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Abstract  

Ensuring scientific reproducibility holds increasing importance in chemistry as it underpins the credibility 

and integrity of research findings. However, reproducing experiments and measurements is often 

hindered by incomplete or ambiguous procedural data in scientific literature. Additionally, the time-

consuming process of data generation limits the scale of reproducing experiments. Growing efforts 

towards automation will contribute to enhancing reproducibility. Nevertheless, both manual 

reproducibility efforts and the development of automated experiments and measurements will require 

improved methods for recording and sharing experimental procedures in machine-readable formats. 

Here we develop ExpFlow, a data sharing and reporting software that currently targets electrochemistry. 

The ExpFlow software allows researchers to systematically encode laboratory procedures through a 

graphical user interface that operates like a fill-in-the-blank lab notebook. Built-in calculators derive 

properties such as diffusion coefficient and charge-transfer rate constant. Additionally, ExpFlow’s 

machine-readable experimental workflows enable the easy translation of human-developed laboratory 

procedures to robotic experimentation. We deploy ExpFlow procedures with a robotic system to 

perform cyclic voltammetry measurements, reproducing several literature-reported electrochemical 

results. Ultimately, these tools enable automated cyclic voltammetry experiments and measurements 

that will facilitate high-throughput experimentation, reproducibility, and eventually data-driven 

discovery in electrochemistry. 
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Introduction  

Chemistry has seen a growing emphasis on reproducibility, driven by the recognition that the credibility 

and integrity of scientific findings heavily rely on the ability to reproduce experimental results.1-4 

However, producing reproducible results is not always straightforward. Procedures described in 

scientific literature are often incomplete or ambiguous and may unintentionally lack critical details. This 

lack of comprehensive and standardized documentation hampers the reproducibility of experiments and 

measurements. Additionally, experimental data can be tedious and time consuming to produce, limiting 

the number of data points available for ensuring reproducibility and drawing robust scientific 

conclusions.  

Automation has emerged as a pivotal component in enhancing reproducibility while enabling the 

generation of vast quantities of data.5-9 Not only does automation increase the quantity of experiments  

and measurements that can be performed, but also it replaces manual, error-prone processes with 

automated systems that enable greater precision, accuracy, and consistency. Furthermore, the 

automated generation of large quantities of experimental data will allow for more big data analysis. 

Rapid advances in the availability and scale of big data in chemistry have generated exciting results 

already,10-13 and when applied to experimental data, big data approaches such as machine learning (ML) 

and trend analysis can be even more promising.6, 14-17  

Achieving scientific reproducibility and advancing automation will require the convergence of data, 

software, domain knowledge, and the development of effective data management frameworks.14, 18 

Specifically, it is essential to develop improved methods for recording and sharing experimental 

procedures, permitting researchers to reproduce and validate results more effectively. Moreover, these 

captured experimental procedures should be machine-readable, allowing for the translation of human 
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ideas into machine actions. The integration of human-readable protocols with machine automation will 

promote both reproducibility and automation, accelerating scientific progress. 

Many research efforts to capture experiment procedural data19-23 and automate experiments and 

measurements5-8, 24 exist. However, only a few efforts exist to systematically capture electrochemistry 

procedural data and/or automate electrochemistry experiments.17, 25 Yet electrochemistry, and 

especially cyclic voltammetry (CV), holds a crucial role in chemical research. Fields ranging across drug 

discovery,26, 27 energy and materials research,28-30 process engineering,31, 32 and environmental 

chemistry33 use CV for characterization and analysis. Thus, software to capture electrochemical 

procedural data and subsequent software and hardware to translate these data into automated CV 

experimentation and measurements can have broad impact across science.  

Here, we present ExpFlow, a data sharing and reporting software where electrochemists can 

systematically encode their laboratory workflows through an intuitive graphical user interface. We then 

demonstrate the use of ExpFlow in directing basic electrochemistry experiments with a robotic system. 

By creating standardized experimental workflows, we facilitate the translation of human-developed 

laboratory procedures to robotic experimentation, and the resulting data reproduce well literature-

reported results.  

Methods  

ExpFlow and Robotic Software  

The software ecosystem consists of an experiment data management software with a Python-based 

web-interface (ExpFlow) and an interface between ExpFlow and the automation hardware with a 

desktop application. ExpFlow uses Django34 web-framework with a MongoDB35 database to store the 

experimental information and is hosted on an Apache36 web server. The interface to the automation 
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hardware uses the Kinova API37 and Fireworks38 Python packages and is packaged into a desktop app 

with Tkinter.39 

Automated System Hardware  

The automated CV hardware consists of a Kinova40 Gen 3 robotic arm with six degrees of freedom. A grid 

vial stand and vial elevator were designed, 3D-printed, and assembled in-house. A BioLogic SP-50e 

potentiostat is integrated into the system for cyclic voltammetry measurements. More information on 

the hardware can be found in SI Section 2.  

CV Experiments  

The electrolyte used for CV experiments contained 0.25 M TEABF4 in ACN. Ferrocene (Fc), N-[2-(2-

methoxyethoxy)ethyl]-phenothiazine (MEEPT), dimethylphenazine (DMPZ), 4-methoxy-2,2,6,6-

tetramethyl-1-piperidinyloxy (4-MeOTEMPO), 1,4-di-tert-butyl-2,5-dimethoxybenzene (DBB), 1,4-di-tert-

butyl-2,5-bis (2-methoxyethoxy)benzene (DBBB), thianthrene (TH) and N-ethylcarbazole (ECZ) (Figure 

S7) were individually dissolved at 10 mM in 0.25 M TEABF4/ACN (10 mL) in screw capped scintillation 

glass vials. All solutions were freshly prepared for each trial.  

CV experiments were performed on electro-active solutions using a three-electrode system under 

ambient conditions. The cell is comprised of a screen-printed electrode fabricated on ceramic substrate 

(Pine Research41) with a 2 mm diameter Au working electrode, and a large surface area U-shaped Au 

counter electrode and an Ag pseudo-reference electrode (Pine Research41). The reference electrode was 

freshly prepared by immersing silver wire in a fritted tube (Pine Research41) containing 10 mM AgBF4 

dissolved in 0.25 M TEABF4/ACN. The electrodes were held in place using a grip mount (Pine Research41) 

and a cell cap (Pine Research,41 fits scintillation vial and grip mount), and connected to the potentiostat 

using a universal specialty cell connection kit (Pine Research41). The electrodes were used as received. A 

new screen-printed electrode and glass frit as a reference electrode were used for each trial of the eight 
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experiments. CV measurements were performed, and data were collected using the Bio Logic SP-50e 

potentiostat. The voltammograms were recorded at scan rates of 25, 50, 75, 100, 200, 300, 400 and 500 

mV/s. No solution resistance compensation (iR correction) was applied.  

Results and Discussion  

ExpFlow: Encoding Experimental Procedures 

To tackle the challenges of collecting and analyzing experimental electrochemical data, we created 

ExpFlow, a data sharing and reporting software targeting electrochemistry that enhances data 

reusability and facilitates analysis. The procedural and experimental data are divided into three 

categories for organization and reuse: Template, Experiment, and Run (Figure 1). The customizable 

Template allows researchers to document experimental steps, Experiment specifies experiment reagents 

and apparatus, and Run works like a fill-in-the-blank lab notebook, where researchers record 

measurements and attach data files. Built-in calculators perform calculations (e.g., peak splitting, peak 

potentials, reversibility, diffusion coefficient, charge transfer rate, etc.) (Table S1). Additionally, an 

existing Template can be cloned, modified, and shared (either among ExpFlow users or via download). 

All of this is hosted on a web user interface.42 Procedural and experimental data stored in ExpFlow are 

comprehensive and machine-readable, which increases reproducibility and enables translation of 

experiment procedures to robotic experiments.  
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Figure 1. Schematic showing ExpFlow data organizational structure. 

 

An ExpFlow Template converts experimental procedures into graphs that contain data provenances. The 

Template has categories for reagent (e.g., redox material, solvent), apparatus (e.g., beaker, electrode) 

and instrument (e.g., potentiostat, spectrometer). In a Template graph, nodes (the reagent, apparatus, 

and instrument categories) are connected by edges that correspond to actions (e.g., dispense, heat). 

Each action contains a start position, an end position, and action parameters (e.g., volume for 

dispensing liquid, temperature for heating, etc.). As the actions are sequenced, ExpFlow graphs capture 

the action provenances.  

For example, a CV experiment to determine the diffusion coefficient might include redox-active 

molecule and solvent reagents, a beaker/vial apparatus, and a potentiostat instrument (Figure 2). 

Workflow actions might include transferring the liquid solvent and solid solute to the beaker, heating 
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and stirring the solution, measuring the working electrode surface area, and collecting CV data. In this 

example, the user might add five collect-CV-data actions because the experiment includes five CV scans, 

each performed at a different scan rate. Although the Template can take time and effort to produce, it 

can be reused for all related and subsequent experiments.  

 

Figure 2. Schematic demonstrating a simplified CV experiment graph as an ExpFlow Template, Experiment, and 
Run.  

 

A single Template can be used for multiple Experiments where materials (reagents, instruments, etc.)  

are specified. For instance, the aforementioned Template could parent three Experiments, each using a 

different solvent (e.g., water, acetonitrile, and propylene carbonate). When collecting data, a user runs a 

given experiment any number of times. During an experiment Run, the researcher is prompted to fill in 

built-in run parameters for each action. For example, the liquid-transfer action type prompts the 

researcher to record the liquid's exact volume, while the heat-and-stir action type prompts the 
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researcher to record the temperature and the stirring time. Data collection action types prompt the 

researcher to upload a raw data file, in this case, the potentiostat output file. For more information 

about the ExpFlow data structure, see SI Section 1. 

A Template can also be adapted to a Robotic Workflow. After selecting a Template, the researcher 

indicates default measurements for all preparation steps and specifies parameters for all data collection 

steps. Then, the researcher selects one or more parameters to vary. These variable parameters become 

the columns of a table with n rows, where the researcher specifies the variable parameter values for 

each of n experiments (Figure S7). ExpFlow then produces a machine-readable workflow for n identically 

structured experiments where one or more measurement parameters varies for each experiment. These 

machine-readable workflows can be downloaded for use in robotic experimentation (more details in the 

next section).  

After an experiment is run in ExpFlow, data parsers from the D3TaLES API43 extract data from the 

uploaded experiment files (Table S1). Additionally, key metadata are extracted from the Run parameter 

data. For example, the solution temperature is extracted from the heat-and-stir action, and the solution 

concentration is calculated from the solid-transfer and liquid-transfer actions. All extracted data are 

displayed on the web user interface where the researcher can inspect and approve the Run data. This 

user interface also contains the ExpFlow calculators (e.g., diffusion coefficient and charge transfer rate 

constant) for Runs with relevant data.  

 

Proof of Concept: Automated Cyclic Voltammetry  

ExpFlow provides a platform for researchers to encode the procedure for their electrochemical 

experiments and measurements, and we demonstrate the utility of these machine-readable procedures 

by translating them into automated CV measurements. First, we assembled the robotic hardware 
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infrastructure needed to run a CV measurement from a pre-mixed solution (Figure 3). More details 

about all hardware are provided in SI Section 2. We also built the software infrastructure necessary to 

connect the researcher-created ExpFlow experiment procedures to robotic actions and then 

communicate collected data back to the researcher (Figure S5). Once a researcher creates an ExpFlow 

Template and converts it into a Robotic Workflow, the researcher downloads the Robotic Workflow to 

the local robotics computer. Here, through a desktop application, the researcher loads the workflow and 

assigns reagent locations in the robot space. This step requires human actions as a safety measure to 

ensure that robotic experiments have human supervision. Finally, a robotics API translates the loaded 

workflow into robotic actions. Through the local robotics app, the researcher may launch robotic actions 

to perform the electrochemistry experiment and complete subsequent data processing.  

 

Figure 3. Image of robotic setup.  
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To test and validate our system, we perform CV experiments for eight well-known electro-active 

systems44-51 (Figure S8): Ferrocene (Fc), N-[2-(2-methoxyethoxy)ethyl]-phenothiazine (MEEPT), 

dimethylphenazine (DMPZ), 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxy (4-MeOTEMPO), 1,4-di-

tert-butyl-2,5-dimethoxybenzene (DBB), 1,4-di-tert-butyl-2,5-bis (2-methoxyethoxy)benzene (DBBB), 

thianthrene (TH) and N-ethylcarbazole (ECZ). First, we constructed an ExpFlow Template for the 

following process: Run one CV scan on a supporting electrolyte solution to confirm electrode cleanliness, 

select a redox-active solution, perform one benchmark CV scan at 100 mV/s and determine the 

optimum voltage range, collect eight cyclic voltammograms (each at a different scan rate with the 

optimum voltage range), and process all data. From this Template, we generated a Robotic Workflow for 

performing this experiment on the eight distinct solutions (Figures S6-7). (See Methods section for more 

information on solution preparation and experiment procedure.) Robotic experiments were then 

performed from this workflow, and the workflow was completed three times (trials) with new solutions 

and electrodes each trial, so the experiment was run in triplicate for each electro-active system. Starting 

with pre-mixed solutions, one trial of CV experiments and data processing for all eight systems took 

approximately 90 minutes.  

The scan-rate dependent voltammograms for all eight systems are provided in Figures 5 and S9. All the 

compounds except ECZ exhibited reversible first oxidation in 0.25 M TEABF4/ACN electrolyte and the 

peak potentials are invariant with the scan rate. DMPZ showed reversible first and second oxidation. 

Notably, the data processors correctly flagged ECZ, which has a known irreversible first oxidation,49, 52 as 

irreversible (Figure S9) and identified both the first and second oxidations for DMPZ. The average peak 

to peak separation for reversible oxidations at different scan rates is 0.104 V, which is wider than the 

ideal peak separation for a reversible process. A major factor contributing to wider peak is the current 

lack of iR compensation in our experiments.  
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Figure 4. CV plots produced by the embedded data processors for all trials of Fc (top) and MEEPT (bottom) at 0.01 
M in 0.25 M TEABF4/acetonitrile electrolyte at room temperature and are reported using IUPAC convention. More 
information about experimental conditions and all other CVs (Figure S12) are located in methods and SI Section 3.  

 

For each system, the embedded data processing determined (among other properties) the oxidation 

potential(s) and cathodic diffusion coefficient, and these were compared with literature-reported 

values. For example, the measured half-wave redox potential (at 100 mV/s) for Fc of 0.082 ± 0.001 V vs. 

Ag/Ag+ aligns well with the literature-reported53 potential of 0.086 V vs. Ag/Ag+. Additionally, the 

measured diffusion coefficient of 1.73 ± 0.06 × 10-5 cm2/s is consistent with the literature-reported54 

coefficient of 2.10 × 10-5 cm2/s. Similar results were observed for MEEPT, another well studied redox-

active system known for its high stability and solubility.55-57 The measured half-wave redox potential for 

MEEPT is 0.396 V vs. Ag/Ag+, which is comparable with the potential (0.41 V vs. Ag/Ag+)58 reported for N-

methylphenothiazine. Since there are no literature-reported oxidation potentials for MEEPT vs. Ag/Ag+, 

the potential is estimated relative to Fc/Fc+ using the potential gathered for Fc in the robotic 

experiments as the standard. The measured oxidation potential of 0.314 V vs. Fc/Fc+ aligns very well 

Exp 1: Ferrocene (Fc) CVs
Trail 1 Trial 2 Trial 3

Exp 2: N-[2-(2-Methoxyethoxy)ethyl]-phenothiazine (MEEPT) CVs
Trail 1 Trial 2 Trial 3
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with the literature-reported56 potential of 0.310 V vs. Fc/Fc+. The measured diffusion coefficient of 0.93 

± 0.06 × 10-5 cm2/s is also close to the literature-reported56 coefficient of 1.15 × 10-5 cm2/s.  

The collected electrochemical data for all eight systems, compares well with literature-reported results 

(Figure 6, see Tables S2 and S3 for raw data).46, 53, 54, 56, 58-64 The robotic experiment oxidation values have 

an almost perfect one-to-one correlation with literature-reported values. While the robotic experiment 

diffusion coefficients correlate well with the literature-reported values, the values do trend lower than 

the literature reports. That these results are consistent with the literature not only validate our robotic 

setup and data processing, but also demonstrate the potential for machine-readable procedures and 

automation to enable reproducibility experiments.  
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Figure 5. Comparison of values produced during robotic experimentation and literature-reported values for 
oxidation potential (top) and diffusion coefficient (bottom). Robotic experimental values are reported as the 
average value across the three trials where the error bars are twice the standard deviation. The gray line 
represents an ideal one-to-one correlation between the robotic and literature-reported values. All robotic 
potentials are measured vs. Ag/Ag+. For all raw data, see Tables S2 and S3. For comparison, literature-reported 
oxidation potentials are reported referenced to Ag/Ag+, except for MEEPT and DBBB (as denoted by the *); the 
oxidation potentials for MEEPT and DBBB are estimated relative to Fc/Fc+ using the potential measured for Fc in 
the robotic experiments as the standard.  
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Conclusions  

Here we present ExpFlow, a software that allows researchers to systematically encode their laboratory 

workflow through an intuitive graphical interface. These encoded workflows standardize experimental 

practices to capture all experiment metadata and increase reproducibility. Currently, ExpFlow supports 

data parsing for CV experiments. Machine-readable ExpFlow procedures also facilitate the translation of 

human-developed laboratory procedures to robotic experimentation, as we demonstrate for robotic 

electrochemistry experiments. We used an ExpFlow Template and a robotic hardware and software 

setup to perform automated electrochemistry experiments in triplicate for eight well-known 

electroactive systems. The resulting oxidation potentials and diffusion coefficients are consistent with 

literature-reported values, validating our setup and demonstrating the utility of robotic experimentation 

in promoting reproducibility.  

While this proof-of-concept robotics phase demonstrates the software and basic hardware needed for 

translating human-conceived electrochemistry experiments to robotic actions, there is still room for 

improvement. Future additions may include liquid dispensing and solution mixing as well as additional 

characterization metrics such as viscosity, solubility, spectroscopy etc. We also plan to fine-tune the 

potentiostat data collection methods to ensure that the robotic experiments produce high quality data 

on par with current literature standards.29, 65 Ultimately, the advances demonstrated here will facilitate 

reproducibility, automated labs, and eventually autonomous design of experiments66 for 

electrochemistry.  
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Data Availability  

ExpFlow is available for researchers at https://d3tales.as.uky.edu/expflow. 
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