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Abstract 

Molecular docking is a widely used technique for leveraging protein structure in 

ligand discovery, but as a method, it remains difficult to utilize due to limitations that 

have not been adequately addressed. Despite some progress towards automation, 

docking still requires expert guidance, hindering its adoption by a broader range of 

investigators. To make docking more accessible, we have developed a new command-

line utility called dockopt, which automates the creation, evaluation, and optimization 

of docking models prior to their deployment in large-scale prospective screens. 

dockopt outperforms our previous automated pipeline across all 43 targets in the 

DUDE-Z benchmark, and the generated models for 86% of targets demonstrate 

sufficient enrichment to warrant their use in prospective screens, with normalized 

LogAUC values of at least 15%. dockopt is available as part of the Python package 

pydock3 included in the UCSF DOCK 3.8 distribution, which is available for free to 

academic researchers at https://dock.compbio.ucsf.edu, and free for everyone upon 

registration at https://tldr.docking.org. 
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Introduction 

Molecular docking is widely used for ligand discovery, both in industry and 

academia1-3. The primary goal of the technique is to predict the binding affinity and pose 

of small molecules in the binding site of a target protein. The method can screen 

libraries of billions of molecules and, unlike ligand-based methods, often discovers 

novel ligands entirely unrelated to those previously known2, 4-13. In some cases, docking 

can lead to the discovery of compounds in the sub-nM range4, 5, 8, 10, with some of these 

being active in vivo5, 8-10. However, unlike other techniques in computational biology, 

such as homology modeling14-16 and sequence database searching17, docking as a 

procedure remains labor-intensive and intimidating to new users, thereby limiting its 

wider adoption and hindering its application on a proteomic scale. Docking software is 

typically complicated and comes with a steep learning curve, making it difficult to utilize 

to its full potential. This is especially true during the model optimization stage of the 

docking process, which involves fine-tuning numerous parameters of the model to 

improve its accuracy and reliability. It does not help that, even when performed by 

experts, docking can still sometimes fail to accurately reproduce experimentally 

determined binding characteristics for some targets. These liabilities have diminished 

the technique's overall impact, not only by obscuring accessibility to researchers with 

limited computational backgrounds, but also by making it complicated for even 

experienced computational researchers to deploy docking models at a large scale on 

the order of billions of molecules. 

 

Automating the several stages of the docking process all in a single pipeline 
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could significantly reduce the need for expert involvement, which would increase the 

accessibility of docking as a technique at large. An effective pipeline ideally would 

simplify the preparation of the docking model for those with less experience while still 

allowing experts the option to adjust the model as needed. Moreover, beyond merely 

create a docking model, an optimal pipeline would also optimize the model’s parameters 

to ensure that its performance is at least comparable to that of a model produced by an 

expert given the same initial data. For this to be possible, the pipeline must first be 

capable of evaluating the quality of a given model. Typically, this evaluation is 

performed using retrospective docking18. This method involves assessing the model's 

ability to accurately reproduce the pose and binding characteristics of known ligands 

and consistently assign them more favorable docking scores compared to designated 

decoy molecules. These decoy molecules may be property-matched to the known 

ligands or selected by other methods48. 

 

Several attempts have been made to automate some parts of the docking 

process over the past 14 years19-21, a few of which have web interfaces22-26. However, 

most of these pipelines merely automate the procedural steps for creating a docking 

model, omitting the practices of evaluation and optimization that experts typically 

employ when preparing models for large-scale screens18, 27-30. As both evaluation and 

optimization are essential for developing models that can reliably distinguish between 

binding and non-binding compounds18, integrating them into these pipelines represents 

a crucial milestone toward automating the specialized skills of docking experts. 
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Our work on automating the docking process began in 2009 with the introduction 

of the web-based tool DOCK Blaster19. Although it successfully performed retrospective 

docking on thousands of targets, DOCK Blaster had noteworthy limitations. Notably, it 

lacked a framework for evaluating results, leaving it difficult to trust the predicted binding 

modes of resultant models without further assessment. Consequently, it was also 

unable to optimize the parameters of the DOCK scoring function, which estimates the 

binding affinity between a candidate molecule pose and the target protein. In effect, 

DOCK Blaster served merely as a prototype, composed of isolated scripts that made it 

fragile and difficult to maintain or develop further. In short, although DOCK Blaster 

demonstrated potential, its shortcomings highlighted the need for a more robust 

automated pipeline. 

 

Since the appearance of DOCK Blaster, several other web-based docking 

pipelines have surfaced31 24, 32-34, some designed with the scalability of the cloud in 

mind35-37. There have also been many reports of increasingly automated docking 

software without web interfaces6, 37-46. 

 

Given the mentioned limitations of existing methods, we focused our efforts on 

improving our own techniques to streamline the docking process. To that end, we re-

wrote the command-line tool for creating docking models, blastermaster, making it 

more modular and feature-rich47, and standardized and published our lab’s docking 

protocol18. Despite these advancements, expert supervision remained necessary for 

conducting model evaluation and optimization, and the absence of a web interface 
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curtailed the potential for wider accessibility to these improvements. 

 

To address the mentioned challenges, we introduce dockopt, a new automated 

docking pipeline that allows the creation, evaluation, and optimization of docking models 

using a single tool. dockopt is part of the Python package pydock3, a toolkit 

dedicated to the standardization and enhancement of docking methodologies, 

specifically designed to complement UCSF DOCK 3.8 and subsequent versions. To 

evaluate the utility of dockopt, we benchmarked it against the DUDE-Z dataset48. 
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Methods 

The Python package pydock3 is part of the DOCK 3.8 software distribution and 

is compatible with python>=3.8.1,<3.11. DOCK 3.8 is compatible with modern 

Linux operating systems. The scripts dockopt and blastermaster are included with 

pydock3, and all dependencies are defined in the pyproject.toml file. 

 

Transitioning from blastermaster to dockopt 

blastermaster 47 is a command line tool that generates docking models for 

protein target binding sites. dockopt builds upon blastermaster, by creating 

multiple models in a single pass and then optimizing parameters based on the 

retrospective docking performance observed for these models. dockopt evaluates 

models using a specified criterion, such as normalized LogAUC (AKA “enrichment 

score” 49. To efficiently evaluate candidate models in parallel, dockopt employs a 

designated job scheduler (e.g., Slurm). In summary, dockopt enhances the 

functionality of blastermaster by integrating model evaluation and concurrent 

optimization into the process of generating docking models. 
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Figure 1. Schematic representation of the dockopt algorithm. The retrospective 

dataset provided by the user consists of (1) a receptor structure, (2) a ligand structure, 

(3) positive-class molecules (e.g., known ligands), and (4) negative-class molecules 

(e.g., property-matched decoys). The parameters in the dockopt_config.yaml file 

determine the structure of the directed acyclic graph (DAG), which takes the receptor 

and ligand structures as input and produces all candidate DOCK parameterizations as 

output. Each resultant parameterization modifies the DOCK program to form a unique 

docking model. Each resultant docking model runs retrospective docking on the 

provided molecules, each labeled as either “positive” or “negative”. The output docking 

scores and poses are used by the specified criterion to evaluate the parameterizations, 

which are then ranked accordingly. At this point, the parameters in the 
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dockopt_config.yaml file determine (1) whether the program should iterate, and if 

so, (2) what proportion of top parameterizations to advance to the next iteration, (3) how 

to modify these advanced parameterizations, and (4) what new parameterizations to 

generate. This description holds for all iterations. 

Creating docking models with dockopt 

The dockopt pipeline algorithm can be summarized in a diagram (Figure 1).  

The docking program DOCK is parameterized by several files, each controlling different 

aspects of the program's behavior, such as the sampling algorithm for molecular poses 

or the scoring function for estimating the free energy of binding for each molecular pose. 

These files are known as "dockfiles" and exist in custom formats exclusive to DOCK 

and related software (e.g., matching_spheres.sph). In this work, we use the term 

DOCK parameterization to refer to a specific set of dockfiles, and a DOCK 

parameterization combined with a DOCK executable constitutes a docking model. 

 

A DOCK parameterization can be generated from the information contained in a few 

input files: (1) a receptor structure, (2) a crystallographic ligand structure, and (3) the 

dockopt_config.yaml parameters file. During the model creation phase (see the edge 

labeled “creates” in Figure 1) of the dockopt pipeline, a directed acyclic graph (DAG) is used 

as the data structure for managing the transformation of the input files (DAG root nodes) into 

several DOCK parameterizations (DAG leaf nodes) through a multiplex process involving 

numerous intermediate files. An edge in the DAG represents a dependency relation between a 

certain input-output pair involved in a particular step in the pipeline (i.e., a step s takes {x, ...} as 

input and produces {y, ...} as output, so output y depends on input x). For example, 

matching_spheres.sph depends on rec.crg.pdb in the matching spheres generation step 
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50. A child node can be created only once all its parent nodes exist. The input files completely 

determine the DAG (Supporting Information S5), which is automatically derived from them by 

a deterministic process. Starting from the root nodes of the DAG, a multitude of different 

branching paths are taken, with each path leading to a distinct leaf node. A specific combination 

of leaf nodes represents a specific DOCK parameterization, and their respective paths from the 

root nodes in sum completely define the creation of a certain DOCK parameterization from the 

input files. Once created, the DAG is mapped to a pipeline of steps that generates the DOCK 

parameterizations corresponding to the valid combinations of DAG leaf nodes. 

 

Parameter search algorithms  

Two parameter search algorithms are currently supported by dockopt: grid 

search and beam search55. Grid search explores the search space through a predefined 

grid of potential parameter value combinations. Due to its exhaustive nature, this 

approach can theoretically find the optimal parameter combination(s), given a 

sufficiently fine discretization of parameter space. However, when searching through 

anything but the coarsest resolutions of parameter space, this method can rapidly 

become computationally expensive to the point of intractability. In contrast, beam 

search narrows its search space by applying a selection criterion at each step to retain 

only the top fraction of candidate DOCK parameterizations for the next step. The range 

of considered values can be progressively refined, facilitating a more focused 

exploration of promising solutions. As a result, beam search may not explore all 

possible options, but it is more computationally efficient, as it constrains exploration to 

regions of parameter space likely to hold promising parameterizations, based on certain 

assumptions. For example, one assumption is that locally optimal choices (i.e., high-
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scoring candidate solutions at each step) will yield globally optimal or near-optimal 

solutions. This may not always be true, as locally suboptimal choices can sometimes 

lead to better overall solutions. 

 

In its pre-release version, dockopt used grid search as its search algorithm, 

exhaustively testing all possible combinations of parameters values, with each 

parameter taking a pool of possible values. For example, distance-to-surface values for 

electrostatic thin spheres51 might be the set {1.0, 1.1, …, 1.9} and distance-to-surface 

values for ligand desolvation thin spheres might be the set {0.1, 0.2, …, 1.0}, resulting in 

a Cartesian product space of 10 × 10 = 100 combinations. This strategy works well 

enough for small numbers of parameters with a limited number of values per parameter. 

However, it is too inefficient to serve as a general search algorithm, as it would subject 

users to exponentially increasing computational cost when exploring higher dimensional 

parameter spaces at finer resolutions. Consequently, the first-release version of 

dockopt uses beam search to efficiently search for favorable DOCK parameterizations. 

Below, we demonstrate that the implementation of beam search consistently finds 

superior parameterizations to those found by grid search using comparable 

computational expense. 

 

dockopt is controlled by parameters in the dockopt_config.yaml file  

The dockopt_config.yaml file defines the architecture of the dockopt 

pipeline and controls the range of values that are explored for each parameter. The 

DAG is derived automatically from the settings in the dockopt_config.yaml file, and 
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a single step in a dockopt pipeline generates several different docking models which 

are then evaluated in parallel. A sequence of steps may be defined with optional 

iteration and/or early stopping, and recursive embedding of step sequences is 

supported. 

 

dockopt allows rigorous, reproducible experimentation 

The dockopt pipeline comprises predefined step sequences, which may be 

defined once and then reused or even algorithmically altered to create new ones at 

runtime. Thus dockopt greatly simplifies benchmarking by facilitating the rigorous 

comparison of DOCK parameterizations, DOCK executables, and even evaluation 

criteria. Moreover, different evaluation criteria can be applied in different steps within the 

same dockopt pipeline, such as using a measure of enrichment first, followed by a 

measure of pose reproduction, and so on. Therefore, an entire experiment intended to 

measure the efficacy of several variables or search strategies can be defined in a single 

dockopt pipeline and reproduced later simply by re-running the saved pipeline 

configuration. 

 

dockopt pipelines are flexible 

The range of possible pipeline structures in dockopt is far wider than the default 

configuration may suggest. Although we recommend that new users try the default 

configuration first, a wide range of search strategies are available to be explored and 

customized as users gain more experience and familiarity with the software. These 
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strategies can be tailored to suit the specific requirements of the users' respective 

research objectives, providing versatility and flexibility in docking optimization. 

 

dockopt reports 

dockopt generates comprehensive reporting, including a CSV file of results for 

each docking model tested and an HTML format report containing the following: a 

histogram of the performance across tested models; linear-log ROC plots showing 

enrichment; bar plots for performance of individual multi-valued parameters; heatmaps 

comparing performances across two multi-valued parameters; a ridge plot showing the 

breakdown of energy terms by binary class; a violin plot showing the charge distribution 

by binary class. 
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Results 

New software for automatic optimization of docking models is now available as 

part of the UCSF DOCK 3.8 release. This software is available for free to academic 

researchers (see: dock.compbio.ucsf.edu) and at modest cost otherwise (email: 

dock_industry@googlegroups.com). First, we describe the software and how to use it 

on the command line. Second, we test the software’s utility by using it to perform 

retrospective docking against the 43 targets of the DUDE-Z benchmark48. Third, we 

introduce a web service for this software. The resulting docking model can be 

downloaded and deployed for prospective docking on the user's on-premises 

computers, a cloud platform (such as AWS52), or any other system capable of large-

scale docking. We take up each of these themes in turn. 

 

dockopt is a single command for generating and evaluating many different 

docking models when a retrospective dataset of molecules is available. The 

performance of a docking model may be evaluated by retrospective docking, where the 

ability of the model to distinguish between reported binders (positive class) and 

presumed non-binders (negative class) is assessed. dockopt wraps the generation, 

evaluation, and optimization of docking models all in a single tool. 

 

There are dozens of parameters whose values may affect the quality of the 

docking models produced by dockopt, but a few tend to have the most impact. These 

include the thickness of the layer of low dielectric and ligand desolvation regions in the 

binding site, which affect the electrostatic and the ligand desolvation scores, 
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respectively51. Other important parameters include the number and position of 

orientation spheres (AKA “hotspots” or “matching spheres”), which affect how ligand 

poses are sampled in the binding site50. Still other significant parameters include the 

target number of poses to generate (match_goal), how overlap between ligand and 

protein is treated (bump_maximum and bump_rigid), and whether conformations are 

biased for compatible matches during sampling (chemical_matching)53, 54. 

 

dockopt performs retrospective docking on multiple docking models in parallel 

using a job scheduler, such as Slurm or SGE. Although these two schedulers are the 

only ones currently supported, it should be straightforward to incorporate any queueing 

system into dockopt. After docking, the docking models are evaluated by the specified 

criterion (e.g., normalized LogAUC) and then ranked by their performance. Depending 

on the user’s specification of the configuration file controlling the program, the 

optimization process may repeat until the stopping criterion is met. A report in HTML 

format of the best parameter set choices is generated, together with figures 

summarizing all the runs (see Methods, and below). A CSV file of the performance of 

all docking models tested is saved as results.csv. The “dockfiles” that constitute the 

parameterization of the best job(s) in DOCK are saved in a dedicated directory. 

Dockfiles for all other parameterizations can be found in the directory working/, as 

indexed in results.csv. 

 

In the absence of known ligands, blastermaster (the successor of 

blastermaster.py from earlier work47) will produce a ready-to-use DOCK 
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parameterization by means of standard, unoptimized parameter choices. 

 

To install this new software on your own computer (Linux only), see Supporting 

Information S2. For the target of interest, you need (1) a PDB file of the receptor, (2) a 

PDB file of a corresponding ligand, (3) the identity as SMILES of at least a single known 

ligand (though a higher number is better), and (4) decoy molecules as SMILES for each 

known ligand (see Supporting Information S3 and S4). A ratio of 50 decoys per ligand 

is typically used (Bender, 2021). The DUDE-Z benchmark contains 43 examples of such 

files in a ready-to-use format (see dudez2022.docking.org). To use dockopt on the 

command line, prepare rec.crg.pdb (receptor structure) and xtal-lig.pdb 

(crystallographic ligand structure) in an empty directory, together with positive.tgz 

and negatives.tgz, both being tarballs of molecules in DB2 format. Now run: 

 

pydock3 dockopt - new 

cd dockopt_job/ 

pydock3 dockopt - run slurm 

 

In the above example, Slurm is used as the job scheduler for submitting 

individual docking jobs. Here is an example using SGE instead: 

 

pydock3 dockopt - run sge 
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How well does dockopt work? 

To evaluate the performance of dockopt, we benchmarked it against all 43 

DUDE-Z targets, using only the data available on the DUDE-Z website 

(dudez2022.docking.org). The procedure for acquiring the benchmark is: 

 

git clone https://github.com/docking-org/dude-z-benchmark 

cd dude-z-benchmark/ 

bash make_dataset.sh 

 

To run a single benchmark, specify a target (e.g., AMPC) as an argument: 

 

bash run_benchmark.sh AMPC 

 

To run all benchmarks, run with no arguments: 

 

bash run_benchmark.sh 

 

For all 43 DUDE-Z targets, the normalized LogAUC (AKA “enrichment score” 49) 

of annotated ligands over property-matched decoys produced by the default dockopt 

configuration was found to be better than that produced by the unoptimized DOCK 

parameterization included for that target in DUDE-Z48  (Figure 2), whose parameters 

were derived from default parameters of our previous protocol (blastermaster.py47, 

48). Comparing the parameterizations published in DUDE-Z to those produced by both 
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grid search and beam search, we observed an average increase in normalized LogAUC 

of 7.3 percentage points and 16.3 percentage points, respectively. Using grid search, 

we observed a maximum increase of 33.8 percentage points for the target KITH, and 

using beam search, we observed a maximum increase of 45.9 percentage points, also 

for the target KITH.  

 

Figure 2. Comparison of beam search and grid search parameter optimizations 

with the previously published default protocol.  
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a       b 

  

Figure 3. Quality of molecular docking performance as measured by enrichment 

of known ligands over property-matched decoys for 43 DUDE-Z systems. Recall 

that normalized LogAUC satisfies: a max value of 1 corresponding to a perfect 

classifier; a value of 0 for a random classifier; a positive value for a better-than-random 

classifier; a negative value for a worse-than-random classifier. (3a): Comparison of 

DOCK parameterizations published in the DUDE-Z paper48 (blue) with 

parameterizations found by the two search algorithms supported by dockopt, grid 

search (orange) and beam search (green).  (3b): Improvement in enrichment using 

dockopt. Top: from DUDEZ published to grid search; Middle: from grid search to beam 

search; Bottom: from DUDEZ published to beam search. 

 

dockopt creates a comprehensive report for each target, which can be 

accessed at dudez2022.docking.org. In this paper, we illustrate the features of these 

reports using actual results for two DUDE-Z targets as examples (Figure 4). Each 
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report includes a linear-log ROC plot of the enrichment of the positive class over the 

negative class. (Figure 4A). This visualization captures the performance of a docking 

model in a single visualization, with the area under the curve (AUC) serving as a 

quantitative measure of model quality. Next, the report includes additional plots that 

provide insight into the respective contributions of the terms of the scoring function of 

the docking program, thereby revealing potential biases that may influence the 

evaluation of docking models (e.g., imbalanced representations of properties in the 

dataset, such as charge). The split violin charts (Figure 4B) show the scores of the 

binary classes grouped by net molecular charge. The ridgeline plots (Figure 4C) show 

how the binary classes compare across the energy terms whose sum constitutes the 

predicted free energy of binding. Boxplots of the evaluation criterion are generated for 

parameters for which multiple values were tested, providing a visual comparison across 

different parameter values (Figure 4D). Finally, heatmaps (Figure 4E) summarizing the 

distribution of the evaluation criterion as a function of two variables are generated for 

every pair of parameters for which multiple values were attempted. The value of each 

2D coordinate in the heatmap corresponds to the maximum criterion value obtained 

across all parameterizations that used the combination of parameter values indicated by 

the coordinate; for example, a heatmap may show the behavior of the normalized 

LogAUC as a function of the electrostatic spheres (thin layer) and the desolvation 

spheres (thin boundary). Looking at the example targets from DUDE-Z, we observe that 

HIVPR shows consistently low enrichment, irrespective of the changes in these two 

variables. In contrast, for Factor 7A, a strong dependency on these parameters is noted, 

indicating the possibility of pinpointing an optimal or near-optimal parameter 
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combination. Collectively, these auto-generated plots provide a deeper understanding of 

a docking model, highlight any biases, and predict its potential performance in 

prospective docking screenings. Comprehensive reports featuring these visualizations 

for all DUDE-Z systems can be accessed at dude2022.docking.org. 

 

A. 

 

B. 

  

C. 
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D. 

 

E. 

  

 

Figure 4. Selected graphical reports of docking models optimized for two targets. 

Left: FA7. Right: HIVPR. A. Linear-log ROC plot of enrichment of ligands vs decoys. B. 

Violin plots of the distribution of charges. C. Unidimensional plots of the distribution of 
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energy terms for docked ligands vs. decoys. D. Unidimensional plot of the distributions 

of enrichment across different values of desolvation thin spheres radii. E. Bidimensional 

plots of enrichment as function of electrostatic and desolvation thin spheres radii. 

 

 

Figure 5. Heatmaps produced by two adjacent steps in a dockopt pipeline for 

target CSF1R, demonstrating the ability of beam search to narrow the range of 

considered values in a greedy fashion. Left: The heatmap for the former step shows 

a coarser resolution of exploration with a wider range of parameter values on both axes. 

The optimum tested coordinate is found to be (0.8, 1.9). Right: The heatmap for the 

latter step shows a finer resolution of exploration in the neighborhood around the 

optimum witnessed in the previous step. Note the nontrivial degree of fluctuation in 

enrichment across tested coordinates, even at the finer resolution. 

 

Docking models that consistently produce incorrect poses for known ligands are 

defective, regardless of whether they yield high enrichment. Although we typically do 

not know the exact pose of every known ligand in the retrospective dataset, we 

generally expect that most predicted poses should overlap the crystallographic ligand 

pose and mirror its receptor interactions. We illustrate such pose-oriented 
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considerations in two UCSF Chimera55 sessions, each displaying a superimposition of 

the receptor, the crystallographic ligand, and the predicted poses of the known ligands 

for comparison (Figure 6). In some cases, most ligands present a compact 

superimposition with high overlap, which often occurs when a single “warhead” 

dominates receptor-ligand interactions, as seen in coagulation factor VIIa (FA7). In 

other cases, the superimposition might be less defined, but it can still confirm that the 

predicted poses occupy the same region as the experimentally observed ligand, as 

seen in HIV-1 protease (HIVPR).  

 

  

Figure 6. Superimposition of the crystallographic ligand (sticks) and the docked 

ligands (wire). Hydrogen bonds and polar interactions with the protein are shown 

in mustard. Left. Coagulation factor VIIa (FA7). Right: HIV-1 protease (HIVPR). 

 

Encouraged by the ability of dockopt to produce docking models apparently 

suitable for prospective docking (Figure 2), we built a web-based interface for it at 

tldr.docking.org under the “dockopt” module (Figure 6). Registration is free. Sample 

data for 43 targets in ready-to-use formats are available at dudez2022.docking.org.
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Figure 6. A web interface for dockopt via tldr.docking.org. 

 

Currently, only the default parameters are available to submit dockopt jobs, 

which can take up to about 24 hours for larger retrospective datasets of thousands of 

molecules, and obviously depends on the current server load. The user receives an 

email upon job completion, at which point they may download the best model(s), the 

predicted poses in Tripos Mol2 format, and a report in HTML format containing various 

plots about the performance of the tested docking models across different sets of 

parameters (Figure 6). The downloaded model can be deployed in a large-scale 

docking screen on any system with the necessary compute resources, such as a 

departmental cluster or via a cloud platform (e.g., AWS52). 

 

dockopt can even dock without any experimentally known ligands, but here it 

runs into the same problems that a human would. Without controls, it is difficult to 

ascertain how well docking is performing, short of running a prospective screen. 
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blastermaster uses sensible, typical values for parameters that would be optimized 

by dockopt. To use blastermaster on the command line, put rec.crg.pdb and xtal-

lig.pdb into a directory and run: 

 

pydock3 blastermaster - new 

cd blastermaster_job/ 

pydock3 blastermaster - run 

 

Both dockopt and blastermaster are now available and ready to use. They 

may be accessed either by licensing and installing DOCK 3.8 or via tldr.docking.org as 

previously described. 

 

The normalized LogAUC of a random classifier tends to 0% as the numbers of 

positive-class molecules and negative-class molecules both approach infinity 49. 

However, whereas a typical retrospective docking campaign usually has between 10 

and 30 positive-class molecules, curated datasets such as DUDE-Z often have targets 

with more than 100. To obtain a conditional probability distribution of normalized 

LogAUC produced by a random classifier given a specific number of positive-class 

molecules, we performed 1 billion simulations for each number of positives, ranging 

from 1 to 50, with all datasets maintaining a negative-to-positive ratio of 50:1. The 

conditional empirical distribution obtained from these simulations allows us to compute 

the probability (p-value) that, purely by chance, a random classifier would produce a 

normalized LogAUC greater than or equal to a certain value. 
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To evaluate the possibility that the increased enrichment observed during 

optimization with dockopt was simply due to the large number of docking models 

tested, we employ the Bonferroni correction to adjust the p-value threshold for statistical 

significance. The Bonferroni correction is a widely used method to control the family-

wise error rate in multiple hypothesis testing, accounting for the increased likelihood of 

false positives when conducting a larger number of tests. The correction involves 

dividing the desired p-value by the number of tests performed; for example, a p-value of 

p = 0.01 (the default in dockopt) corrected for 1000 tests would become 10-5. The 

Bonferroni correction assumes that all tests performed are independent, which is not 

necessarily the case for parameterizations generated by dockopt, as 

parameterizations nearby in parameter space are expected to yield similar results. 

However, the significance threshold obtained by the Bonferroni correction is strictly 

more stringent than that obtained by any method that accounts for dependent tests, so 

using it only further mitigates the risk of falsely identifying insignificant results as 

significant. As a corollary, it is also important to recognize that this conservative 

approach may increase the risk of false negatives, particularly in contexts of high test 

correlation. 
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Figure 7.  An example histogram of the performance of 2600 tested docking 

models for the target ADA. Using p = 0.01 with a Bonferroni correction to account for 

the multiple tests (2600 total), a significance threshold of 0.100 normalized LogAUC 

was derived from a cumulative distribution function of the conditional empirical 

distribution of normalized LogAUC produced by a random classifier. 

 

Applying the Bonferroni correction to our analysis allows us to rigorously assess 

the statistical significance of the observed enrichments, ensuring that the reported 

improvements in docking performance are not merely an artifact of testing multiple 

docking models. Our results demonstrate that the superior performance of dockopt 

over the parameterizations published in DUDE-Z remains significant even after 

accounting for the multiple comparisons, thereby providing robust evidence for the 

effectiveness of our method. 
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Discussion 

Three themes emerge from this study. First, a new automated pipeline for 

docking model creation, evaluation, and optimization has been developed. Second, the 

automated procedure can optimize the docking parameters significantly better than our 

previous automated system, and for most targets produces docking models that are 

suitable for large-scale prospective screens. Third, the new pipeline can be installed 

locally or accessed via a new web interface we have created, and the resultant docking 

model may be downloaded and deployed for large-scale docking, either on-premises or 

in the cloud52. We take up each of these themes in turn. 

 

dockopt implements many of the best practices in our standard lab protocol26 in 

an automated fashion. We have augmented this procedure to include optimization 

techqniques that capture many, but not all, of the current best practices in our lab. For 

example, the boundaries of the regions of low dielectric and ligand desolvation in the 

binding site are optimized. Work in our lab suggests that defining these boundaries is 

often critical to obtaining satisfactory retrospective enrichment during model 

optimization51. The pipeline also optimizes the matching spheres used for sampling 

ligand orientations, which play a key role in determining whether a docking model is 

likely to succeed in a prospective screen. Furthermore, the software has been designed 

with flexibility in mind, allowing for the optimization of dozens of additional parameters, 

and minimal development effort is required to incorporate and optimize any new 

parameters or search strategies that a researcher might consider desirable. 
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dockopt demonstrates competent docking performance against the DUDE-Z 

benchmark regularly used in our research. In 37 out of the 43 DUDE-Z systems (~86%), 

this fully automated procedure with beam search produces a docking model exhibiting a 

normalized LogAUC of at least 15%. This threshold is a good heuristic for whether a 

docking model is suitable for prospective docking. This performance represents a 

striking improvement compared to the docking models published in DUDE-Z, which 

resulted in only 13 successes (~29%) by the same standard. 

 

The use of the Bonferroni correction in our analysis provides rigorous evidence 

for the efficacy of dockopt. By adjusting the significance threshold to account for the 

use of multiple tests, the Bonferroni correction effectively reduces the probability of 

Type I errors (i.e., false positives). This statistical correction serves as a key control 

mechanism, providing confidence that the performance improvements we report in this 

work are not merely statistical contrivances but indeed genuine indicators of the ability 

of dockopt to effectively optimize docking models. Although the Bonferroni correction 

assumes that the tests are independent, which is likely not the case with dockopt, it 

nevertheless provides a reliable conservative measure of statistical significance.  

 

We set up a public web interface for dockopt at https://tldr.docking.org, which 

showcases this software’s ability to build and refine docking models completely 

automatically, given a retrospective dataset of molecules labelled positive or negative. 

This platform also evaluates the resultant model's suitability for prospective docking 

screens, estimating the likelihood of the model to consistently prioritize new ligands. 
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There are several caveats to this work. dockopt requires a retrospective dataset 

of positive and negative molecules (e.g., known ligands and property-matched decoys) 

with which to optimize the docking model and evaluate its enrichment capacity, pose 

reproducibility, or any other supported criterion of interest. Without these control 

molecules, dockopt cannot assess whether a given model is of sufficient quality to use 

for prospective docking. Furthermore, dockopt works on most of the targets we tried, 

but not all. Therefore, our approach should not be mistaken for a universal solution to 

automatic optimization of docking models. 

 

Because measures of enrichment capacity do not incorporate any structural 

information of predicted poses, the use of normalized LogAUC as the single criterion for 

model evaluation means that there is the possibility of the model overfitting to the 

ligands provided by the user, which usually number at most a few dozen. However, this 

potential issue could be ameliorated by using an alternate criterion measuring pose 

reproduction, or perhaps even a criterion measuring both enrichment and pose 

reproduction. Until such evaluation criteria are implemented in dockopt, users are 

advised to provide as many diverse known ligands as possible to mitigate the risk of 

overfitting. 

 

These caveats should not obscure the main results of this work. We have 

developed a fully automated tool for the creation, evaluation, and optimization of 

docking models, which is now available as part of the UCSF DOCK 3.8 distribution. In 
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addition to being offered free of charge to academic researchers via 

https://dock.compbio.ucsf.edu, the software can also be used for free by non-academic 

researchers upon registration at https://tldr.docking.org. It is important to note that we 

cannot guarantee the results of any docking screen using dockopt; this software is to 

be utilized at the user's own risk. For optimal ligand discovery outcomes, we strongly 

encourage the use of sanity checks and controls at every stage of the docking process, 

as discussed in this work. 
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