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Ammonia decomposition on lithium imide surfaces has been inten-
sively investigated owing to its potential role in a sustainable
hydrogen-based economy. Through advanced molecular dynamics
simulations of ab initio accuracy, we show that the surface struc-
ture of the catalyst changes upon exposure to the reactants, and a
new dynamic state is activated. It is this highly fluctuating state
that is responsible for catalysis and not a well defined static cat-
alytic center. In this activated environment, a series of reactions
that eventually leads to the release of N2 and H2 molecules become
possible. Once the flow of reagent is terminated the imide surface
returns to its pristine state. We suggest that by properly engineer-
ing this dynamic interfacial state one can design improved catalytic
systems.
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Introduction

The transition to a sustainable economy passes necessarily through the devel-
opment of efficient catalytic processes1,2. In addition, for a catalyst to have a
practical impact it should be scalable, operate at high temperature to increase
yield, and still be stable in spite of these demanding requirements3. It is hard
to imagine how in such conditions the standard model that relates catalytic
activity to static structures could be applied. Since a while, it has been sug-
gested that dynamics plays an important role in catalysis 4,5. However, the
evidence used to support this hypothesis has been so far unconvincing since
most of it is based on a series of static calculations on rather small catalytic
clusters 6,7 or on relatively short, even if highly illuminating, ab-initio molec-
ular dynamics simulations8. Furthermore, it is not clear how dynamics could
explain the high temperature stability of industrial catalysts. Additionally,
the extreme operando conditions required by industrial processes have limited
experimental investigations, that have been so far mostly restricted to study-
ing temperatures and pressures considerably lower than those encountered in
an industrial setting.

Here, we unravel the complex dynamic behaviour of a catalytic process in
operando conditions by investigating the ammonia decomposition on a lithium
imide (Li2NH) surface, a process that has received much attention for its pos-
sible role in a future sustainable hydrogen-based economy9,10,11,12,13,14 We
perform state of the art simulations in which the interatomic forces are calcu-
lated with an accuracy close to that of ab initio molecular dynamics15. Our
simulations reveal that the reactive process induces a change of state of the
interface. Such a modified interfacial state is the actual catalytic medium, and
one does not need to invoke any special stable arrangement of atoms. The large
fluctuations observed in the top layers of the surfaces allow a series of reac-
tions to take place resulting in the final release of N2 and H2 molecules. Once
the flux of reactants is stopped the catalyst reverts to its initial conditions.

Results

Reactant-induced dynamics of the surface

As a catalyst Li2NH16 is rather unusual since it is an ionic compound. In
fact, its structural arrangement is dominated by the need to alternate divalent
NH2− anions and monovalent Li+ cations (Fig. 1a) in order to establish local
charge neutrality. The experimentally reported defective antifluorite structure
does reflect this building principle17,18,19. Like many other ionic systems20 in
which there is a large difference between anionic and cationic radii, lithium
imide exhibits a superionic behaviour21,22 with the Li+ cations fast diffusing
and the divalent imide anions oscillating around their equilibrium positions
(Fig. 1b). As the temperature increases, Li+ cations sitting in a tetrahedral
site can move first to an octahedral empty site, and then to a tetrahedral
vacancy (Supplementary Video 1 and Supplementary Figure 1). The ease with
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Fig. 1 Bulk and surface structure of Li2NH. (a) Antifluorite structure of Li2NH. The
sublattice of NH2− divalent anions is face centered cubic (FCC) whereas the Li+ cations
occupy the tetrahedral sites. Hydrogen atoms are omitted for clarity in panel (a) and in the
following panels (b-d). (b) Scatter plot of N and Li atoms positions in one of the primitive
cells of the simulated Li2NH crystal at 600 K. Configurations are reported every 1.6 ps
during a 5 ns long trajectory. Scatter plots of N (c-d) and Li (e-f) atoms positions during
0.8 µs long unbiased trajectories at T = 750 K before (c,e) and after (d,f) the reaction
with ammonia. In panels (c-d) and (e-f) we report a configuration every 1 and 10 ps,
respectively. The nitrogen atoms of the three top layers are plotted in panel (c), while the
adlayer resulting from the ammonia reaction with the surface is also shown in panel (d). In
panels (e) and (f) we plot only lithium atoms that have a value of the z coordinate higher
than the one marked in panel (f). This corresponds to choosing Li+ cations that are either
in the top three layers and/or in the adlayer. To simplify reading, a single instantaneous
configuration is chosen to represent N and H atoms. Li, N and H atoms are coloured pink,
blue, and white, respectively.

which octahedral lithium interstitials can be formed facilitates the transition
to the superionic state.

In order to simulate the catalytic process, one needs to perform molecu-
lar dynamics simulations in which the interatomic forces are computed from
accurate electronic structure calculations so as to properly describe the form-
ing and breaking of chemical bonds 15. Unfortunately, such an endeavour is
still computationally too expensive. However, following the pioneering work of
Behler and Parrinello23 we constructed an ab initio quality reactive force field
by training a feed-forward neural network24 to reproduce total energies and
forces computed using density functional theory25 (DFT), and in particular
we use here the PBE exchange and correlation functional26.

The training configurations were chosen using an active learning approach
similar to that of Ref. 27, 28, 29. A detailed description of the procedure
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adopted can be found in the Methods Section. During both training and sim-
ulation, we used enhanced sampling methods30 to generate reactive events
in an affordable computational time. This approach is very general and, if
applied carefully, can be successfully used to study complex processes rang-
ing from nucleation31,27 to phase transition29,32 and chemical reactivity in
complex environments28,33. Following this workflow we trained a potential
able to describe the Li2NH superionic behaviour (see Supplementary Figure
2), the properties of Li2NH surfaces, its interactions with ammonia, and the
subsequent reactions leading to NH3 decomposition into N2 and H2.

Since it is not known which surface is the most active, we have taken a
conservative approach and chosen to study the (111) cleavage surface at the
operando temperature of T = 750 K. We expect that, if a dynamic scenario
applies when the most stable surface is considered, a fortiori less stable surfaces
would exhibit a similar behaviour. A validation of this assertion can be found
in Supplementary Figures 3-4, where we study how catalysis proceeds on the
(001) surface.

In our simulation the (111) surface remains stable including the outermost
layers (Fig. 1c,e and Supplementary Figure 5). Since at 750 K the catalyst is in
the superionic phase, anions fluctuate around their equilibrium positions while
cations diffuse rapidly (Supplementary Video 2). However, the behaviour of the
surface changes dramatically when we let two ammonia molecules approach
the surface so as to study the stochiometric reaction 2NH3 → N2 + 3H2.
On the time scale of nanoseconds the two ammonia molecules spontaneously
react with two imides to give a total of four amides according to: 2NH2− +
2NH3 → 4NH−

2 (Supplementary Video 3). This agrees with the experimental
report that this is the first step in the cracking process11. As a consequence
of this reaction two doubly charged NH2− anions are transformed into four
singly charged NH−

2 ones. After the reaction, the surface struggles to orderly
accommodate the change in the number and charge of the anions and this leads
to a novel dynamical behavior. Two amides move to the adlayer accompanied
by some of the Li+ while the two remaining amides replace two imides in
the top layer (Fig. 1d,f and Supplementary Figure 5). Apart from short-lived
fluctuations, this amide distribution is preserved during the simulation. From
Figures 1d and Supplementary Figure 5 it clearly transpires that both amide
and imide anions now exhibit a diffusive behaviour with the amides diffusing
faster than the imide (Supplementary Videos 4 and 5), as to be expected given
the larger charge of the latter. A quantitative description of these changes
can be found in Supplementary Figure 6. In addition, on the time scale of
nanoseconds protons can be spontaneously exchanged between amides and
imides (Supplementary Figure 7 and Supplementary Video 6). Such Grotthus-
like events have also been experimentally detected11,14. These changes are
confined to the top two layers that now have a behavior akin to that of an ionic
liquid. The present picture is consistent with the finding that non-stochiometric
compounds like Li2−x(NH2)x(NH)1−x have an increased activity34,14. In fact,
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disorder, in particular charge disorder, will favor the formation of the activated
dynamical state that is at the heart of this catalytic process.

Fig. 2 Schematic representation of the initial reaction steps. (a-d) Formation
of the diazanediide anion ([HN-NH]2−) as a result of the reaction: NH2− + NH2− →
[HN-NH]2− + 2e−. The position of one NH2− before the reaction is marked with a grey
transparent sphere (a). As the two NH2− come close the [HN-NH]2− is formed and an ionic
vacancy is left behind (b). The resulting cavity can localize the two electrons resulting from
the [HN-NH]2− formation (c). These two electrons can also be accommodated in a diffuse
surface state (d). In panels (b-d) the HOMO orbital is shown as a green solid isosurface.
(e-h) Formation of the hydride (H−) ion as a result of the reaction: NH−

2 → [NH]∗ + H−.
An amide ion (e) is progressively stripped of one proton helped by the intervention of the
Li+ cations which stabilize the resulting H− (f -h). In panels (f -h) the N-H bond length (Å)
is reported in black, and lithium atoms within 2.5 Å from the H atom are shown. Li, N, H
and H− are coloured pink, blue, white, and purple, respectively.

The catalytic process

In this destabilized environment many reactions become possible. Discovering
them all is extremely challenging and in a sense is beyond the scope of the
present paper. To prove our point we only need to show that in the reactant
induced scenario there are plausible pathways for ammonia decomposition.

Several likely reaction steps are reported in the Supplementary Note in
a list that is far from exhaustive. All these steps have been discovered using
our enhanced sampling method30 (see Methods Section), and imposing that
their free energy barriers are low enough for the reaction to take place at
the operando temperature (Supplementary Table 1). Different steps can be
concatenated in many different ways so as to eventually lead to the desired
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products (Supplementary Figure 8). Of course the ability of the catalyst to
allow different pathways increases its efficiency.

Here, we describe only two initial reaction steps that are paradigmatic of
the way the activated ionic top layers catalyze reactions that would other-
wise have been impossible. One of the initial steps leads to the formation of
the diazanediide ([HN-NH]2−) anion via the reaction NH2− + NH2− → [HN-
NH]2− + 2e− (Fig. 2a-d and Supplementary Video 7). The highly fluxional
ionic interlayer allows this reaction because the diazanediide is stabilized by a
cloud of Li+ cations (Supplementary Figure 9), and the two product electrons
can be accommodated either in a diffuse surface state or in a state local-
ized in an imide vacancy (Fig. 2c-d). These states are stabilized either by the
Madelung energy or by the surface dipole.

One can liken this second localized state to that of a color centre in ionic
crystals, a type of crystallographic defect in which an anionic vacancy is
occupied by one or more electrons.35,36 Interestingly, recent experiments on
ammonia decomposition on a CaNH-supported catalyst have suggested that
color centres play a role also in this other catalytic process37. The solvated two
electron state fluctuates from the diffuse to the localized variant (Supplemen-
tary Figure 10), and their nature is not affected by the inclusion of Hartree
Fock exchange in the density functional (Supplementary Figure 11).

Fig. 3 Free energy surface for diazanediide formation. Three possible cases are
reported in which the diazanediide anion is formed in the first (a), second (b) or third (c)
layer. Free energy surfaces for the interlayer formation of the diazanediide are reported in
Supplementary Figure 12. Results for the pristine and activated surfaces are reported in red
and blue, respectively. The statistical errors are calculated using the weighted block-average
technique as discussed in Ref. 38. Four blocks have been used, and errors are smaller than
the linewidth. The two imide groups used to build the collective variable are reported in
each panel. To simplify reading, a single instantaneous configuration is chosen to represent
N and H atoms. Li, N and H atoms are coloured pink, blue, and white, respectively.

The free energy surface for diazanediide formation is reported in Fig. 3 for
the pristine and activated surfaces. We compare three possible cases where the
diazanediide anion is formed in the first (Fig. 3a), second (Fig. 3b) or third
(Fig. 3c) layer, showing that the activated surface is more reactive than the
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pristine one. Indeed, on the activated surface the reaction presents an activa-
tion barrier about 60 kJ/mol lower, and [HN-NH]2− is more stable because of
the screening coming from the fluxional environment. Furthermore, the reac-
tion is more likely to take place in the top two layers rather than in the
innermost ones.

Another pathway to the formation of the diazanediide starts with the
abstraction of a H− from an amide. Such a reaction would have been impossible
in the gas phase but here is made possible by the Li+ intervention (Fig. 2e-h
and Supplementary Video 8) that facilitates the breaking of the N-H bond,
and the subsequent stabilization of H−. An unusual polaronic intermediate
state [NH]∗ is then formed. Analyzing the Bader charges39 of this state we see
that about two negative charges are associated to the [NH] while a compensat-
ing positive charge is distributed among the nitrogen atoms (Supplementary
Figure 13). This [NH]∗ intermediate reacts with an imide leading to the for-
mation of a diazanediide. Thus, the overall reaction can be read as NH−

2 +
NH2− → [HN-NH]2− + H−.

The three species [HN-NH]2−, 2e− and H− then become the main actors
in the reactions that follow. In one set of reactions the diazanediide is progres-
sively stripped of its protons, eventually leading to the formation and release
of an N2 molecule (Fig. 4a-c).

The solvated 2e− can abstract a proton from any of the nitrogen hydrides
following the scheme 2e− + NHx

(3-x)- → NHx−1
(3-(x-1))- + H- (Fig. 4d).

Finally, the presence of the H− intermediate, that can be formed in many
ways, is essential to the release of H2 upon reaction with one nitrogen hydride
molecule (Fig. 4e-f). By using the on-the-fly probability enhanced sampling
flooding method40, we characterized the kinetic rate of this step, computing a
transition time τ of 9 ms (Supplementary Figure 14).

One of the possible catalytic cycles is resumed in Figure 5. Nevertheless,
this is a simplified scheme, because we are in a situation in which the structure
of the system changes continuously as the reaction proceeds, and there are
multiple ways in which the reactive steps can take place and be concatenated
before eventually leading to the products. The catalyst is a living system, and
its working cannot be described as a result of a number of well-defined steps.
A stochastic description of the reactive surface in such a fluctuating medium
will have to be put in place.

Discussion

Overall, the decomposition of ammonia is a complex process that requires
several steps, in which different metastable intermediates are formed. The cat-
alytic activity of the destabilized surface results from its ability to store and
give electrons and protons and of stabilizing negative intermediates. This is
reminiscent of the way in which the enzyme nitrogenase works 41,42.

If we look at this process from a loftier standpoint we see that the highly
dynamic behaviour induced by the first step in the ammonia decomposition
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Fig. 4 Schematic of one representative set of decomposition reactions. The
diazanediide anion (a) loses one proton forming diazanetriide [N-NH]3−(b) which can finally
lead to N2 (c). In addition, the solvated two electron state (d) can abstract a proton from
the nitrogen hydrides species forming H− (e). The release of molecular hydrogen (f) from
the hydride anion is then possible due to its strong basic character. In panels (c-d) the
HOMO orbital is shown as a green solid isosurface. Li, N, H and H− are coloured pink, blue,
white, and purple, respectively.

is what eventually leads to catalysis, and it is the surface and its subsurface
volume that acts as a catalyst, instead of a specific atomic configuration. How-
ever, once started, the process is self sustained with the different reaction steps
further contributing to the surface dynamical behaviour and therefore to its
catalytic efficiency. Once the catalyst is no longer exposed to ammonia, the
reaction stops, and the catalyst returns to its original state (Supplementary
Figure 15). This system combines the benefit of a heterogeneous catalyst with
a surface behavior similar to that of a homogeneous one. In our picture we
do not deal with a catalysts that can have multiple metastable states6,7. We
have, in fact, discovered that during the reactions the interface undergoes a
very dramatic change to a state that has properties different from those of the
pristine surface.

There is other evidence that surface phase changes are relevant to hetero-
geneous catalysis. For instance, we have investigated the nitrogen activation
on iron surfaces in operando conditions, and also in this case the catalytic
activity is associated to a change in the physical state of the interface which
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Fig. 5 Simplified scheme resuming the catalytic process. A list of all the observed
reactions is reported in the SI, and other ways in which the different steps can be concate-
nated are shown in Supplementary Figure 8. The catalysis is highlighted in green, while
reactants and products are shown in red and blue, respectively.

undergoes a global dynamical change, where the catalytic sites appear and dis-
appear continuously43. This highly fluctuating environment is fundamental for
the reaction to be sustained. Furthermore, the methane decomposition on cop-
per surfaces must wait for copper to be close to the melting point in order to
take place44,45. Other evidence of a similar behaviour can be found in Ref.4,5.
We also note that often prior to production a catalyst has an induction period
during which it undergoes dynamic changes46,47.

Conclusions

In conclusion, our study reveals that the flow of reactants modifies the dynamic
behavior of the catalyst surface, resulting in a fluctuating interfacial state that
acts as the catalytic medium. This finding challenges the conventional picture
that a well-defined active site is solely responsible for the catalytic activity.

Our simulations reinforce Ertl’s assertion in his Nobel address that a
sampling approach is required to understand catalytic processes48. From our
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simulations, it is clear that catalysis is a highly complex process. Only by
taking complexity into consideration real progresses can be made. It is hoped
that this insight will lead to the rational design of more efficient catalysts by
appropriately engineering their interfacial behavior.
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Methods

The superionic behaviour of Li2NH was studied in a cubic supercell of edge
20.028 Å, containing 1024 atoms which amounts to replicate 2×2×2 times the
conventional unit cell49 (Supplementary Figure 16a). The ammonia decompo-
sition on the (111) surface was modeled using a slab made of 384 atoms in
a monoclinic simulation box with edges 14.321, 14.321, 30.0 Å, and γ = 120◦

(Supplementary Figure 16b).
In this setup we left enough distance (about 15 Å) between replicas along

the z direction to minimize interactions. In all the simulations of the (111)
surface we fixed the atoms in the two bottom layers to their ideal crystal lattice
positions to mimic the bulk environment.

We also studied the (001) surface with two possible terminations: Li+ (Sup-
plementary Figure 17a), and NH2− (Supplementary Figure 17b). Since this is
a charged surface care is required to set it up. To restore neutrality we fol-
lowed the procedure described in Ref. 50, and moved half of the Li+ or NH2−

ions from the outermost layer to the bottom one. Finally, we relaxed the whole
structure. This led to a reconstruction of the top layer similar to what can be
found in compounds like MgO51. This slab was made of 480 atoms in a tetrag-
onal simulation cell with edges 15.95, 15.95, 30 Å. This amounted to imposing
a distance of about 15.0 Å between one slab and its periodic replicas in the z
direction. During the molecular dynamics (MD) simulations we kept fixed the
atoms in the bottom three layers.

We introduced two NH3 molecules in the simulation box to study the
ammonia decomposition reaction. To restraint the movement of the N atoms
close to the surface, we limited dz, the z component of the maximum distance
between the N atoms and a ghost atom with xyz coordinates 0.0, 0.0, 15.0 Å,
to be smaller than d0 = 12 Å. This is done by applying a harmonic restraint
of the form k/2(dz-d0)

2 with k/2 = 2000 kJ/mol.
In the calculation of DFT energies and forces we used two different

packages. Ab initio molecular dynamics (AIMD) simulations were performed
using the Quickstep52 module of the CP2K package53 supplemented by the
PLUMED 2.8 plugin54, while the energies and forces needed for the Neural
Network (NN) training were calculated using the PWSCF v.7.0 code from the
Quantum Espresso package55,56,57. This latter was used to check the effect of
the Brillouin zone k -points sampling. We satisfied ourselves that the use of
Γ-point only was appropriate as expected. We checked that our NN can repro-
duce well also the CP2K forces. Furthermore, we used CP2K also to check the
eigenfunctions with the HSE06 density functional58.

We characterized the electronic states along the reaction pathways by
computing eigenvalues, eigenfunctions and Bader charges39 on representa-
tive configurations extracted from NN-based molecular dynamics. These
calculations were performed using Quantum Espresso.

In the next sections all the simulation details are provided.
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AIMD simulations

All the AIMD simulations were performed in the canonical ensemble (NVT)
with periodic boundary conditions, and a time step of 0.5 fs. The tem-
perature was controlled using the stochastic velocity rescaling thermostat59

with a coupling constant of 0.05 ps. Energy and forces were computed using
the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional26. The
Kohn-Sham orbitals were expanded in a triple-ξ plus polarization (TZVP)
Gaussian basis sets and the plane wave expansion of the electronic den-
sity was truncated at an energy cutoff of 300 Ry. The core electrons were
treated using the Goedecker-Teter-Hutter (GTH) pseudopotentials60,61 opti-
mized for PBE. The AIMD simulations were performed on the (001) surface.
This slab was made of 256 atoms in a tetragonal simulation cell18 with edges
10.087, 10.087, 33 Å.

Calculation of energies and forces

The DFT energies and forces needed for the NN training were calculated
using again the PBE exchange-correlation functional. The RRKJUS PBE
pseudopotential62 taken from the QE pseudopotential library were used. The
Kohn-Sham orbitals were expanded in plane waves basis set up to a kinetic-
energy cutoff of 80 Ry and a density cutoff at 400 Ry. The convergence
threshold for self-consistency was set to 1.0× 10−7 a.u..

NN-based MD

The MD simulations that used the NN potential were performed by patching
the DeepMD-kit software63 implemented in LAMMPS64 and PLUMED 2.854.
The canonical ensemble (NVT) was sampled in all the simulations, controlling
the temperature with the stochastic velocity rescaling thermostat59 with a
coupling constant of 0.02 ps. A time step of 0.25 fs was used.

Enhanced sampling method: OPES

We used enhanced sampling simulations to explore the NH3 decomposition
reactions. Our strategy was based on enhancing the fluctuations of a set of
carefully selected collective variables (CVs) s=s(R) where R are the atomic
coordinates. The CVs encoded the difficult to sample degrees of freedom of
the system. We used the on-the-fly probability enhanced sampling (OPES)
method to enhance the fluctuations of s. In OPES, the equilibrium probability
distribution P (s) is first estimated on-the-fly, and then a bias potential Vn(s)
is constructed so as to converge the s distribution to a target one P tg(s).

Here, we used as target distribution the well-tempered one P tg(s) ∝
[P (s)]

1
γ , where γ > 1 is the bias factor, and β = 1/kBT . In this case, the bias
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potential at nth iteration is written as:

Vn(s) = (1− 1/γ)
1

β
log

(
Pn(s)

Zn
+ ϵ

)
(1)

where Zn is a normalization factor, and ϵ = e−β∆E/(1−1/γ) is a regularization
parameter that limits the maximum bias that can be deposited. This allows
only the lowest free energy pathways to be explored avoiding the less likely
higher energy reactions. The highest value of ∆E used was 200 kJ/mol. How-
ever, to generate the training configurations as described in the next section,
we used larger values of ∆E (up to 300 kJ/mol) which allowed the generation
of less likely configurations, thus increasing the robustness of the NN potential.

As in all the CV based enhanced sampling methods, also in OPES a good
choice of the CVs is extremely important. When choosing the CVs, we tried as
much as possible not to prejudge the outcome of the reaction, nor the identity
of the atoms involved. A quantity that we found useful in the CV definition
is the coordination number written as a continuous function in order to avoid
discontinuities when calculating the forces coming from the bias:

CB
i∈A =

Nj∑
j∈B

1− (
dij

r0
)n

1− (
dij

r0
)m

(2)

In the above equation, dij is the distance between atoms i and j, Nj is
the number of atoms of species B, and the exponents n and m control the
sharpness of the function. Here, we set n = 6 and m = 12. Thus, CB

i measures
how many atoms of species B are within a sphere of radius r0 centred on atom
i, and it allows forming or cleaving chemical bonds.

Depending on the circumstances, we use as CV the following combination
of CB

i :

SAB =
∑
i∈A

CB
i (3)

Smax
AB = α log

∑
i∈A

exp (
CB

i

α
) (4)

Smin
AB =

β

log
∑

i∈A exp (
CB

i

β )
(5)

Smax
AB and Smin

AB are soft max and soft min functions that select the atoms
with the highest and lowest coordination number, respectively.

We used a sequential strategy to discover the set of reactions that led to
N2 and H2. After a novel reaction step was discovered, we took the newly dis-
covered species and applied the CV that was most appropriate for the reaction
to proceed. In Table S1 we list the CVs and biases ∆E used, together with
the products that these CVs have helped discovering. These CVs were used in
both the NN training and production simulations.
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NN training

The NN potentials were trained using the Deep Potential-Smooth Edition
scheme65 as implemented in the DeePMD-kit package63. This model consists
of two neural networks: the embedding and the fitting one. Both networks use
the ResNet architecture. We chose an embedding network with three hidden
layers and (30, 60, 120) nodes/layer. The size of the embedding matrix has been
set to 16. Four hidden layers with (240, 240, 240, 240) nodes/layer were used
in the fitting network. The cutoff radius was set to 8.0 Å and the descriptors
decay smoothly from 0.5 Å to 8.0 Å. The learning rate decays from 1.0× 10−3

to 5.0 × 10−8. The batch size was set to 8. The following loss function was
minimized during training:

L(αE , αf , αξ) = αE ∆E2 +
αf

3N

∑
i

∆F 2
i +

αξ

9
∥∆ξ∥2 (6)

where αE , αf , αξ are the energy force and the virial tensor prefactors,
respectively. ∆ denotes the difference between the DeePMD prediction of the
energy, forces and virial and the training data, N is the number of atoms, E is
the energy per atom, F i is the force on atom i, and ξ is the virial tensor= − 1

2∑
i Ri ⊗F i. The prefactors of the energy and force terms in the loss function

changed from 0.05 to 5 and from 1000 to 1, respectively. The virial term was
also included in the loss function with prefactor value changing from 0.01 to
1. In the initial training phase 1.0× 106 training steps were used. In order to
obtain the final NN model this number was doubled.

Setting up the training set

The construction of the NN potential for such a multi-component reactive
system is the most challenging part of the work, and requires a careful bal-
ance between computational effort and sufficient coverage of the configuration
space. In our case, this is made harder by the fact that we have to model a
highly reactive system, and therefore many rare but critical events need to be
explored, and the potential energy for these events accurately predicted.

An active learning approach assisted by the enhanced sampling method
OPES30,38 was used to explore the relevant configurations involved in the NH3

decomposition process (Supplementary Figure 18). This strategy has already
been successfully applied to study several other complex systems31,27,29,28.

First, we used about 3900 atomic configurations from the AIMD simula-
tions performed on the smaller 256 atoms system described above representing
the (001) surface, and built an initial training set. About 70 short AIMD sim-
ulations ranging from 1 to 6 ps were performed at the temperatures of 600 K,
700 K, and 750 K.
As the NN potential building proceeded we added configurations taken from
the (111) surface. Our active learning procedure made sure that we considered
reactive configurations.
The OPES method has been adopted to enhance the exploration of possible
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reactive configurations and reaction pathways. Starting from these configura-
tions and the associated DFT energies and forces, we have followed an active
learning approach (Supplementary Figure 18) to extend and refine the training
set. Each active learning iteration involved the following steps:

Step 1: Four NN potentials using different initial weights were trained
based on the same training set as the previous iteration;

Step 2: A series of NN-based OPES simulations were performed to explore
new relevant atomic configurations and reaction pathways. We computed for
each configuration a local estimate of the reliability of the NN. This was mea-
sured by σ66, defined as the maximal standard deviation of the atomic forces
predicted by these four NN potentials:

σ = max
i

√√√√1

4

4∑
α=1

∥F α
i − F i∥2 (7)

where F α
i is the atomic force on the atom i predicted by the NN potential α,

and F i is the average force on the atom i over the four NN potentials.
Similarly to what was done in Ref. 29,28 we have set up an empirical strat-

egy to minimize the number of new DFT calculations. For this reason, we set
a lower bound (σl) to the error σ and an upper limit (σu) which is usually
associated with nonphysical configurations in which atoms are too close or
correspond to improbable chemistry. In detail, σl was set to a value slightly
higher than the average model deviation of the latest training set, while the
choice of the σu was based on the rule ([0.20 ∼ 0.30 ev/Å] + σl). The con-
figurations with σ > σu were outright rejected; the rest is divided into four
intervals defined as follows (Supplementary Figure 19):
a) 0 < σ ≤ σl − 0.05
b) σl − 0.05 < σ ≤ σl

c) σl < σ ≤ σl + 0.10
d) σl + 0.10 < σ ≤ σu

The intervals c and d are larger because the distribution of errors has a long
tail. The configurations in a were automatically included among those that are
described well by the NN model at this stage of the training. In the bins b, c,
and d there will be Nb, Nc, and Nd configurations and for these intervals we
selected a fraction of configurations with percentages in the ratio ∼ 1 : 5 : 20.
The absolute values of these numbers were chosen to control the number of
DFT calculations needed. Our rule favors selecting configurations in the c and
d intervals that are most instrumental in expanding the variety of configura-
tions added to the training data set. After this first iteration, a new NN was
trained using the expanded data set. The error σ associated with this NN was
computed and used as σ for the new iteration.

Step 3: The DFT energies and forces of the configurations selected in step
2 were added to the training data set and the NN was retrained.

Following our previous work29, we updated the training set until the per-
centage of configurations in intervals c and d reached ∼ 10 % and remained
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almost unchanged for a few other iterations. In the end, a total of ∼ 105 atomic
configurations were used.

Validation of the NN model

The mean absolute errors (MAEs) of energies in the training and test set are
0.85 meV/atom and 0.90 meV/atom, respectively. The MAEs of forces in the
training and test set are 37.59 meV/Å and 38.04 meV/Å, respectively. The
test set consisted of ∼ 5700 configurations collected from the transition state
regions of the reactions sampled in the NN-based OPES simulation at 750 K.
We included in the test set configurations corresponding to the intermediates
and transitions states of all the steps discussed in the main text. The compar-
ison of DFT and the corresponding NN predicted atomic energies and forces
over the test sets is given in Fig. S5a. Furthermore, we analysed the MAEs for
two fundamental reaction steps: ammonia reaction on the (111) surface, and
N-N bond formation (Supplementary Figure 20B,C).

Data availability. All the inputs and instructions to reproduce the results
presented in this manuscript can be found in the PLUMED-NEST repository.
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