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Highlights 15 

• Improved methods have advanced multi-conformational structural modeling 16 
• Two or more multiple-state conformations often best describe a protein structure 17 
• Single-state representation depicts local model uncertainty on one representative conformer 18 
• Consistent data structures are needed for archiving multiple-state models 19 

 20 
Abstract 21 
Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. 22 
We review some recent advances for investigating multiple conformations of biomolecules, including 23 
experimental methods, molecular dynamics simulations, and machine learning. We also address the 24 
challenges associated with representing single- and multiple-state models in data archives, with a 25 
particular focus on NMR structures. Establishing standardized representations and annotations will 26 
facilitate effective communication and understanding of these complex models to the broader scientific 27 
community.  28 
 29 
Abbreviations:  AF2 – AlphaFold2 Multimer; BMRB - biological magnetic resonance bank; CEST – 30 
chemical exchange by saturation transfer; CPMG – Carr-Purcell-Meiboom-Gill; DEER – double electron-31 
electron resonance; FID - free induction decay NMR data; FRET - Förster resonance energy transfer; 32 
LDDT – local-distance difference test; MD – molecular dynamics;  ML – machine learning;  mmCIF - 33 
macromolecular crystallographic information file; MSA – multiple sequence alignment; NMR - nuclear 34 
magnetic resonance spectroscopy;  PDB - protein data bank; pLDDT - predicted local model confidence 35 
score predicted from ML; PRE - paramagnetic relaxation enhancement; RDC – residual dipolar coupling; 36 
wwPDB – worldwide PDB. 37 
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Introduction 41 
Biomolecules exhibit dynamic behavior and adopt a distribution of conformations influenced by factors 42 
including sequence, temperature, pressure, ligand binding, and solution conditions. Traditionally, 43 
structural biology has predominantly focused on single-conformation models. However, it is broadly 44 
appreciated that most biomolecules must move to function. One of the earliest experimental 45 
demonstrations of protein structure plasticity came from NMR studies of aromatic-ring flips of the small 46 
protein bovine pancreatic trypsin inhibitor, where it was observed that conformational fluctuations allow 47 
rapid rotations of aromatic rings buried in the hydrophobic core [1]. Recent advances in experimental and 48 
computational methods illustrate the importance of multiple-conformation modeling for understanding 49 
biomolecule functions. In particular, as the machine learning (ML) methods of AlphaFold2 (AF2) [2], 50 
RosettaFold [3], OpenFold [4], ESMFold [5], RaptorX [6], and other advanced techniques have reached 51 
the stage where single structure prediction of small proteins is robust and reliable, and a current frontier is 52 
multiple-state modeling [7,8]. Establishing consistent ontologies and formats for representing such 53 
multiple-state ensemble models is crucial for supporting and advancing this important area of structural 54 
biology. 55 
 56 
This perspective addresses the significance and handling of multiple-conformation models of 57 
biomolecules. We begin with key definitions. Conformers refer to atomic structures capable of 58 
interconversion without making or breaking covalent bonds. Conformational ensembles consist of 59 
collections of such conformers. Structural models can be categorized as “single-state” or “multiple-state” 60 
based on the nature of the experimental data or the theoretical inference. Multiple-state models may 61 
constitute a pair of conformers, pairs of conformational ensembles, or ensembles of many states 62 
representing the conformational distributions observed for disordered polymer chains. The distinction 63 
between states, and determination of the number of states, is determined by the interpretation used in 64 
modeling the data. Terms used for such multiple-state ensembles in the literature include alternative 65 
conformations, multi-conformer ensemble models, switched folds, metamorphic states, chameleonic 66 
states, and conformational excited states. Here we outline the pressing need for standardized 67 
representations of multiple-state ensembles and their corresponding data in structural databases and across 68 
the structural biology community. 69 
 70 
The significance of multiple conformational states 71 
Modeling multiple conformations is fundamental to understanding biomolecule functions, as dynamics 72 
determines their ability to carry out these functions. In this perspective, we focus on representing diverse 73 
conformational states of proteins, but similar challenges also apply to nucleic acids such as DNA and 74 
RNA [9,10]. Conformational dynamics also underlie enzyme function [11,12,] and are especially 75 
important for membrane protein activities as receptors and transporters of ions, metabolites, and drugs. 76 
Protein-protein interfaces may also exhibit multiple conformational states, as observed for example, in 77 
dimers of the influenza A virus non-structural protein NS1 [13] and between domains of  MHC class I 78 
molecules [14]. Additionally, the significance of intrinsically disordered proteins (IDPs) and intrinsically 79 
disordered regions (IDRs) is increasingly recognized in biology [15,16]. 80 
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 81 
Biomolecules often undergo conformational changes when interacting with binding partners or substrates, 82 
encompassing both induced fit and conformational selection mechanisms. These structural changes can 83 
occur at binding sites or be distributed across the biomolecule structure. The significant role of allostery in 84 
enzyme function, where an allosteric modulator molecule binds to sites distal to the active site, has been 85 
recognized for decades [17]. Recent advances combining experimental data with advanced modeling 86 
methods have revealed structural details of allosteric mechanisms [17-20]. Evolutionary coupling (EC) 87 
based on sequence covariance analysis has also been utilized to enhance enzyme activities by perturbing 88 
allosteric networks with mutations distant from their active sites [21]. 89 
 90 
Structural heterogeneity is also important in de novo protein design, and has been successfully used in to 91 
create cyclic chameleon peptides that switch between exposed hydrophobic and hydrophilic surfaces to 92 
provide membrane permeability [22], two-state hinge proteins [23], and fold-switching metamorphic 93 
proteins [24]. Membrane protein transporters have also been the subject of multiple-state de novo design 94 
efforts, such as the Zn2+-transporting four-helix bundle transmembrane protein Rocker [25]. 95 
Advancements in the controlled design of proteins that switch between alternative conformations are 96 
crucial for creating novel protein effectors and catalysts. 97 
 98 
Experimental methods for characterizing multiple conformational states 99 
Recent reviews discuss the experimental methods that provide structural information on multiple 100 
conformational states of biomolecules [26-28]. Crystallographic studies, using either X-ray or neutron 101 
diffraction, may capture different states in different crystal forms. Electron density can often be fit to 102 
multiple conformations within a single crystal, and room-temperature (or higher temperature) X-ray 103 
crystallography avoids the structural bias from cryogenic cooling and reveals motions crucial for catalysis, 104 
ligand binding, and allosteric regulation [12,28-30]. Other experimental data types, such as small-angle X-105 
ray scattering (SAXS) [27] and electron microscopy (cryoEM) [31-33] data, can frequently only be fit to 106 
conformational distributions of multi-conformer models. Additionally, Förster resonance energy transfer 107 
(FRET), Double Electron-Electron Resonance (DEER) spectroscopy, and chemical cross-linking data 108 
have been used to model multiple conformational states since they can characterize interprobe distance 109 
distributions in structural ensembles [26]. With all experimental data, multiple-state fitting becomes 110 
crucial when a single-state model is inadequate, allowing a better representation of the structural 111 
heterogeneity observed in biomolecules. 112 
 113 
Nuclear Magnetic Resonance (NMR) spectroscopy is a valuable tool for studying the dynamic behavior of 114 
biomolecules. It employs properties such as nuclear relaxation and chemical exchange saturation transfer 115 
to determine interconversion rates and populations of conformations [19,34-36]. NMR parameters reflect 116 
conformational averaging on parameter-specific timescales: for 1H chemical shift, slow exchange 117 
(conformational lifetime >> ~ 1 ms) yields distinct resonances for individual states, fast exchange 118 
(conformational lifetime << ~ 1 ms) results in population-weighted average resonance frequencies, and 119 
intermediate exchange leads to characteristic resonance lineshapes. The distinction between slow and fast 120 
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exchange depends on the difference in the resonance frequencies of the individual states; e.g., for a two-121 
spin system with 1H chemical shift differences between 0.1 and 1 ppm at 800 MHz, intermediate 122 
exchange corresponds to rates from ca. 10 to 250,000 s−1 [37]. Chemical shift refocusing experiments like 123 
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and T1rho relaxation experiments, and 124 
saturation transfer experiments (e.g., chemical exchange by saturation transfer, CEST), can provide 125 
quantitative information about conformational exchange on the intermediate or slow chemical shift 126 
timescale [34], and can be used to characterize sparsely-populated states that cannot otherwise be 127 
observed in NMR spectra [35]. NOESY and residual dipolar coupling (RDC) data can reveal multiple 128 
conformations in fast dynamic equilibrium and provide structural restraints for modeling each state [38-129 
41]. Paramagnetic effects in metal-containing biomolecules provide ensemble-averaged distance restraints 130 
and can also determine ensemble-averaged relative orientations of structural domains [42,43]. In many 131 
cases, the structures of the conformations in dynamic exchange are modeled by fitting back-calculated 132 
NMR parameters (e.g., chemical shifts) to ensemble-averaged NMR data. 133 
 134 
Computational methods for modeling multiple conformational states 135 
For decades, molecular dynamics (MD) simulations and normal mode analysis methods have been utilized 136 
to study the various conformational states of biomolecules [44]. Integrating experimental data, such as 137 
NMR and X-ray crystallographic data, with MD simulations has led to improved conformational 138 
heterogeneity evaluation. MD has been combined with X-ray crystallography data to generate multiple-139 
state ensemble models that much better fit X-ray data compared to single-structure models [45,46]. 140 
However, conventional MD simulations often fall short in capturing slower motions, particularly allosteric 141 
conformational changes. Approaches have also been developed to integrate experimental NMR data with 142 
MD simulations, aiming to create more representative conformational ensembles. By incorporating time-143 
averaged distance restraints from NOE data [19,40], MD simulations can better model conformational 144 
distributions consistent with experimental data, as in the case of the DNA-binding loops of E. coli 145 
tryptophan repressor [47]. Bayesian inference and ensemble fitting approaches, which leverage 146 
experimental data alongside MD simulations, can also generate improved ensembles [48,49]. Similarly, 147 
chemical shift data have been used to guide or interpret computational methods. For example, NMR 148 
chemical shift perturbation analysis using programs like CHESCA has been used to characterize allosteric 149 
conformational switching upon ligand binding by chemical shift covariance analysis [50]. Alternative 150 
conformational state modeling with Ohm, a structural perturbation propagation method, for a set of  ~ 20 151 
allosterically-modulated proteins was observed to provide excellent predictions of CHESCA-based 152 
chemical shift changes [20]. Accelerated MD methods have also proven effective in modeling multiple 153 
conformational states of proteins, which align well with NMR data [19].  154 
 155 
Machine learning (ML) approaches show tremendous promise for modeling conformational dynamics. 156 
Although AF2 was not trained to model protein dynamics, in some cases, it can provide information about 157 
the individual states in dynamic equilibrium. For example, comparison of AF2 and NMR models for 158 
CASP14 target T1027, Gaussia luciferase, against NMR data suggested that the AF2 prediction 159 
corresponds to just one of the multiple conformations in the NMR sample [8]. Subsequently, the 160 
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proclivity of AF2 to model one of multiple conformational states was also reported for a collection of 161 
~100 apo / holo protein structure pairs [51]. Recently, methods have emerged to extend AF2 and other 162 
machine learning networks to model alternative protein conformations explicitly. These extensions 163 
involve leveraging ECs that distinguish multiple conformations [52-54], employing multiple templates 164 
with diverse conformations [55,56], using shallow multiple-sequence alignments [56-58], or by perturbing 165 
the neural network weights [59] to generate conformational diversity. SPEACH_AF utilizes in silico 166 
mutations as input to AF2 to model conformational switching in soluble and membrane proteins [60]. 167 
AlphaFold2-RAVE utilizes the structural outputs from AF2 for AI-augmented MD, resulting in 168 
Boltzmann-ranked ensembles of conformations [61]. 169 
 170 
Databases of multiple conformational states 171 
The advancements in experimental methods and modeling techniques for determining multiple 172 
conformational states of biomolecules necessitate improved methods for representing and archiving 173 
information about conformations in dynamic equilibrium. This can be challenging, as definitions of 174 
conformational “states” depend on the timescale of the experimental data and/or the modeling methods 175 
used. Apart from the well-known Protein Data Bank (PDB) and Nucleic Acid Database (NDB), several 176 
other databases (ACMS, CoDNaS, D3PM, and MultiComp) primarily store and annotate data on 177 
alternative conformations obtained from diverse crystal structures, as reported in the PDB. These 178 
databases, along with other important structural databases that primarily archive single-state models but 179 
can also provide data about multiple conformational states, are listed in Table 1 along with their URLs. 180 
  181 
Clearly, multiple conformational state information is important in biology, and there is a need for 182 
consistent representation of such information in databases. In the following sections, we discuss some 183 
challenges in representing collections of molecular models derived from NMR data. While some points 184 
are specific to NMR structures and data, most are relevant for representing biomolecule structures 185 
obtained via various experimental or predictive modeling techniques. 186 
  187 
Representation of biomolecular NMR structures: single-state ensembles 188 
Solution NMR structures are typically represented as ensembles of coordinate sets, where each model in 189 
the ensemble is independently generated by fitting experimental data to a single conformer. This is done 190 
multiple times under different initialization conditions, generating an ensemble of conformers. The single-191 
state ensemble representation commonly used for NMR structures encodes information about which 192 
regions of the protein structure are “well-defined” by the NMR data and which regions are not. Less-well-193 
defined segments of the structure often (but not always) correspond to regions undergoing conformational 194 
dynamics. In the simplest case, the coordinates for the ensemble of conformer models are deposited to the 195 
PDB, accompanied by restraints, while the chemical shifts, peaks lists, and raw FID data are deposited to 196 
the Biological Magnetic Resonance Bank (BMRB). 197 
 198 
This single-state ensemble representation can be confusing for scientists using NMR structures. Although 199 
each conformer is considered to be a good fit to the data, the coordinate uncertainty in different regions 200 
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can only be assessed by analyzing the ensemble as a whole. The individual conformer models in the 201 
single-state representation are not meant to describe actual conformers contributing to the Boltzmann 202 
distribution of states present in the sample. The single-state ensemble also does not provide a statistically 203 
reliable estimate of the atomic coordinate precision based on experimental measurement uncertainties, 204 
although Bayesian methods have been proposed for this purpose [48]. Despite its limitations, the 205 
prevailing convention for biomolecular structure modeling using NMR data continues to be the single-206 
state ensemble. When using such models, it is crucial to distinguish well-defined regions from the 207 
experimental data from less precise regions where atomic positions are highly uncertain. This distinction 208 
is critical for the correct application of structure validation methods, which are generally applicable only 209 
to well-defined regions [62]. Accordingly, it is important that the single-state ensemble representation is 210 
conveyed in a simple way to users of NMR structures. 211 
 212 
In X-ray crystallography, single-state models use B-factors to describe the uncertainty of atomic positions. 213 
In a similar way, a single-state ensemble for NMR can be represented by a single representative 214 
conformer, along with information about coordinate uncertainty (Figure 1). The wwPDB uses the medoid 215 
conformer as the representative structure, defined as the single conformer in the ensemble most like all the 216 
other conformers [62,63]. Tools like Dihedral Angle Order Parameter (DAOP) [63,64], FindCore [65,66], 217 
and CYRANGE [67] assess well-defined and not-well-defined residue ranges in NMR ensembles. The 218 
cutoffs used by these tools are based on standardized conventions. Presently, the wwPDB has adopted 219 
CYRANGE conventions to annotate well-defined residue ranges in the NMR structure validation report. 220 
PDBStat [63] also uses these tools and writes information about well-ordered residues as well as atom-221 
specific coordinate variances into a conventional PDB (or mmCIF) coordinate file, allowing graphical 222 
rendering of this information onto a single representative conformer (e.g., the medoid conformer) (Figure 223 
1). After aligning the models with respect to the core residues, coordinate uncertainties are converted 224 
using the Debye-Waller equation to effective “NMR B-factors” [66], indicating the variability and 225 
uncertainty in atomic positions across the ensemble. It is unfortunate that these PDB-file annotations are 226 
not more widely used compared to the widespread adoption of the analogous concept of predicted LDDT 227 
(pLDDT) scores reported for AlphaFold2 models [2]. These annotations are essential for the informed use 228 
of NMR structures. 229 
 230 
Representation of biomolecular NMR structures: multiple-state ensembles 231 
Solution NMR can provide valuable insights into multiple conformational states in dynamic equilibrium. 232 
Different modeling approaches are employed depending on the timescale of conformational averaging, 233 
such as slow or fast chemical shift exchange (Figure 2). Alternative models may be generated for each set 234 
of slowly exchanging resonances [22], by deconvoluting the conformational averaging within an 235 
ensemble of rapidly exchanging states [39], by fitting to spectral features of intermediate exchange 236 
[34,37], by matching chemical shifts of slowly-exchanging states to chemical shifts predicted from known 237 
structures [68], or by other methods. These regimes generate different numbers of chemical shift lists, 238 
restraint lists, and coordinate sets, which need to be accounted for in creating archive data structures. 239 
 240 
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The current wwPDB archive does not provide consistent data structures for organizing the experimental 241 
data (e.g., FID, chemical shift, and restraint data) supporting multiple conformational states derived from 242 
a single sample. Figure 2B illustrates examples of multiple-state model ensembles in the PDB. Some were 243 
deposited as pairs of separate PDB files, while in other cases, the multiple-state ensembles were 244 
concatenated in a single PDB file. For the separate entries, although comments describing the 245 
relationships of these pairs of PDB files are included in their header files, it is not always clear where 246 
these multiple conformations were derived from a single sample and a single set of experimental data. 247 
Three of the multiple-state ensembles illustrated in Figure 2B were each deposited as a single PBD file. In 248 
two other cases (5tm0 and 2lwa), the sets (2 or 3, respectively) of structures were reported as separate 249 
chains within a single PDB file. In contrast, the individual states of the multiple-state ensemble reported in 250 
the single PDB file 7r95 were not distinguished by any specific designator. In X-ray crystal structures, 251 
alternative local conformations are often represented with distinct ‘AltLoc IDs’, the alternative location 252 
indicators, where atoms are assigned unique letters to represent different conformations [28,32,33]. These 253 
AltLocs can range from single atoms to sets of connected or non-connected residues, and has the benefit 254 
of including relative occupancies as well as the positions for each atom with alternative coordinates. 255 
Despite progress in automating the assignment and creation of PDB files with AltLoc annotations, 256 
challenges persist regarding interpretation ease and compatibility with other analysis software. In NMR 257 
studies, like those shown in Figure 2, multiple-state structures have been refined using multiple complete 258 
copies of the entire molecule for each state. This does not easily align with the AltLoc ID usage, which 259 
also does not currently support association with the corresponding alternative chemical shift assignments.  260 
 261 
To address these inconsistencies and improve data organization, it is crucial to establish standardized 262 
conventions for archiving multiple-state ensembles in the PDB and other structural databases. 263 
Additionally, it is essential to ensure that the underlying experimental data, including raw FID data, are 264 
archived along with the model coordinates [69]. This will allow for future regeneration of models as 265 
methods improve. As illustrated in Figure 2C, for cases of multiple coordinate sets derived from NMR 266 
data on fast-exchanging systems, there are (i) a set of raw data, (ii) a single set of chemical shifts, but (iii) 267 
potentially two (or more) sets of restraints, and (iv) two (or more) sets of atomic coordinates. In the case 268 
of multiple coordinate sets derived from slowly exchanging systems, there is again (i) a single set of data, 269 
but (ii) multiple sets of chemical shifts, one associated with each member of the slowly exchanging 270 
system, as well as (iii) potentially two (or more) sets of restraints, and (iv) two (or more) sets of atomic 271 
coordinates. This data organization required for representing multiple-state NMR structures is not 272 
currently supported by the public biomolecular structure databases. 273 
 274 
Generalization to other experimentally- and computationally-generated multiple-state models 275 
The issues of representing single-state and multiple-state ensembles also impact the representation of 276 
biomolecular structures based on cryoEM, X-ray crystallography, FRET, chemical cross-linking data, and 277 
other experimental methods. Issues of data structures needed to represent these models and data are 278 
analogous to those discussed above for solution NMR data, but are beyond the scope of this perspective. 279 
Ensuring consistency in representing multiple conformational states modeled from various experimental 280 
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and computational methods is critical for developing integrated structural biology methods and advancing 281 
dynamic modeling techniques. 282 
 283 
Future outlook 284 
The representation and management of multiple conformational models of biomolecules is very important 285 
for understanding their dynamic behavior and how these dynamics influence their biochemical functions. 286 
Standardized ontologies and formats for representing diverse conformational ensembles are crucial for 287 
effective communication and integration of structural data across the scientific community. Recent 288 
advances in experimental and computational methods, including machine learning (ML), provide exciting 289 
new opportunities for modeling and characterizing multiple conformations. Experimental distance 290 
restraint data can also be used as input for training ML-based structure prediction methods [70] and will 291 
certainly have an impact on ML-based methods for modeling multiple conformational states. As 292 
combined experimental and modeling methods develop, models of conformational ensembles of proteins 293 
and nucleic acids will enable biochemical, biophysical, and biological studies, and the ability to 294 
consistently represent and archive information about conformations in dynamic equilibrium will facilitate 295 
research and enhance our understanding of biomolecular function. 296 
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 310 
 311 
Fig. 1. Schematic representations of a “single-state” ensemble of coordinates. PDB entries for NMR 312 
structures typically consist of an ensemble of ~20 structures obtained through restrained modeling with 313 
NMR data. “Well-defined” parts of the structure can be determined using conventions encoded in 314 
programs like CYRANGE [67], FindCore2 [66], and dihedral angle order parameter DAOP [63,64] 315 
softward, and colored to indicate well-defined (blue) and not-well-defined (red) residues  (left side, pdb 316 
2kcd). The PDBStat program [63] provides tools to create an image of the protein annotated with this 317 
information about model convergence. The medoid structure, determined by aligning models using well-318 
defined heavy (or backbone N, Ca, C’) atoms, is the first entry in a new ensemble coordinate file in 319 
conventional (or mmCIF) PDB format. This file includes per-residue tags (q=1 for well-defined residues, 320 
q=0 for others) stored in the occupancy field. In addition, atom-specific coordinate variances are 321 
determined from the average atomic root mean-squared fluctuation (RMSF) across the structural ensemble 322 
[65,66,71], and reported in the B-factor field as effective “NMR B-factors”, representing positional 323 
uncertainties across the ensemble. These PDB (or mmCIF) format files can then be used to visualize well-324 
defined regions (left) or atomic variance (shown schematically in three ways, top and right side) using 325 
programs like PyMOL. Representations showing atomic variance by coloring or by scaling the size of the 326 
ribbon are shown. For multiple domain structures, variance matrix analysis is used to parse the 327 
coordinates into well-defined units, which are then analyzed separately [65-67].  328 
 329 
  330 
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 331 
Fig. 2. Schematic of NMR data deposition pipeline for proteins reported to have multiple-state 332 
structures 333 
(A) The process involves data collection and chemical shift analysis resulting in one or more sets of 334 
chemical shifts. NMR data interpretation is then used to derive one or more sets of restraints used to 335 
model one or more structural ensembles. (B) Representative examples of two-state ensembles including: 336 
9-residue Rosetta-designed cyclic peptide D9.16 (pdb IDs 7ubg and 7uzl) [22], inhibitor-bound dengue 337 
virus NS2B/NS3 protease (2m9p and 2m9q), pro-islet amyloid polypeptide in detergent micelles (6ucj and 338 
6uck) [72], E. coli tryptophan repressor (two states combined as pdb 5tm0) [47], and the membrane-bound 339 
SARS-CoV-2 spike protein HR1 ectodomain (two states combined as 7r95) [73]. Also shown is the three-340 
state ensemble of influenza hemagglutinin fusion peptide A (combined as 2lwa) [74] (C and D). 341 
Schematic representation for the data organization required for deposition of multiple-state structures into 342 
the PDB and BMRB: (C) Fast exchange between the conformers yields population-averaged chemical 343 
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shifts, resulting in one or more sets of restraints and corresponding PDB coordinate sets. (D) Slow 344 
exchange between conformers leads to distinct chemical shifts, with multiple chemical shift entries from a 345 
single NMR dataset that are then used to calculate multiple sets of PDB coordinate ensembles. As in the 346 
fast exchange case, a single set of chemical shifts arising from one slow-exchange ensemble could 347 
generate multiple restraints, leading to multiple coordinate sets, depending on the data analysis method. 348 
Multiple coordinate sets may also be generated from a single restraint set in certain cases.  349 
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Table 1.  Databases of multiple conformational states of proteins and nucleic acids, and other key 350 
resources. 351 

Database url 

ACMS: Provides a detailed description of the alternate 
conformations of various residues for more than 60,000 high-
resolution crystal structures. 

http://iris.physics.iisc.ac.in/acms  

AlphaFold Protein Structure Database: Provides over 200 million 
protein structure predictions. 

https://alphafold.ebi.ac.uk 

Binding MOAD - Mother of All Databases: A subset of the 
Protein Data Bank (PDB), with many high-quality structures of 
ligand-protein complexes.   

http://www.bindingmoad.org 

Biological Magnetic Resonance Bank (BMRB): Archive of 
biological NMR data. 

https://bmrb.io  

CoDNaS 2.0: A comprehensive database of protein 
conformational diversity. 

http://ufq.unq.edu.ar/codnas  

D3PM: A comprehensive database for protein motions, including 
changes with ligand binding. 

http://www.d3pharma.com/D3PM/index.php  

DNAproDB: Web-based database and structural analysis tool 
designed to access and visualize structural data of DNA–protein 
complexes. 

https://dnaprodb.usc.edu  

Electron Microscopy Data Bank (EMDB): A public repository for 
electron cryo-electron microscopy maps and tomograms of 
macromolecular complexes and subcellular structures. 

https://www.ebi.ac.uk/emdb 

EM Data Resource: A unified data resource for 3-Dimensional 
Electron Microscopy (3DEM) structure data archiving and 
retrieval. 

https://www.emdataresource.org  

ESM Metagenomic Atlas: Atlas of 772 million predicted 
metagenomic protein structures 

https://esmatlas.com 

MultiComp: A database for exploring multiple conformations of 
membrane proteins.  

https://multicomp.nibiohn.go.jp  

Nucleic Acid Data Bank (NDB) and Nucleic Acid 
Knowledgebase: A data resource for experimentally determined 
structures containing DNA and RNA nucleic acid polymers and 
their biological assemblies. 

http://nakb.org  

wwPDB worldwide Protein Data Bank:  Primary international 
data repository for protein and nucleic structures. 

https://www.wwpdb.org 
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