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ABSTRACT: Free energy perturbation (FEP) remains an indispensable method for computationally assaying prospective compounds 
in advance of synthesis. But before FEP can be deployed prospectively, it must demonstrate retrospective recapitulation of known 
experimental data where the subtle details of the atomic ligand-receptor model are consequential. An open question is whether Al-
phaFold models can serve as useful initial models for FEP in the regime where there exists a congeneric series of known chemical 
matter but where no experimental structures are available either of the target or of close homologues. As AlphaFold structures are 
provided without a ligand bound, we employ induced-fit docking to refine the AlphaFold models in the presence of one or more 
congeneric ligands. In this work, we first validate the performance of our latest induced-fit docking technology, IFD-MD on a retro-
spective set of public experimental GPCR structures with 95% of crossdocks producing a pose with a ligand RMSD ≤ 2.5 Å in the 
top 2 predictions. We then apply IFD-MD and FEP on AlphaFold models of the somatostatin receptor family of GPCRs. We use 
AlphaFold models produced prior to the availability of any experimental structure from within this family. We arrive at FEP-validated 
models for SSTR2, SSTR4, and SSTR5, with RMSE around 1 kcal/mol and explore the challenges of model validation under scenar-
ios of limited ligand-data, ample ligand data, and categorical data.

I Introduction 
 

G-protein coupled receptors (GPCRs) arguably constitute the 
most important class of drug targets in the human genome.  On 
the order of 35% of known drugs target GPCRs, covering a 
wide range of crucial disease indications1. Furthermore, small 
molecule candidates targeting previously undrugged GPCRs 
continue to be introduced into clinical trials, with breakthrough 
medicines in this category being approved periodically. 

Driven by the importance of the GPCR target class, tremen-
dous progress has been made over the past decade in obtaining 
experimental high-resolution structures of various GPCRs via 
both x-ray crystallography and (increasingly) cryo-EM spec-
troscopy. As of December 2022, there are 988 GPCR structures 
in the PDB, with 916 including a bound ligand2. Important in-
sights into the biological functioning of GPCRs have been ob-
tained from these studies, as well as a number of investigations 
forming the basis for structure-based drug design efforts. 

Alongside the experimental efforts outlined above, the revo-
lutionary progress represented by the AlphaFold software plat-
form3 has engendered the ability to create a plausible structural 
model even for GPCRs where high resolution experimental 
structural data is not available. Furthermore, AlphaFold struc-
tures have proven to be interesting starting points for computa-
tional modeling even in cases of relatively low sequence iden-
tity to known experimental structures in the PDB4. 

However, the question of what sort of approach is necessary 
and sufficient to facilitate structure-based drug discovery ef-
forts for a GPCR requires a different sort of assessment than has 
been previously carried out. A typical structure-based drug dis-
covery project involves obtaining experimental structures of the 
receptor complexed with many different ligands, enabling one 
to track any modifications of the ligand binding mode or recep-
tor conformation during the process of hit-to-lead advancement 
and lead optimization.  Such a protocol can be quite expensive 
and time consuming (if not infeasible) when the receptor is a 
GPCR. Furthermore, the plasticity of the GPCR active site 
poses significant challenges for computational approaches such 
as protein-ligand docking and free energy perturbation theory5. 
While there has been enormous progress over the past decade 
in using these methods to discover drug candidates for a wide 
range of target classes, a successful physics-based computation-
ally driven campaign for a GPCR target has yet to be reported 
in the literature.  

In the present paper, we address the two fundamental chal-
lenges associated with carrying out a computationally driven 
structure-based drug discovery project for a GPCR: 

(1) Prediction of ligand binding modes for diverse chemo-
types, which requires a robust induced fit docking approach. We 
carry out these calculations using the recently developed Schrö-
dinger IFD-MD methodology6, supplemented by the generation 
of multiple structures with backbone diversity (e.g. from Al-
phaFold). 
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(2) Extensive testing of the ability of free energy perturbation 
(FEP) calculations for ligand series utilizing the induced fit 
docking structures produced in step (1) to produce correlation 
with experiment sufficient to be used in lead optimization ef-
forts.  

When the binding mode of a novel chemical series to a GPCR 
is unknown, we argue that FEP calculations can be used to se-
lect and validate a specific binding mode produced by IFD-MD. 
Rigorous validation of this approach will require using the se-
lected IFD-MD/FEP binding mode to prospectively predict the 
binding of new compounds, the affinities of which can then be 
measured experimentally.  

As an initial test of the IFD-MD methodology when applied 
to GPCRs, we have developed a data set of 82 pairs of GPCR 
conformations which exhibit significant induced fit effects, 
such that accurate cross docking of the ligand from structure A 
into the receptor conformation of structure B requires, in many 
cases, the use of an induced fit docking approach. The IFD-MD 
methodology is successful in 95% of cases in obtaining a struc-
ture less than 2.5A RMSD from the native structure for cross 
docking; the failures generally involve backbone motion which 
the current algorithm, used in isolation, cannot overcome. We 
are working on a modified IFD-MD protocol capable of ad-
dressing a greater range of backbone motion and will report re-
sults for these (and other) test cases in the near future.  

To illustrate the application of the IFD-MD/FEP based ap-
proach to GPCR targets of current pharmaceutical interest, we 
have chosen in the present paper to work on the SSTR family 
of GPCRs. These proteins are currently being investigated as 
drug targets for a variety of disease indications, and a number 
of ligand series which bind tightly to the receptor have been 
published for each of the isoforms7,8. Furthermore, the situation 
with regard to SSTR experimental receptor structures is highly 
dynamic with new structures being released for SSTR4 and  
SSTR2 over the past months9–12. However, the experimental 
complex structures that are available are not bound to the ligand 
chemotypes represented in the various series that we investigate 
here. Therefore, the situation corresponds precisely to the ques-
tion posed above: can IFD-MD, in conjunction with FEP be 
used to identify the binding mode of the series (or multiple bind-
ing modes if that is the case), and can FEP achieve a good cor-
relation with the experimental binding data for the series across 
a wide range of congeneric ligands? 

We investigate the ability of both experimental structures 
(crystal structures and cryo-EM structures) and AlphaFold 
structures to enable successful IFD-MD docking and FEP sim-
ulation. Exploration of multiple starting structures for a given 
ligand series enables ligand binding poses to be found which 
enable very good correlations to be obtained between FEP cal-
culations and the experimental binding (or functional assay) 
data. As noted above, rigorous validation of the proposed bind-
ing mode would require prospective FEP prediction using the 
model, and experimental assessment of the ligands selected for 
synthesis from these calculations.  If more than one competitive 
model is identified, synthesis and testing of ligands which have 
substantially different binding affinity predictions in the alter-
native models can resolve which model is correct. Our results 
suggest that the correct binding mode can be identified via the 
proposed combination of computational and experimental 
work, but unambiguous establishment of the viability of this ap-
proach awaits application in the context of an ongoing project.  

A key finding of the present study is that relatively small he-
lix motions of the receptor can play a critical role in enabling 

the ligand to dock in a particular binding mode. Docking into 
multiple structures can yield a successful induced fit binding 
pose prediction as long as at least one of the structures has the 
required helix conformations.  An alternative to relying on Al-
phaFold and/or experimental structures is to computationally 
enumerate low-energy helix configurations, for example using 
steered molecular dynamics and/or various conformational 
search algorithms A more systematic approach to sampling a 
wide range of relevant GPCR helix configurations, minimizing 
the dependence upon a small number of input structures, is the 
subject of current investigations in our group. For the present, a 
combination of utilizing an ensemble of AlphaFold structures, 
in conjunction with simple helix perturbations, should enable 
IFD-MD to handle some (if not most) cases of practical interest 
in structure based GPCR drug discovery projects. 

The paper is organized as follows. In Section II, we present 
IFD-MD retrospective testing using pairs of complexes, across 
a wide range of GPCRs, from the PDB. Section III develops 
binding pose models for three different SSTR receptors 
(SSTR2, SSTR4, and SSTR5) for a number of ligand series, and 
demonstrates that FEP calculations using these models correlate 
well with experimental data. In Section IV, we consider the lim-
itations and their remedies of this approach in active drug dis-
covery projects. Finally in Section V, we summarize our results 
and outline future directions.  
 

II Retrospective IFD-MD Performance for GPCR structures 
in the PDB 

 
We first obtain a list of all public ligand-bound GPCR struc-

tures from the GPCRdb2, and download both the 3D coordinates 
and the structure validation report for each from the RCSB 
PDB. Then, using a high-resolution structure of the A2A recep-
tor (PDB ID: 6wqa) as a reference, we filter out structures lack-
ing ligands occupying the orthosteric binding pocket. In addi-
tion, we also discard structures with global resolution worse 
than 3.5 Å or with poorly resolved, incomplete, or multi-con-
former binding pocket residues (binding pocket residues are de-
fined as those having at least one heavy atom within 5 Å of the 
ligand). To prepare for cross-docking, the processed structures 
are then grouped by Uniprot ID of the receptor and discarded if 
they do not have at least one additional structure with the same 
Uniprot ID. For each set of Uniprot-grouped receptors, we ana-
lyze all pairwise combinations of structures, grafting the ligand 
of the target structure onto the pocket of the template receptor, 
after aligning the receptors using CEAlign13. These pairs are fil-
tered for cases where the template and target receptors are either 
too similar (sidechain RMSD below 1.0Å) or too different 
(backbone RMSD above 1.5Å), where there were either no 
sidechain clashes between the template receptor and the target 
ligand (no induced fit necessary), or where there were large 
clashes between the template receptor backbone and the target 
ligand. The resulting subset of structures are processed using 
the Schrodinger PrepWizard tool14, in order to add hydrogen at-
oms, define protonation states for titratable groups, and perform 
a restrained minimization. This analysis yields a total of 82 pairs 
across 10 different GPCRs that cover a wide spectrum of subtle 
binding pocket rearrangements. No parameter optimization is 
performed for either IFD-MD or GlideSP in obtaining these re-
sults; the parameters remain robust across target class. Method-
ologically, an explicit membrane treatment was added to IFD-
MD which we discuss now. 
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 Table S1 lists the individual cross docks and the performance of 

GlideSP (rigid receptor docking) and IFD-MD. Overall perfor-

mance is shown in 

 

Figure 1. As we note above, these cases are deliberately se-
lected because of an observed induced-fit effect primarily due 
to side chain motion. The rigid-receptor docking results serve 
as a benchmark of the difficulty of these cases as, in some in-
stances, the ligand is able to contort itself around the rigid re-
ceptor conformational perturbation and preserve a ligand 
RMSD better than 2.5 Å. As in our prior work6,15, we define 
success to be a ligand RMSD of 2.5 Å or better found within 
the top 2 ranked predictions. With only 49% of cases succeed-
ing using GlideSP, we conclude that more than half the remain-
ing cases are not solvable with rigid-receptor docking. 

 

Figure 1. Retrospective GPCR performance across a set of 82 cross 

docks spanning 10 targets. Success is defined to be a ligand RMSD 

of 2.5 Å or better in the top two predictions. 

Briefly, we summarize the IFD-MD protocol as consisting of 
two halves. First, an implicit solvent half which utilizes iterative 
rounds of pharmacophore docking, rigid-receptor docking, and 
binding site optimization (side chain reprediction and backbone 
minimization). The second half of IFD-MD incorporates short 
500 ps MD to relax the entire system around the predicted pose 
followed by scoring with a modified form of a water-aware 
rigid-receptor docking scoring function, WScore16, and 10 ns 
metadynamics trials17 to test the relative stability of competing 
binding modes. If we find that the 500 ps simulation deviates 
significantly from the pose prior to MD, we consider the system 
unconverged and run an additional 100 ns of MD. For mem-

brane proteins, we modify the original IFD-MD protocol6 to in-
clude an explicit representation of the membrane during the un-
biased molecular dynamics and metadynamics simulation 
stages. Specifically, we use a reference structure, e.g. down-
loaded from the OPM database18, to define the orientation and 
thickness of the membrane. This structure can be of the same 
receptor, unliganded or bound to a different ligand, or of a hom-
ologue. When preparing the predicted models for simulation, 
the backbone atoms of the receptor are aligned to this reference 
structure using CEAlign13. The implicit solvent model approxi-
mates the solvation free energy using a variation of the surface 
generalized Born model with a variable dielectric, VSGB2.019. 
When adding an explicit membrane, we use this pre-aligned 
structure and the membrane thickness information to build a 
POPC bilayer during Desmond (molecular dynamics) system 
setup20,21. Finally, the full system consisting of the receptor, lig-
and, membrane, solvent, and neutralizing ions is equilibrated 
using a version of the Schrödinger membrane relaxation proto-
col5,22 modified to include GCMC23 stages to solvate the bind-
ing pocket. 

These retrospective results demonstrate the performance of 
IFD-MD on a range of GPCR target classes and specific recep-
tors. When starting from an experimentally obtained structure, 
as we show above, the IFD-MD scoring function achieves suc-
cess within the top two predictions. But starting from a tem-
plate-based homology model or an AlphaFold model, the ge-
ometry of the binding site can contain errors that erode the util-
ity of the IFD-MD scoring function. As we showed in a prior 
publication15, when evaluating template-based homology mod-
els across various sequence identities, a robust approach is to 
explore the top five predictions with FEP validation. In the sec-
tions that follow we build off this prior work by challenging 
AlphaFold models of GPCRs for which there are no close ex-
perimental homologues and validate the models by recapitula-
tion of experimental activity data using FEP, exploring the top 
5 IFD-MD poses for each AlphaFold model as outlined above. 

 
III Evaluation of AlphaFold models of the Somatostatin re-

ceptor family of GPCRs 
 

The somatostatin receptor family, a class A GPCR family, is 
composed of five members numbered SSTR1 – SSTR524. At the 
time that we queried AlphaFold for structures from this family, 
January 27th 2022, there were no experimental structures of any 
member of this family. The nearest experimentally solved hom-
ologues are the µ and ∂ opioid receptors at around 40% se-
quence identity. Therefore, the somatostatin family offered an 
opportunity to challenge AlphaFold models for a target for 
which no possibility exists for AlphaFold to have been trained 
on any experimental solution, nor of any close homologues. 
There have since been experimental structures reported for 
SSTR2 and SSTR4, and below we compare our final models 
with these experimental structures, however these structures do 
not contain bound any chemical matter congeneric to the da-
tasets discussed here.  

 
III.A Dataset construction 

 
Model evaluation requires a ligand dataset, however the char-

acteristics of the available data for any given target will be quite 
variable. To account for this type of variability our data comes 
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from three different publications and consists of a high-quality 
large dataset (SSTR4), a smaller but still high-quality dataset 
(SSTR2) and a large, but lower-quality dataset (SSTR5). For 
SSTR4, we select a 2016 patent application concerning agonists 
targeting SSTR425. The publication consists of 79 small-mole-
cule ligands with EC50 data spanning an activity range of 0.6 
nM to 2 µM. Figure 2a shows the Markush structure of this se-
ries. Of the 79 ligands, we pick the largest subseries that con-
tains 64 compounds with the Y-W groups representing either 5-
6 or 6-6 fused rings. We exclude ligands with unknown stereo-
chemistry.  

 

 

Figure 2. Template ligand and target ligand for SSTR4 modeling. 

A) Markush structure from Mazzaferro et. al., the patent publica-

tion containing the SSTR4 ligand dataset. B) The most potent lig-

and from the SSTR4 6-6 subseries. This ligand is the initial target 

ligand for IFD-MD. C) Naltrindole, the template ligand taken from 

PDB ID 4N6H, a ∂-opioid structure. 

 
This dataset is well suited for model evaluation because of its 

large size (> 30 ligands) and large activity range (around 4 
kcal/mol). Datasets with these characteristics do not perform 
well under the use of null models, such as random assignment 
of predicted ∆G around the mean15,26, offering a stark contrast 
compared to a successfully predictive model.  

For SSTR2, we explore the ability of our methodology to 
achieve model validation with a far more limited data set. Here, 
we select a publication describing small molecule agonists27. 
The paper contains 18 ligands with Ki data spanning 1.8 nM to 
2.8 µM. While the activity range is excellent, the limited num-
ber of ligands results in two competing predicted models which, 
without additional compounds, could not be distinguished fur-
ther. This is discussed further below. 

Finally, for SSTR5, we explore the use of categorical, rather 
than quantitative, data. Here, we select a 2019 patent applica-
tion describing a large set of 346 congeneric ligands which are 
agonists to SSTR5. While the quantity of data is large, the qual-
ity is limited as the degree of agonism is expressed by assigning 
each ligand to one of four categories: a) EC50 < 10 nM, b) EC50 
from 10 to 100 nM, c) EC50 from 100 to 1000 nM, and d) EC50 
> 1000 nM. Furthermore, the ligands are not evenly distributed 
among the four categories; 80% of the ligands are in the open-
ended category a. Validation of models with this dataset re-
quires careful selection of model discriminating edges, for ex-
ample, the smallest perturbation between pairs of ligands which 
span categories. We elaborate on this further below. 

 
III.B Modeling SSTR4 
 

The most robust dataset (combining quantity of ligands and 
quality of experimental binding affinity measurements) is that 

for SSTR4. The overall procedure is to dock one or more lig-
ands from the congeneric series into one or more AlphaFold 
models of that target and to then perform retrospective free en-
ergy perturbation calculations. Based on numerous past publi-
cations starting from both high resolution crystal structures and 
retrospective template-based homology models with between 
30-50% sequence identity, the correct induced fit model of the 
ligand series should, with a sufficiently large ligand series, 
demonstrate a clear signal with low RMSE and high R2, and an 
incorrect model should lack these qualities4,15,28–31.  

We begin by noting that no single AlphaFold model, nor for 
that matter a single model of any provenance, will be suitable 
for binding all known potent chemical matter for that target; in-
duced fit effects are always a possibility. Our previously pub-
lished algorithm, IFD-MD, has been shown to achieve over 
90% accuracy in producing a 2.5 Å ligand RMSD pose within 
the top two ranked predictions6. The induced-fit effects in this 
prior publication all required at least one alteration of the recep-
tor side chain rotamer states. In the most challenging cases, the 
necessary induced-fit motion also includes some backbone mo-
tion; the current IFD-MD algorithm can often handle this as 
long as the motions required are not too large. Between the dy-
namical and non-dynamical sampling within IFD-MD and with 
the enhanced sampling performed during the FEP calculations, 
there exists some wide but quantitatively unknown radius of 
convergence between the starting IFD-MD model and the final, 
FEP performant model.  

In the present work, we seek to further broaden our radius of 
convergence with regard to backbone variation by initiating 
docking, not from a single model, but from the top five struc-
tural models produced by AlphaFold. For each of these five in-
itial AlphaFold models, we perform an IFD-MD calculation, se-
lecting the 5 best scoring IFD-MD models with the ligand 
bound into the orthosteric GPCR binding site. This leads to a 
total of 25 models for which we perform FEP testing. 

IFD-MD requires a template-ligand as part of its input. This 
is a ligand, placed in the initial receptor model, that serves two 
purposes – it defines the binding site, and it provides a pharma-
cophore model which is used to aid the earliest part of the dock-
ing. In a typical cross-docking experiment, the template ligand 
is some other ligand bound to the same target; here we lack any 
experimental structure of SSTR4. Following the same approach 
that we took for evaluating template-based homology models15, 
we graft the ligand from the closest experimentally solved hom-
ologue into the model binding site. For SSTR4, we graft the lig-
and from PDB ID 4N6H, Naltrindole, bound to the ∂ opioid re-
ceptor, into the AlphaFold SSTR4 models after performing a 
structure alignment. This ligand is shown in Figure 2C. 

Schrödinger’s free-energy perturbation package, FEP+, is 
then used to predict the protein-ligand binding affinities across 
a ligand congeneric series26,32. Default FEP settings are used 
with the exception that 25 ns of simulation time are performed 
instead of 5 ns. The default protocol consists of 12 lambda win-
dows and 24 lambda windows for charge perturbations. Replica 
exchanges between neighboring windows are attempted every 
1.2 ps. The default map generation protocol is used which is a 
variant of the LOMAP mapping algorithm33. Each edge is 
nested within at least one closed cycle and there is at least one 
path containing fewer than five edges between any pair of com-
pounds. 

A significant body of evidence, predating the availability of 
any SSTR structure, has indicated that LYS-9 in somatostatin is 
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crucial for activity34 (recently structures of somatostatin bound 
to SSTR2 have confirmed this35). Furthermore, in the SSTR lig-
and datasets that are used here, a primary or secondary amine is 
always kept constant within each series27,36,37. We operate under 
the assumption that mimicking LYS-9 in somatostatin, the bio-
logically active state within the ligand dataset here has the pri-
mary or secondary amine positively charged. We therefore per-
form our simulations with the ligands positively charged and 
assume the neutral bound form does not significantly contribute 
to the pKa-corrected ∆G. This allows us to avoid a 2X increase 
in compute cost by avoiding FEP simulation of the neutral form 
of each ligand. 

Given the requirement that the secondary amine within the 
oxazepine (the 7 membered aliphatic ring) must be protonated 
in order to bind to the receptor, the pKa of this group across the 
congeneric series becomes a quantity that can significantly im-
pact the binding affinity.  Calculated pKa values, computed us-
ing Schrödinger’s Jaguar Macro-pKa38 Workflow in the 2023-
2 release39, indicate significant variation in the pKa as a func-
tion of the position of a nitrogen atom in the fused phenyl ring 
(the G positions in Figure 2A). As the pKa varies, a ∆G correc-
tion is necessary to account for the free-energy cost of protonat-
ing the ligand when the oxazepine nitrogen is preferentially in 
the neutral state40 when isolated in solution. Table S2 lists the 
predicted pKa for the tertiary amine, and the corresponding free 
energy correction added to the FEP results, as a function of the 
position of a nitrogen in the fused phenyl ring. 

As we are evaluating five AlphaFold models of SSTR4 and 
each IFD-MD job can produce up to 5 predicted ligand-receptor 
complexes, we have a total of 25 models to evaluate in FEP. It 
is unnecessary to perform FEP on the entire congeneric series 
immediately – a hierarchical approach is more practical because 
the performance of a subset of ligands should be enough to 
quickly discard several models. It is an active area of further 
research to find out what the smallest subset would be for effi-
cient model discrimination. In this work, we first evaluate the 
performance of the models using the complete but smaller sin-
gle subset of 18 ligands referred to as the 6-6 sub-series. This 
sub-series is defined by the Y-W positions shown in Figure 2a 
being a fused 6-6 ring. We select as the target ligand, which is 
the one ligand which is explicitly docked using IFD-MD, to be 
the most potent ligand from this sub-series. This is ligand 27 
from the patent25, shown in Figure 2B and has a reported EC50 
of 0.6 nM. As can be seen, this ligand is not congeneric to the 
template ligand from the ∂ opioid receptor Figure 2C. 

Table 1 shows the performance for these 25 IFD-MD models 
in FEP and includes the pKa corrections described above. Out 
of the 25 models, only three models lead to an RMSE of near 1 
kcal/mol. These models are (AF5, IFD1), (AF4, IFD2) (AF5, 
IFD4). The nomenclature where use here is that (AF5, IFD1) 
refers to the top-ranked IFD-MD model obtained from docking 
into the 5th ranked AlphaFold model. We must now test the per-
formance of these models by including the remaining 46 ligands 
from the 5-6 fused ring sub-series. 

 
Table 1. FEP performance of the IFD-MD outputs run on 
AlphaFold models of SSTR4 using the 18 ligands from the 
6-6 fused ring sub-seriesa 

 FEP Performance 
R2 / RMSEpairwise  (kcal/mol) 

IFD-MD Rank 
AF Rank 

1 2 3 4 5 
1 0.01 / 

1.79 

0.26 / 

1.31 

0.07 / 

1.93 

0.01 / 

1.90 

0.57 / 
0.97 

2 0.32 / 

1.64 

0.02 / 

2.16 

0.21 / 

1.70 

0.24 / 
1.19 

0.03 / 

2.29 

3 0.24 / 

1.96 

0.06 / 

1.85 

0.17 / 

1.68 

0.01 / 

1.55 

0.00 / 

2.14 

4 0.24 / 

1.47 

0.22 / 

1.42 

0.11 / 

1.93 

0.00 / 

1.86 

0.55 / 
0.91 

5 0.02 / 

1.66 

0.34 / 

1.29 

0.32 / 

1.40 

0.18 / 

1.24 

0.01 / 

1.78 

a. R2 is the coefficient of determination between experimental 

∆G and predicted ∆G. RMSEpairwise is the root-mean-square error 

compared to experiment of the FEP values with respect to the rela-

tive free energy change for all ligand pairs. 

 
We align the 46 ligands from the 5-6 subseries onto these top 

three models. Table 2 lists the performance of the models with 
46 of these ligands included for a total of 64 ligands. 

 
Table 2. FEP Performance for the complete 5-6 and 6-6 sub-
series on the top models determined from 6-6 subseries. 

Model 
FEP Performance  

R2 RMSEpairwise  
(kcal/mol) 

AF5, IFD1 0.54 1.00 

AF4, IFD2 0.44 1.14 

AF5, IFD4 0.57 0.96 

 
With the complete set, only two models appear competitive 

(AF5, IFD1 and AF5, IFD4). For additional validation, we per-
form absolute-binding FEP (AB-FEP) calculations for each 
model. AB-FEP is independent of the size of the congeneric se-
ries and can serve as a complementary calculation for model 
validation15,41. 

 
Table 3. Comparison of AB-FEP predicted ∆G versus ex-
periment for most potent 5-6 ligand, example 33 

Model AB-FEP Predicted ∆G 
(kcal/mol) 

AF5, IFD1 -13.24 
AF5, IFD4 -6.05 
Experimental ∆G -12.48 
 
Table 3 lists the results of the AB-FEP calculation on the 

most potent 5-6 ligand. An overprediction of the binding free 
energy is preferred as AB-FEP does not take into account the 
non-negative reorganization free energy from the receptor’s apo 
to holo state41. Therefore, the result for the AF5, IFD1 model is 
reasonable while the AF5, IFD4 model appears unlikely to be 
correct as it is underpredicting the experimental binding affinity 
by more than 6 kcal/mol. We conclude that AF5, IFD1 is our 
best and final model. 
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Figure 3. Plot of predicted ∆G versus experimental ∆G for the final 

SSTR4 model. This model contains all 64 ligands combining both 

the 5-6 fused ring sub-series and the 6-6 fused-ring subseries. The 

R2 is 0.54 and the RMSEpairwise is 1.00 (kcal/mol). 

 

 

Figure 4. Final predicted binding mode for the most potent ligand 

in the patent application, ligand 27. Shown in dotted lines are the 

hydrogen bonds involving the ligand. The ligand forms a salt bridge 

to D126. Hydrogen bonds are formed to S300 and Q279. A second 

water-mediated hydrogen bond is formed to D126. 

 
Our final model predicts a salt-bridge between the conserved 

positive amine in the ligand and ASP126. The ligand amide NH 
also forms a water mediated interaction to ASP126. Additional 

hydrogen bonds are formed to S300 and Q279. These interac-
tions are shown in Figure 4 and the plot correlating experi-
mental ∆G with FEP predicted ∆G is shown in Figure 3. 

 
III.C Analysis of the predicted SSTR4 holo-protein 

 
With the completion of a single model that satisfactorily re-

capitulates experimental activity data for 64 ligands, we now 
turn to a physical analysis of this model. First, we seek to ad-
dress what induced fit motion was necessary for this binding 
mode compared to the original AlphaFold models. Secondly, 
since the completion of this predicted model, an experimental 
structure of SSTR4 bound to a small molecule agonist has been 
published, PDB ID 7XMT. The small molecule in this structure 
is unrelated to the one in the patent dataset that we use and so it 
remains the case that no public experimental structure exists of 
SSTR4 bound to the agonist series discussed in this work.  

 

 

Figure 5. Comparison of the final predicted SSTR4 liganded struc-

ture (cyan) and the original AlphaFold model 4 (pink). The most 

significant induced fit effect is the motion of LEU297. 

Figure 5 shows a comparison between the final predicted 
SSTR4 liganded structure and the original AlphaFold model 
from which it originated: the 5th ranked AlphaFold model 
(AF5). For this model, the original position of L297 clashes 
with the predicted position of the ligand’s secondary amine. The 
motion of L297 is the predicted induced fit effect necessary to 
achieve the final model. Attempts to use rigid-receptor docking 
(GlideSP42) into the 5th ranked AlphaFold model show that no 
model is obtained which can form the salt bridge with Asp126 
when Leu297 is unmoved (Figure S1). 

While we understand precisely the induced fit motion neces-
sary if starting from AF5, it is less clear precisely what motion 
is necessary for the other AlphaFold models 1-4. In Table 2 we 
listed the FEP performance for the full 64 ligands on the top 
three IFD-MD models. The least competitive model of the 
three, (AF4, IFD2) is actually quite similar to our best model 
with a 1.2 Å RMSD and yet the FEP performance is inferior 
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with R2 degrading from 0.54 to 0.30. Figure 6 shows these mod-
els in the binding site. This model starts from the 4th ranked Al-
phaFold model which contains a small helix 7 tilt that drags 
TYR301 slightly into the binding pocket. The ligand makes a 
compensatory translation but in doing so is unable to form the 
hydrogen bond to SER300. We hypothesize that details of this 
magnitude affect the FEP performance and that other similar 
helix motions, beyond the scope of IFD-MD’s sampling, render 
AlphaFold models 1-4 presently unsalvageable. 

 

 

Figure 6. Comparison of two of the top IFD-MD AlphaFold mod-

els. In cyan is our top model (AF5, IFD1), in pink is our third best 

model (AF4, IFD2). A small helix tilt around TYR301 forces the 

ligand to translate slightly further out of the pocket. This removes 

the ability for the ligand NH2 to form a hydrogen bond to SER300. 

 
Finally, we discuss the use of PDB ID 7XMT as an input 

structure for IFD-MD. This SSTR4 experimental contains the 
non-peptidic agonist J-215612 which is non-congeneric to any 
of the ligands in the patent dataset used here. This structure was 
published after we used AlphaFold to produce our models and 
offers an opportunity to compare performance starting with an 
experimental SSTR4 structure bound to a small molecule. Us-
ing this structure as an input to IFD-MD we produce five struc-
tures and perform FEP using the smaller 18 ligand 6-6 fused 
ring subseries. 

 
Table 4. FEP Performance for the 6-6 fused ring sub-series 
using IFD-MD starting from PDB ID 7XMT 

IFD-MD Model from 7XMT FEP Performance for 6-6 
sub-series 
R2 / RMSEpairwise  (kcal/mol) 

IFD1 0.58 / 0.89 

IFD2 0.00 / 1.93 

IFD3 0.04 / 2.28 

IFD4 0.01 / 2.02 

IFD5 0.06 / 2.32 

 
Table 4 shows the FEP performance on the 18-ligand 6-6 fused 
ring subseries on all five IFD-MD outputs starting from 7XMT. 
The top-ranked pose, IFD1, is the only one showing any signal, 
with an RMSE of 0.89. The binding mode of this model is very 
similar to our final AlphaFold/IFD-MD model with a ligand 
RMSD of 1.12 Å and is shown in Figure 7. We take this reca-
pitulation of our best AlphaFold model in this experimentally 
derived structure as supportive of our proposed model being 
correct.  

 

Figure 7. Comparison of the predicted binding mode of our final 

AlphaFold-IFD-MD structure (cyan) and 7XMT-IFD-MD struc-

ture (green). The two binding modes have a ligand RMSD of 1.12 

Å between them.  

  
III.D Modeling SSTR2  

 
Modeling SSTR2 presents the challenge of FEP validated 

structure prediction with a limited congeneric series data set. 
The dataset here comes from Contour-Galcéra et. al 2005, de-
scribing 18 congeneric ligands with Ki reported ranging from 
1.8 nM to 2.8 µM27. 

As in our modeling for SSTR4, we generated five AlphaFold 
SSTR2 models on March 3rd, 2022, preceding the release of any 
public SSTR structures. We graft the ligand from PDB ID 
5C1M, a µ-opioid receptor structure, into each of the AlphaFold 
models and dock the most potent ligand, labelled 5o in the re-
porting publication, into each of the five AlphaFold models. Ta-
ble S3 reports the FEP performance of the IFD-MD models pro-
duced using the five AlphaFold models. We quickly arrive at a 
single model with superior performance, AlphaFold Rank 2, 
IFD-MD Rank 4. This model produces an R2 of 0.78 and an 
RMSE of 0.95 kcal/mol. 

 Since the generation of this model, multiple SSTR2 experi-
mental structures have been deposited in the PDB. We select 
four of them to use as input to IFD-MD followed by FEP. None 
of the experimental structures used here, nor since released in 
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the PDB contain a small molecule congeneric to the dataset 
used herein. Table S4 shows the performance across these four 
experimental structures. A single model stands out with supe-
rior performance. This model is the 5th ranked output of IFD-
MD starting from PDB ID 7T11. The R2 is 0.70 and the RMSE 
is 1.31 kcal/mol. 

Figure S2 shows the FEP correlation plots for our best Al-
phaFold derived model and the derived model from 7T11. This 
model derived from 7T11 is slightly inferior in terms of relative 
FEP statistics but given the small size of the dataset (18 ligands) 
we proceed anyway with AB-FEP calculations using ligand 5o. 
The AB-FEP calculations produce a contradictory result with 
the AlphaFold derived model yielding an AB-FEP ∆G of -19.8 
kcal/mol versus -21.94 kcal/mol using the structure derived 
from 7T11. For comparison the experimental ∆G is -11.93 

kcal/mol indicating that both AB-FEP predicted ∆G’s are plau-
sible accounting for the non-negative, but unknown, protein re-
organization free energy cost to obtain the holo receptor con-
formation. The AB-FEP ∆∆G between the two models is 2.14 
kcal/mol, however, ligands forming strong salt-bridge interac-
tions with the receptor are known to have challenging conver-
gence for absolute binding FEP41 of which our SSTR2 binding 
modes certainly fall under. We would prefer to see relative and 
absolute binding FEP agree before declaring a final model. 

Surprisingly, this model derived from 7T11 and the model 
derived from AlphaFold are significantly different. Figure 8 
shows this comparison. Among other differences, the 7T11 
model has a hydrogen bond between the core triazole and T194 
in the ECL2 loop. The AlphaFold derived model lacks this in-
teraction. 

 

Figure 8. Comparison of the final models of SSTR2 bound to ligand 5o in Contour-Galcéra et. al 2005. A) The final model generated starting 

from PDB 7T11, a cryo-EM structure of SSTR2 B) The final model generated starting an AlphaFold Model. 

 

 
Without the benefit of additional assayed congeneric ligands, 

or perhaps the need for additional modeling, we cannot conclu-
sively select which model is correct. We note however that in 
an active project this is not a fatal limitation; additional com-
pounds can be rationally designed to challenge both models and 
potentially arrive at a final, single model. 
 
III.E Modeling SSTR5  

 
For SSTR5, we cope with the challenge of FEP validation 

structure prediction using a categorical dataset. Such a dataset 
does not provide absolute affinity or functional activity meas-
urements, for example, a Ki of 100 nM, rather each ligand 
within a given congeneric series is reported as belonging to a 
category and that category is defined as encompassing a range 
of EC50 values. For the patent37 that we use here, there are four 

categories for EC50 activity:  a: <10 nM, b: 10-100 nM, c: 100-
1000 nM, d: >1000 nM. 

Crucially, there is no single ligand with a quantitative EC50 to 
serve as a reference in relative FEP to convert the predicted 
∆∆G values into a ∆G. Therefore, other than arbitrarily assign-
ing a reference EC50 that lies within a single category, we are 
restricted to using only ∆∆G values to evaluate our models’ per-
formance. To use ∆∆G values, FEP calculations between two 
ligands in an open-ended category are useless. For example, in 
category d, an open-ended category for ligands with an EC50 > 
1000 nM, if one uses FEP to predict the ∆∆G of two ligands in 
this category, any predicted ∆∆G value would appear satisfac-
tory. In one model, a ∆∆G of +1.37 kcal/mol between two cat-
egory d ligands could be interpreted that one ligand is 2 µM, 
and another ligand is 20 µM. Note that 1.37 kcal/mol is the free 
energy needed to achieve a log-order change in binding affinity 
at 300K. Yet, in another model, that same pair of ligands could 
be predicted to have a ∆∆G of +2.74 kcal/mol, implying one 
ligand is 2 µM and another ligand is 200 µM. Both models sat-
isfy the definition of category d and therefore a predicted ∆∆G 
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between these pairs of ligands cannot be used to discriminate 
between competing models. 

The only pairs of ligands which can productively be used for 
model discrimination are those which differ by more than one 
category. Comparing a ligand in category a (< 10 nM) with a 
ligand in category c (100 – 1000 nM), the smallest correctly 
predicted ∆∆G, a lower bound, must be +1.37 kcal/mol in per-
turbing from the a ligand to the c ligand. This could correspond 
to the ligand in category a having an EC50 of 10 nM and the 
ligand in category c an EC50 of 100 nM. A ∆∆G more negative 
than +1.37 kcal/mol would be incorrect and any ∆∆G more pos-
itive than +1.37 would satisfy the categorical definitions. Spe-
cifically, a predicted ∆∆G of + 2 kcal/mol could be considered 
to have an error of 0 kcal/mol, while a predicted ∆∆G of +1 
kcal/mol could be in error by at least 0.36 kcal/mol. We call this 
type of calculation the “lower-bound” error and summarize the 
performance of all predicted ∆∆G’s for a model with a lower-
bound RMSE (RMSElower-bound). This becomes the metric by 
which we evaluate models using this categorical dataset. 

The dataset for this patent application, in addition to being 
categorical, is not optimally balanced among the categories. Af-
ter removing ligands with multiple possible chiral states, tauto-
mers and protonation states we are left with 164 ligands out of 
the total of 364 reported in the patent application. Of these 164, 
the breakdown by category is: a) 139, b) 11, c) 7, d) 7. Thus 
over 84% of the ligands are in the open-ended most potent cat-
egory a. Not every ligand pair spanning non-adjacent categories 
is trivial to run; large, complex perturbations can still create 
challenges with convergence, possibly requiring substantially 
longer simulation times and replicas. We therefore decide to 
consider all ligand pairs that occupy non-adjacent categories but 
which have a Tanimoto similarity of at least 0.7 when calculated 
using the Pairwise43 fingerprint. This leaves us with 21 pairs of 
ligands for which to compute the FEP ∆∆G amongst our SSTR5 
models. 

Model generation proceeds similarly to what we described 
above for the SSTR2 and SSTR4 receptors. We generated five 
AlphaFold models of SSTR5 on March 3rd, 2022, preceding the 
release of any public SSTR experimental structures. For a tem-
plate ligand, we align the ligand from PDB 6DDF, a µ-opioid 
structure, onto the AlphaFold models. For SSTR2 and SSTR4, 
we select the most potent ligand to dock in using IFD-MD but 
here, there are over 139 equally potent ligands all falling under 
the same category. Therefore, we chose to dock in 5 ligands us-
ing IFD-MD (ligands 1-77, 1-78, 1-141, 1-192, 1-202) in each 
of the 5 AlphaFold models. 

Based on our expectation from comparisons with the SSTR2 
and SSTR4 datasets reported above, a salt bridge will be neces-
sary and indeed all ligands in this dataset offer a positive amine. 
Using the formation of a ligand-receptor salt-bridge as a filter, 
we arrive at 83 possible models, far larger than the 25 models 
we generate for SSTR2 and SSTR4 but evaluation here is 
cheaper since we are only computing single edge ∆∆Gs for 21 
ligand pairs. Applying our RMSElower-bound metric, we rank the 
83 models and select the top 10 models for running additional 
ligand pairs where the Tanimoto similarity cutoff is lowered 
from 0.7 to 0.65. This increases the number of ligand pairs from 
21 to 54. The top model across these 54 ligand pairs has an 
RMSElower-bound of 1.16 kcal/mol. Since we only compute ∆∆G’s 
and lack a reference to convert to ∆G’s, we cannot report an R2; 
the RMSElower-bound remains the only metric for model perfor-
mance. 

 

 

Figure 9. Final model of SSTR5 bound to ligand 1-77. A) 2D rep-

resentation of ligand 1-77. B) The 1-77 ligand bound in SSTR5. 

The model shows features similar to the SSTR4 model with a salt 

bridge and water mediated interactions from a ligand amide to 

D119. 

 
Table 5. Results for the top 10 SSTR5 models ranked by 
RMSElower_bound

a 

Model Target 
Ligand 

Al-
phaFold 
Model 

IFD-
MD 
Model 

RMSElowe
r-bound 
(kcal/mol
) 

RMSD 
to 
Model 
1 (Å) 

1 1-77 1 1 1.16 0.00 

2 1-192 2 2 1.30 1.99 

3 1-202 3 1 1.32 1.34 

4 1-78 3 3 1.35 1.76 

5 1-141 1 3 1.36 1.24 

6 1-141 1 4 1.37 1.76 

7 1-77 1 5 1.38 1.33 

8 1-78 4 1 1.39 1.07 

9 1-77 1 2 1.44 1.07 

10 1-141 1 1 1.55 1.00 

a. RMSElower-bound is computed over 54 ligand pairs. RMSD to 

model 1 is over all ligand-heavy atoms but excludes the cyclopro-
pylethyl group whose position varies significantly between the 

models. The target ligand is the ligand which was explicitly docked 

in using IFD-MD into the respective AlphaFold model. Other lig-

ands in the congeneric series are aligned to the IFD-MD output of 

docking that ligand. 

 
Figure 9 shows the final SSTR5 model. It has features similar 

to our final SSTR4 model with a salt bridge and water mediated 
interaction to D119. We observe that the top 10 models all have 
very similar ligand binding modes with the most significant var-
iation lying in the placement of the cyclopropylethyl group and 
the hydrophobic receptor residues it pairs with (Table 5). This 
reproducibly observed binding mode is seen when alternative 
ligands are docked into the AlphaFold models using IFD-MD 
and with alternative AlphaFold models. We consider this sup-
portive of the hypothesis that this proposed binding mode is ly-
ing within a well-defined low-energy basin. 

To date, no experimental structure of SSTR5 has been depos-
ited in the PDB which leaves us without further opportunities 
for model validation. We look forward to future experimental 
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conformational or refutation of this model but presently this ex-
ample serves as an opportunity to quantitatively explore the 
challenges of FEP-based model validated using a categorical 
dataset. 

 

IV Discussion 
 

The above modeling efforts provide an initial picture as to 
how an initial ensemble of candidate receptor structures (ob-
tained from AlphaFold enumeration and/or experimental struc-
ture determination) can be combined with experimental binding 
affinity data for a congeneric series to produce a structural 
model that has been validated via FEP  calculations suitable for 
advancing a structure-based drug discovery project.  Note that 
different induced fit structures may well be required for differ-
ent congeneric series. GPCRs have significant plasticity associ-
ated with both alternative side chain rotamer states, and small 
motions of one or more of the 7 transmembrane helices. Ideally, 
a project would have available multiple validated structures that 
could be used for both lead generation (via for example virtual 
screening) and lead optimization.  

The results also reveal some limitations that can arise from 
the nature of the available experimental data. For SSTR2, the 
small number of ligands in the series preclude unambiguous 
identification of the correct binding mode; however, as pointed 
out above, this limitation could readily be overcome by synthe-
sizing and testing additional compounds, designed to differen-
tiate between the two models. We have used such strategies ef-
fectively in previous internal projects when investigating other 
types of receptors. 

The SSTR5 study investigates the effect of a different type of 
limitation, namely the availability of only categorical ligand 
classification rather than accurate binding affinity measure-
ments. For the case studied here, the data was (apparently) suf-
ficient to overcome the ambiguities associated with this sort of 
experimental noise. The similarity in binding mode of the top 
10 structures, suggests that perhaps there were fewer reasonable 
alternatives available than in for example the SSTR2 case study.  

A final observation emphasizes that it is essential to rigor-
ously assess the correct protonation and tautomer states for the 
ligand series if reliable conclusions are to be drawn from an 
IFD-MD/FEP approach.  For the SSTR4 dataset, the pKa of the 
oxazepine nitrogen is not straightforward to compute reliably 
via the Jaguar Macro pKa algorithm. As part of the pKa predic-
tion, the lowest energy conformer in solution (implicit solvent) 
and gas phase must be found. Hence the predictions are a func-
tion of the number of conformers evaluated in Jaguar and po-
tential artifacts, such as over predicting the formation of an in-
ternal charged hydrogen bonds in implicit solvent44. Truncating 
the ligand far from the oxazepine can improve the accuracy of 
the prediction by focusing sampling on groups that can influ-
ence the pKa. In Table 6 below, we show results obtained from 
various pKa calculation approaches for a single ligand. We ul-
timately select the most aggressive truncation (isoquinoline 
gem-dimethyl truncated to methyl for the ligand in Figure 2B). 
This truncated form, used with the nitrogen walk on the fused 
phenyl ring, is generalizable across the SSTR4 ligand series. 

 
Table 6. Comparison of pKa predictions as a function of the 
amount of conformational sampling or degree of truncation 
of the molecule. 

Macro-pKa Input Predicted pKa 
Complete Ligand (5 conformers) 4.42 

Complete Ligand (20 conformers) 5.60 

Complete Ligand (50 conformers) 5.63 

Truncated  

(Isoquinoline gem-dimethyl to t-butyl) 

5.94 

Truncated  

(Isoquinoline gem-dimethyl to methyl) 

6.17 

Complete Ligand 

(isoquinoline mutated to naphthalene) 

5.78 

 
While we believe that the Jaguar Macro pKa results are suf-

ficiently accurate, experimental validation of this assertion 
would be important if one were working on an actual structure-
based project. The effects of simply ignoring the pKa correction 
(or, equivalently, concluding that the nitrogen is protonated in 
solution for all members of the series), is shown in the table of 
FEP results in Table S5. A completely different binding mode, 
(AF2, IFD1) shown in Figure S3, would be selected in this case, 
rather than the top model after pKa correction (AF5, IFD1) 
(Figure 4). This binding mode has an RMSD of 6.5 Å to our 
final model. 
 
V Conclusion 
 

We have demonstrated that the IFD-MD methodology of ref. 
6 performs accurately and robustly for retrospective GPCR in-
duced fit ligand docking, and then applied this approach, in con-
junction with FEP, to three GPCR drug targets of interest for 
which experimental structures binding the ligand series studied 
here do not currently exist.  Our results constitute prospective 
prediction of the binding modes of the series in each case, which 
await validation (or refutation) via experimental structure deter-
mination.  

While enormous strides have been made in utilizing FEP to 
drive structure-based drug design projects26,45, the domain of 
applicability has previously been limited to receptors for which 
high resolution crystal or cryo-EM structures can be readily ob-
tained. Note that a single structural starting point is often not 
adequate; a typical application involves obtaining multiple ex-
perimental structures to check whether there has been any 
change in the binding mode as lead optimization proceeds.  

When structure determination is difficult or impossible, the 
traditional approach to drug discovery has been a ligand-based 
methodology, in which QSAR modeling of ligand series (now-
adays using modern machine learning methods) provides guid-
ance for population of the synthesis queue.  With the advent of 
rapidly improving experimental structure determination meth-
ods, and the availability of AlphaFold structures for, in princi-
ple, every protein target in the human genome, the question is 
raised as to whether some sort of structure-based approach 
should be followed for all targets, on the theory that the struc-
tural information available can be profitably used, even if it is 
limited in quantity and incomplete.  

The approach we describe above represents a synthesis of lig-
and-based and structure-based information (with the former be-
ing incorporated into the model via the IFD-MD and FEP+ cal-
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culations) which we believe has great promise in upgrading dis-
covery efforts for targets that formerly have been pursued using 
a purely ligand-based approach. While the robustness of bind-
ing affinity predictions may not be quite as good as in the ideal 
situation of readily available high resolution experimental 
structures of arbitrary protein-ligand complexes, the relevant 
question is whether it represents an improvement on a purely 
ligand-based prediction. The results shown above certainly sug-
gest that this is indeed the case.  

 

ASSOCIATED CONTENT  
Supporting Information 
Detailed results for the retrospective GPCR crossdocks using IFD-

MD or GlideSP, pKa values and the associated ∆G corrections at 

pH 7.4 used for the SSTR4 ligand dataset, FEP results on Al-

phaFold or experimentally derived SSTR2 models, SSTR4 FEP re-

sults when no pKa correction is applied, comparison of the best 

performing SSTR4 models with and without applying pKa correc-

tions (PDF) 

 

Coordinates of the final SSTR4 model (PDB) 

Coordinates of the final SSTR5 model (PDB) 

Coordinates of the final SSTR2 model (PDB) 

 

AUTHOR INFORMATION 
Corresponding Author 
* Edward B. Miller – Email: Ed.Miller@schrodinger.com 

Author Contributions 
The manuscript was written through contributions of all authors. / 

All authors have given approval to the final version of the manu-

script. 

 

Notes 
The authors declare the following competing financial interest(s): 

R.A.F. has a significant financial stake in Schrödinger, Inc., is a 

consultant to Schrödinger, Inc., and is on the Scientific Advisory 

Board of Schrödinger, Inc.	
ABBREVIATIONS 
SSTR4, Somatostatin Receptor Type 4; IFD-MD, Induced-Fit 

Docking Molecular Dynamics; AF5, IFD1, The top ranked IFD-

MD where docking is performed using the 5th ranked AlphaFold 

prediction;  

REFERENCES 
 

(1) Sriram, K.; Insel, P. A. G Protein-Coupled Receptors as Targets for 
Approved Drugs: How Many Targets and How Many Drugs? Mol. 
Pharmacol. 2018, 93 (4), 251–258. 
https://doi.org/10.1124/mol.117.111062. 

(2) Isberg, V.; Vroling, B.; van der Kant, R.; Li, K.; Vriend, G.; Glo-
riam, D. GPCRDB: An Information System for G Protein-Coupled 
Receptors. Nucleic Acids Res. 2014, 42 (D1), D422–D425. 
https://doi.org/10.1093/nar/gkt1255. 

(3) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; 
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; 
Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, 
A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, 
J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; 
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; 
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; 

Hassabis, D. Highly Accurate Protein Structure Prediction with Al-
phaFold. Nature 2021, 596 (7873), 583–589. 
https://doi.org/10.1038/s41586-021-03819-2. 

(4) Beuming, T.; Martín, H.; Díaz-Rovira, A. M.; Díaz, L.; Guallar, V.; 
Ray, S. S. Are Deep Learning Structural Models Sufficiently Accu-
rate for Free-Energy Calculations? Application of FEP+ to Al-
phaFold2-Predicted Structures. J. Chem. Inf. Model. 2022, 62 (18), 
4351–4360. https://doi.org/10.1021/acs.jcim.2c00796. 

(5) Lenselink, E. B.; Louvel, J.; Forti, A. F.; van Veldhoven, J. P. D.; 
de Vries, H.; Mulder-Krieger, T.; McRobb, F. M.; Negri, A.; Goose, 
J.; Abel, R.; van Vlijmen, H. W. T.; Wang, L.; Harder, E.; Sherman, 
W.; IJzerman, A. P.; Beuming, T. Predicting Binding Affinities for 
GPCR Ligands Using Free-Energy Perturbation. ACS Omega 2016, 
1 (2), 293–304. https://doi.org/10.1021/acsomega.6b00086. 

(6) Miller, E. B.; Murphy, R. B.; Sindhikara, D.; Borrelli, K. W.; Grise-
wood, M. J.; Ranalli, F.; Dixon, S. L.; Jerome, S.; Boyles, N. A.; 
Day, T.; Ghanakota, P.; Mondal, S.; Rafi, S. B.; Troast, D. M.; Abel, 
R.; Friesner, R. A. Reliable and Accurate Solution to the Induced 
Fit Docking Problem for Protein–Ligand Binding. J. Chem. Theory 
Comput. 2021, 17 (4), 2630–2639. 
https://doi.org/10.1021/acs.jctc.1c00136. 

(7) Juliana, C. A.; Chai, J.; Arroyo, P.; Rico-Bautista, E.; Betz, S. F.; 
De León, D. D. A Selective Nonpeptide Somatostatin Receptor 5 
Agonist Effectively Decreases Insulin Secretion in Hyperinsulin-
ism. J. Biol. Chem. 2023, 299 (6), 104816. 
https://doi.org/10.1016/j.jbc.2023.104816. 

(8) Zhao, J.; Wang, S.; Markison, S.; Kim, S. H.; Han, S.; Chen, M.; 
Kusnetzow, A. K.; Rico-Bautista, E.; Johns, M.; Luo, R.; Struthers, 
R. S.; Madan, A.; Zhu, Y.; Betz, S. F. Discovery of Paltusotine 
(CRN00808), a Potent, Selective, and Orally Bioavailable Non-
Peptide SST2 Agonist. ACS Med. Chem. Lett. 2023, 14 (1), 66–74. 
https://doi.org/10.1021/acsmedchemlett.2c00431. 

(9) Bo, Q.; Yang, F.; Li, Y.; Meng, X.; Zhang, H.; Zhou, Y.; Ling, S.; 
Sun, D.; Lv, P.; Liu, L.; Shi, P.; Tian, C. Structural Insights into the 
Activation of Somatostatin Receptor 2 by Cyclic SST Analogues. 
Cell Discov. 2022, 8 (1), 47. https://doi.org/10.1038/s41421-022-
00405-2. 

(10) Zhao, J.; Fu, H.; Yu, J.; Hong, W.; Tian, X.; Qi, J.; Sun, S.; Zhao, 
C.; Wu, C.; Xu, Z.; Cheng, L.; Chai, R.; Yan, W.; Wei, X.; Shao, Z. 
Prospect of Acromegaly Therapy: Molecular Mechanism of Clini-
cal Drugs Octreotide and Paltusotine. Nat. Commun. 2023, 14 (1), 
962. https://doi.org/10.1038/s41467-023-36673-z. 

(11) Chen, S.; Teng, X.; Zheng, S. Molecular Basis for the Selective G 
Protein Signaling of Somatostatin Receptors. Nat. Chem. Biol. 
2023, 19 (2), 133–140. https://doi.org/10.1038/s41589-022-01130-
3. 

(12) Zhao, W.; Han, S.; Qiu, N.; Feng, W.; Lu, M.; Zhang, W.; Wang, 
M.; Zhou, Q.; Chen, S.; Xu, W.; Du, J.; Chu, X.; Yi, C.; Dai, A.; 
Hu, L.; Shen, M. Y.; Sun, Y.; Zhang, Q.; Ma, Y.; Zhong, W.; Yang, 
D.; Wang, M.-W.; Wu, B.; Zhao, Q. Structural Insights into Ligand 
Recognition and Selectivity of Somatostatin Receptors. Cell Res. 
2022, 32 (8), 761–772. https://doi.org/10.1038/s41422-022-00679-
x. 

(13) Shindyalov, I. N.; Bourne, P. E. Protein Structure Alignment by In-
cremental Combinatorial Extension (CE) of the Optimal Path. Pro-
tein Eng. 1998, 11 (9), 739–747. 

(14) Schrödinger Release 2023-1: Protein Preparation Wizard, 2023. 
(15) Xu, T.; Zhu, K.; Beautrait, A.; Vendome, J.; Borrelli, K. W.; Abel, 

R.; Friesner, R. A.; Miller, E. B. Induced-Fit Docking Enables Ac-
curate Free Energy Perturbation Calculations in Homology Models. 
J. Chem. Theory Comput. 2022, 18 (9), 5710–5724. 
https://doi.org/10.1021/acs.jctc.2c00371. 

(16) Murphy, R. B.; Repasky, M. P.; Greenwood, J. R.; Tubert-
Brohman, I.; Jerome, S.; Annabhimoju, R.; Boyles, N. A.; Schmitz, 
C. D.; Abel, R.; Farid, R.; Friesner, R. A. WScore: A Flexible and 
Accurate Treatment of Explicit Water Molecules in Ligand–Recep-
tor Docking. J. Med. Chem. 2016, 59 (9), 4364–4384. 
https://doi.org/10.1021/acs.jmedchem.6b00131. 

(17) Clark, A. J.; Tiwary, P.; Borrelli, K.; Feng, S.; Miller, E. B.; Abel, 
R.; Friesner, R. A.; Berne, B. J. Prediction of Protein–Ligand Bind-
ing Poses via a Combination of Induced Fit Docking and Metady-
namics Simulations. J. Chem. Theory Comput. 2016, 12 (6), 2990–
2998. https://doi.org/10.1021/acs.jctc.6b00201. 

https://doi.org/10.26434/chemrxiv-2023-hsvx6-v2 ORCID: https://orcid.org/0000-0003-1590-5788 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-hsvx6-v2
https://orcid.org/0000-0003-1590-5788
https://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

(18) Lomize, M. A.; Lomize, A. L.; Pogozheva, I. D.; Mosberg, H. I. 
OPM: Orientations of Proteins in Membranes Database. Bioinfor-
matics 2006, 22 (5), 623–625. https://doi.org/10.1093/bioinformat-
ics/btk023. 

(19) Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R. A. The 
VSGB 2.0 Model: A next Generation Energy Model for High Res-
olution Protein Structure Modeling. Proteins Struct. Funct. Bioin-
forma. 2011, 79 (10), 2794–2812. 
https://doi.org/10.1002/prot.23106. 

(20) Schrödinger Release 2020-3: Desmond Molecular Dynamics Sys-
tem, 2020. 

(21) Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; 
Gregerson, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; 
Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E. Proceedings 
of the 2006 ACM/IEEE Conference on Supercomputing, SC’06. In 
Proceedings of the 2006 ACM/IEEE Conference on Supercompu-
ting, SC’06; Association for Computing Machinery: New York, 
NY, USA, 2006. 

(22) Schrödinger Release 2023-1: Desmond Molecular Dynamics Sys-
tem, 2023. 

(23) Ross, G. A.; Russell, E.; Deng, Y.; Lu, C.; Harder, E. D.; Abel, R.; 
Wang, L. Enhancing Water Sampling in Free Energy Calculations 
with Grand Canonical Monte Carlo. J. Chem. Theory Comput. 
2020, 16 (10), 6061–6076. 
https://doi.org/10.1021/acs.jctc.0c00660. 

(24) Tikhonova, I. G.; Gigoux, V.; Fourmy, D. Understanding Peptide 
Binding in Class A G Protein-Coupled Receptors. Mol. Pharmacol. 
2019, 96 (5), 550–561. https://doi.org/10.1124/mol.119.115915. 

(25) Mazzaferro, R.; Ferrara, M.; Giovannini, R. Aryl and Heteroaryl-
Fused Tetrahydro-1,4-Oxazepine Amides as Somatostatin Receptor 
Subtype 4 (SSTR4) Agonists. US10183940B2, 2015. 

(26) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lu-
pyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero, 
D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; 
Damm, W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; 
Murcko, M.; Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, 
W. L.; Berne, B. J.; Friesner, R. A.; Abel, R. Accurate and Reliable 
Prediction of Relative Ligand Binding Potency in Prospective Drug 
Discovery by Way of a Modern Free-Energy Calculation Protocol 
and Force Field. J. Am. Chem. Soc. 2015, 137 (7), 2695–2703. 
https://doi.org/10.1021/ja512751q. 

(27) Contour-Galcéra, M.-O.; Sidhu, A.; Plas, P.; Roubert, P. 3-Thio-
1,2,4-Triazoles, Novel Somatostatin Sst2/Sst5 Agonists. Bioorg. 
Med. Chem. Lett. 2005, 15 (15), 3555–3559. 
https://doi.org/10.1016/j.bmcl.2005.05.061. 

(28) Clark, A. J.; Gindin, T.; Zhang, B.; Wang, L.; Abel, R.; Murret, C. 
S.; Xu, F.; Bao, A.; Lu, N. J.; Zhou, T.; Kwong, P. D.; Shapiro, L.; 
Honig, B.; Friesner, R. A. Free Energy Perturbation Calculation of 
Relative Binding Free Energy between Broadly Neutralizing Anti-
bodies and the Gp120 Glycoprotein of HIV-1. J. Mol. Biol. 2017, 
429 (7), 930–947. https://doi.org/10.1016/j.jmb.2016.11.021. 

(29) Cappel, D.; Hall, M. L.; Lenselink, E. B.; Beuming, T.; Qi, J.; Brad-
ner, J.; Sherman, W. Relative Binding Free Energy Calculations 
Applied to Protein Homology Models. J. Chem. Inf. Model. 2016, 
56 (12), 2388–2400. https://doi.org/10.1021/acs.jcim.6b00362. 

(30) Moraca, F.; Negri, A.; de Oliveira, C.; Abel, R. Application of Free 
Energy Perturbation (FEP+) to Understanding Ligand Selectivity: 
A Case Study to Assess Selectivity Between Pairs of Phos-
phodiesterases (PDE’s). J. Chem. Inf. Model. 2019, 59 (6), 2729–
2740. https://doi.org/10.1021/acs.jcim.9b00106. 

(31) Clark, A. J.; Negron, C.; Hauser, K.; Sun, M.; Wang, L.; Abel, R.; 
Friesner, R. A. Relative Binding Affinity Prediction of Charge-
Changing Sequence Mutations with FEP in Protein–Protein Inter-
faces. J. Mol. Biol. 2019, 431 (7), 1481–1493. 
https://doi.org/10.1016/j.jmb.2019.02.003. 

(32) Schrödinger Release 2021-4: FEP+. Schrodinger, Inc: New York, 
NY 2020. 

(33) Liu, S.; Wu, Y.; Lin, T.; Abel, R.; Redmann, J. P.; Summa, C. M.; 
Jaber, V. R.; Lim, N. M.; Mobley, D. L. Lead Optimization Mapper: 
Automating Free Energy Calculations for Lead Optimization. J. 

Comput. Aided Mol. Des. 2013, 27 (9), 755–770. 
https://doi.org/10.1007/s10822-013-9678-y. 

(34) Vale, W.; Rivier, J.; Ling, N.; Brown, M. Biologic and Immuno-
logic Activities and Applications of Somatostatin Analogs. Soma-
tostat. Symp. 1978, 27 (9, Supplement 1), 1391–1401. 
https://doi.org/10.1016/0026-0495(78)90081-1. 

(35) Zhao, W.; Han, S.; Qiu, N.; Feng, W.; Lu, M.; Zhang, W.; Wang, 
M.; Zhou, Q.; Chen, S.; Xu, W.; Du, J.; Chu, X.; Yi, C.; Dai, A.; 
Hu, L.; Shen, M. Y.; Sun, Y.; Zhang, Q.; Ma, Y.; Zhong, W.; Yang, 
D.; Wang, M.-W.; Wu, B.; Zhao, Q. Structural Insights into Ligand 
Recognition and Selectivity of Somatostatin Receptors. Cell Res. 
2022, 32 (8), 761–772. https://doi.org/10.1038/s41422-022-00679-
x. 

(36) Mazzaferro, R.; Ferrara, M.; Giovannini, R. Aryl and Heteroaryl-
Fused Tetrahydro-1,4-Oxazepine Amides as Somatostatin Receptor 
Subtype 4 (SSTR4) Agonists, 2015. 

(37) Zhao, Jian, Z., Yunfci, Wang, Shimiao, Chen Mi, Pontillo, Joseph. 
Nonpeptide Somatostatin Type 5 Receptor Agonists and Uses 
Thereof. 

(38) Tang, H.; Jensen, K.; Houang, E.; McRobb, F. M.; Bhat, S.; Svens-
son, M.; Bochevarov, A.; Day, T.; Dahlgren, M. K.; Bell, J. A.; 
Frye, L.; Skene, R. J.; Lewis, J. H.; Osborne, J. D.; Tierney, J. P.; 
Gordon, J. A.; Palomero, M. A.; Gallati, C.; Chapman, R. S. L.; 
Jones, D. R.; Hirst, K. L.; Sephton, M.; Chauhan, A.; Sharpe, A.; 
Tardia, P.; Dechaux, E. A.; Taylor, A.; Waddell, R. D.; Valentine, 
A.; Janssens, H. B.; Aziz, O.; Bloomfield, D. E.; Ladha, S.; Fraser, 
I. J.; Ellard, J. M. Discovery of a Novel Class of D-Amino Acid 
Oxidase Inhibitors Using the Schrödinger Computational Platform. 
J. Med. Chem. 2022, 65 (9), 6775–6802. 
https://doi.org/10.1021/acs.jmedchem.2c00118. 

(39) Schrödinger Release 2023-2: Jaguar, 2023. 
(40) de Oliveira, C.; Yu, H. S.; Chen, W.; Abel, R.; Wang, L. Rigorous 

Free Energy Perturbation Approach to Estimating Relative Binding 
Affinities between Ligands with Multiple Protonation and Tauto-
meric States. J. Chem. Theory Comput. 2019, 15 (1), 424–435. 
https://doi.org/10.1021/acs.jctc.8b00826. 

(41) Chen, W.; Cui, D.; Jerome, S. V.; Michino, M.; Lenselink, E. B.; 
Huggins, D. J.; Beautrait, A.; Vendome, J.; Abel, R.; Friesner, R. 
A.; Wang, L. Enhancing Hit Discovery in Virtual Screening 
through Absolute Protein–Ligand Binding Free-Energy Calcula-
tions. J. Chem. Inf. Model. 2023, 63 (10), 3171–3185. 
https://doi.org/10.1021/acs.jcim.3c00013. 

(42) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, 
J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, 
J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide:  A New Ap-
proach for Rapid, Accurate Docking and Scoring. 1. Method and 
Assessment of Docking Accuracy. J. Med. Chem. 2004, 47 (7), 
1739–1749. https://doi.org/10.1021/jm0306430. 

(43) Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as 
Molecular Features in Structure-Activity Studies: Definition and 
Applications. J Chem Inf Comput Sci 1985, 25, 64–73. 

(44) Yu, Z.; Jacobson, M. P.; Josovitz, J.; Rapp, C. S.; Friesner, R. A. 
First-Shell Solvation of Ion Pairs:  Correction of Systematic Errors 
in Implicit Solvent Models. J. Phys. Chem. B 2004, 108 (21), 6643–
6654. https://doi.org/10.1021/jp037821l. 

(45) Schindler, C. E. M.; Baumann, H.; Blum, A.; Böse, D.; Buchstaller, 
H.-P.; Burgdorf, L.; Cappel, D.; Chekler, E.; Czodrowski, P.; 
Dorsch, D.; Eguida, M. K. I.; Follows, B.; Fuchß, T.; Grädler, U.; 
Gunera, J.; Johnson, T.; Jorand Lebrun, C.; Karra, S.; Klein, M.; 
Knehans, T.; Koetzner, L.; Krier, M.; Leiendecker, M.; Leuthner, 
B.; Li, L.; Mochalkin, I.; Musil, D.; Neagu, C.; Rippmann, F.; 
Schiemann, K.; Schulz, R.; Steinbrecher, T.; Tanzer, E.-M.; Unzue 
Lopez, A.; Viacava Follis, A.; Wegener, A.; Kuhn, D. Large-Scale 
Assessment of Binding Free Energy Calculations in Active Drug 
Discovery Projects. J. Chem. Inf. Model. 2020, 60 (11), 5457–5474. 
https://doi.org/10.1021/acs.jcim.0c00900. 

  
 

 
 

https://doi.org/10.26434/chemrxiv-2023-hsvx6-v2 ORCID: https://orcid.org/0000-0003-1590-5788 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-hsvx6-v2
https://orcid.org/0000-0003-1590-5788
https://creativecommons.org/licenses/by-nc-nd/4.0/

