and
therefore, better represents the downstream application of reaction condition prediction models. This
insight is confirmed in Table 3; there are fewer unique solvents and agents and a higher density of
null components when using the ORD labeling instead versus the reaction string indicating that many
components might be mislabeled as reactants. This discrepancy demonstrates that naive creation of
datasets based on ORD can lead to inflated performance metrics.

For the datasets that extract the components from the reaction string, overall top-3 accuracy is less
than 25% across solvents and agents. While not directly comparable, our overall accuracy is lower
than what Gao et al. [8] achieved with 50.1% top-3 accuracy across catalysts, solvents and agents.
However, Gao et al. trained on approximately ten million reactions, while we train on less than four
percent of that (⇠350k). As shown in Figure 4, we see consistent increases in AIB (%) with the
number of data points for the dataset which uses reaction strings and deletes rare reactions, and this
scaling performance indicates that as ORD grows, better performance could be achieved, even with
potentially fewer data points than used in the paper by Gao et al.

Finally, the approach to dealing with rare values is investigated. The reaction string datasets would
have more than 10,000 unique agents (see Table 1) with no frequency based filtering, which would
cause excessive sparcity in the OHE. We initially hypothesised that the rare ! "other" strategy
would allow for better generalisation, since the edge case reactions would be kept in a way that also
keeps the OHE at a reasonable size, however, in practice, the rare ! delete rxn strategy had better
performance across train set sizes, as seen in Figure 4.

5.2 The ORDerly benchmark

We therefore choose Dataset D (reaction string, rare!delete rxn) as the the ORDerly condition
prediction benchmark to be used as an open source benchmark for reaction condition prediction.
While it was possible to build predictive models from all four datasets (since AIB% > 0, as per table
2), Dataset D most accurately reflects the practical downstream of chemists and the scaling behavior
we desire.
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Figure 4: Scaling behaviour of different datasets with respect to overall top-3 AIB for all solvents
and agents (third row from table 2.)

6 Technical limitations

6.1 Component labeling

There are two ways of assigning reaction roles to molecules found in ORD files, either relying on the
labeling, or identifying reaction roles by considering the atom mapping of a reaction SMILES string.
Identifying the role of molecules in a reaction provides crucial context to machine learning models,
adding domain knowledge to the data thereby improving performance. Atom mapping the reactions
with the newest algorithm may allow for greater accuracy in identifying reaction roles [16], however,
an atom mapping algorithm was not integrated into ORDerly to keep ORDerly lightweight. With the
existing atom mapping in ORD molecules contributing atoms to the product could readily be bundled
together and labeled as reactants. However, subdividing spectator molecules into different categories
(e.g. agents, reagents, solvents, catalysts, precatalysts, ligands, acids/bases) is a difficult task. The
difficulty is compounded by the fact that the same molecule can play different roles depending on the
context. The role that a molecule plays in a reaction may more easily identified when only considering
one reaction class at [19], since this allows the mechanistic details of the reaction class [29, 26, 31]
to be considered. Handling large and diverse datasets inevitably requires generalizeations that may
result in contradictions upon a more fine-grained inspection. In this work, solvents were separated
from the other spectator molecules, because these can somewhat reliably be identified. Catalysts
were not separated into their own category, since identifying catalysts is more subtle (especially with
organocatalysis), and few reactions in the reaction string datasets contained transition metals.

6.2 Condition prediction

While there are a number of different approaches for reaction condition prediction, this work is
focused reaction cleaning methodology and the introduction of a new benchmark dataset, as opposed
to being a benchmarking case study comparing various model architectures - this would be an
interesting area of further study. Furthermore, correctly considering the redundancy of the ordering

Table 3: Sparsity in the datasets. Frequency filtering is necessary for the solvents and agents to avoid
sparcity in the one-hot encoding. Columns: Number of unique molecules with a frequency above
the threshold; number of unique molecules with a frequency below the threshold ; percentage of the
dataset that is None.

labeling reaction string

Reactants 40,020 0 25.7% 317,184 0 18.4%
Products 38,816 0 0.0% 382,850 0 0.0%
Solvents 29 204 40.0% 85 313 28.0%
Agents 48 447 56.2% 255 11,945 37.0%
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of molecules may be a way to improve reaction condition prediction algorithms further. The model
used for benchmark evaluation is trained to predict one molecule at at time, and it is penalized
for predicting the correct two solvents if the solvents are predicted in the wrong order. However,
our chosen evaluation metric, whether all five molecules were correctly predicted, does take this
redundancy into account, and we implore researchers using this benchmark to also use this evaluation
metric as it better represents the goal of condition prediction.

6.3 Useful condition prediction models: data split and diversity

Processing and cleaning a list of chemical reactions is a necessary step for generating a benchmark
dataset to train models on, but the test set created from a random train/test split of the benchmark
does not fully capture how these algorithms may be used. It is important for the evaluation data and
metrics to be reflective of the real world task, and using an order invariant evaluation metric coupled
with beam search to identify spectator molecule combinations is not fully sufficient. A test dataset
constructed in this way may indicate the performance of a model within its domain of applicability,
but does little to investigate the domain of applicability itself (i.e., for which reactant and product
molecule combinations can we expect good accuracy?); consideration of reaction classes may be
one way to better understand the domain of applicability, and would need to be viewed in a broader
context of dataset diversity. Table 2 shows that the frequency informed baseline accuracy is much
higher on the labelling datasets than on the reaction string datasets, implying that the dataset is less
diverse, but an outstanding question is how should this lack of diversity be coupled with the test
performance to understand generalizeability of the model? In general, a truly representative test
performance is likely only achievable when coupled with wet lab chemistry.

7 Conclusions

In this work, we presented ORDerly, an open-source framework for preparing chemical reaction data
stored in the Open Reaction Database (ORD) for machine learning applications. In order to create
a new reaction condition benchmark, we generated four datasets with varied methods for reaction
role identification and rare molecule handling. ORD stores molecular data with labeling, in addition
to a reaction string, and we found that using chemically informed cleaning and categorization of
molecules in the reaction string was preferable. Predictive models could be trained using all four
datasets to outperform a frequency informed baseline, but the performance on their respective test
sets should be viewed in the context of dataset quality. In particular, datasets that used the labeling in
ORD had contamination of the inputs (reactants) with the outputs (agents), resulting in a problem
that was unrealistically easy. In contrast, the datasets that used our custom logic to extract reaction
roles provided a more realistic performance estimate. These datasets also contained more data, with
more diversity in the molecules encountered, implying that it would generalize better, and be more
useful in a wet-lab setting. Thus, we present the ORDerly benchmark, a dataset for reaction condition
prediction formed from reaction string data, where rare reactions are also deleted. All datasets
experimented with in this work, as well as the code used to generate them, are freely available online,
and we hope the benchmark will make the task of reaction condition prediction more accessible to
ML practitioners with limited domain knowledge. ORDerly presents a fully open-source pipeline
to go from raw ORD data to a fully trained condition prediction model, allowing for an avenue to
leverage the growing contributions to open source chemistry.
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