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ABSTRACT: The ring-opening of aziridines by pendant sulfamates is a viable strategy for the rapid preparation of vicinal diamines. 

Our reaction is compatible with both di-substituted cis and trans aziridines; unsubstituted, N-alkyl, and N-aryl sulfamates engage 

effectively. In all cases examined, the cyclization reaction is perfectly regioselective and stereospecific. Once activated, the product 

oxathiazinane heterocycles can be ring-opened with a diverse range of nucleophiles.

Vicinal diamines (1,2-diamines) are well-represented 

in molecules of value, including those used as medicines, lig-

ands, and agrochemicals.1-7  Given their importance to multiple 

areas of synthetic chemistry, it is no surprise that numerous pro-

tocols have been invented for their construction.8-39  Diamina-

tion of olefins40-45 and untethered (intermolecular) aminolysis46-

48 of aziridines are common strategies for accessing these motifs 

(Scheme 1). The direct diamination of olefins is a powerful ap-

proach for the construction of vicinal diamines, as it installs 

both nitrogens in a single synthetic step; some limitations of ex-

isting protocols include harsh reaction conditions, limited sub-

strate scope, and issues with regioselectivity and stereoselectiv-

ity. Intermolecular aminolysis of aziridines has also been stud-

ied in numerous contexts, but, depending on the substrate and 

reaction conditions, intractable mixtures of regioisomeric prod-

ucts can result. In contrast to the first two approaches, aminoly-

sis of aziridines utilizing detachable tethers has hardly been ex-

plored for the synthesis of 1,2-diamines (Scheme 1).49 As part 

of a larger program on olefin-functionalization50-52 and ring-

opening of aziridines53, 54 and epoxides,55-57 our laboratory is 

very interested in using sulfamate tethers as convenient N-nu-

cleophiles. Here, we present a mild protocol for the intramolec-

ular ring opening of aziridines by pendant sulfamates, which al-

lows for regioselective and stereospecific syntheses of a variety 

of vicinal diamines. Further, we demonstrate that the product 

oxathiazinanes are convenient synthons for an array of poly-

functional targets.  

 

 

 Before we could begin exploring our envisioned intra-

molecular ring-opening of aziridines by tethered sulfamates, we 

had to develop robust protocols for starting material preparation 

(Scheme 2). While epoxy-sulfamates can be readily synthe-

sized by mCPBA epoxidation of the corresponding alkene, 

alkenyl sulfamates were resistant to several existing aziridina-

tion protocols.58-60 Fortunately, alkenyl alcohols and alkenyl 
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acetates were amenable to aziridination using Sharpless 

(Scheme 2A),58 Kürti (Scheme 2B),59 or Komatsu61, 62 (Scheme 

2C) reactions. In the case of aziridine acetates (Scheme 2A and 

2B), carefully monitored hydrolysis gave aziridine alcohols, 

which were then converted into the corresponding sulfamates.63, 

64 

 

 

 Our laboratory has previously explored the ring-open-

ing of epoxides and aziridines using both sulfamate55 and di-

tert-butylsilanol tethers.53, 54, 56, 57 It is noteworthy that while di-

tert-butylsilanol epoxides and aziridines cyclize efficiently 

when treated with Lewis acids or Brønsted acids, the corre-

sponding sulfamate substrates do not react well under these con-

ditions. With epoxy-sulfamates, treatment with aqueous base 

gave clean and reproducible reactivity.55 Analogously, when 

aziridine sulfamate 1 was stirred with 1 equivalent of 

Bu4NOH•30H2O in a 1:1 mixture of CF3-toluene/H2O at room 

temperature, oxathiazinane 2 formed in an excellent yield of 

82% (Scheme 3, Entry 1). A crystal structure of 2 allowed us 

to unambiguously assign its identity and relative stereochemis-

try (CCDC: 2274209). We wished to study the effect of adding 

substituents to the sulfamate nitrogen. Replacing H with a Me 

group did not dramatically affect the efficiency of cyclization 

(Scheme 3, Entry 2). With bulkier substituents such as p-meth-

oxy-phenyl (Scheme 3, Entry 3), the yield of cyclization 

dropped, and the reaction time had to be extended by 16 h. We 

note that the mass balance of the reaction was excellent and was 

comprised of product and unreacted starting material. Cycliza-

tion reactions with p-methyl-phenyl and phenyl sulfamates 

were similarly efficient (Scheme 3, Entries 4–5). In contrast, 

N-cyclohexyl sulfamate 11 was completely resistant to 

cyclization (Scheme 3, Entry 6).  

 

 We next examined the effect of varying the substitu-

ent on the aziridine nitrogen (Scheme 4).  In general, to suc-

cessfully engage, the aziridine had to be “activated” with an 

electron-withdrawing group. A variety of such moieties were 

well tolerated, including methanesulfonyl, 2-thiophenesulfonyl, 

4-bromophenylsulfonyl, 4-nitrobenzenesulfonyl, 2,5-difluoro-

benzenesulfonyl, and 2-naphthalenesulfonyl groups (Scheme 4, 

Entries 1–6). Tosyl groups can be difficult to remove from 

amines, often requiring harsh reagents like lithium aluminum 

hydride or dissolving metal conditions with poor functional 

group compatibility. In contrast, nitrobenzenesulfonyl (nosyl) 

groups are much more amenable to removal, often with room 

temperature treatment with thiolate nucleophiles; thus, we were 

pleased that nosylated aziridines were fully compatible with our 

optimized protocol. There was no productive reaction with N-

phthalimido-aziridine substrate 24; only decomposition of start-

ing material was observed (Scheme 4, Entry 7). We hypothe-

size that the known instability of phthalimide protecting groups 

in a basic milieu underlies this.  

https://doi.org/10.26434/chemrxiv-2023-j8q9m ORCID: https://orcid.org/0000-0003-4705-7349 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-j8q9m
https://orcid.org/0000-0003-4705-7349
https://creativecommons.org/licenses/by/4.0/


 

 

 

 With all substrates tested (Scheme 5), the cyclization 

was perfectly regioselective and stereospecific. In all cases, the 

pendant sulfamate auxiliary cleaved the aziridine with 6-exo-

selectivity to give 6-membered oxathiazinane heterocycles 

bearing vicinal diamines. Trans-aziridine sulfamate starting 

materials gave products with an erythro-configuration; con-

versely, cis-aziridine sulfamates gave products with a threo-

configuration.  With our optimized protocol, cis, trans, and ter-

minal aziridine sulfamates were competent cyclization sub-

strates but, in some instances, with differing reactivity. For ex-

ample, cis-aziridine N-cyclohexyl sulfamate 11 (Scheme 3) 

gave no reaction, even with extended reaction times; in sharp 

contrast, trans-aziridine N-cyclohexyl sulfamate 27 cyclized ef-

ficiently (Scheme 5, Entry 1). Crystal structures of products 26 

(CCDC: 2277022) and 28 (CCDC: 2277021) allowed for un-

ambiguous determination of relative stereochemistry. The iden-

tities of other products were assigned by analogy. Multi-fold 

increases in scale were tolerated without erosion of yield or se-

lectivity (Scheme 6).  

 The oxathiazinane products could be ring-opened 

with a variety of nucleophiles, allowing for the rapid transfor-

mation of these heterocycles into value-added products 

(Scheme 7). For example, stirring 6 with NaN3 at room temper-

ature formed azide 47, which is a triamine surrogate (Scheme 

7A). When 2 was reacted with triphosgene and NEt3 at 0 °C, 

bicyclic oxathiazinane urea 48 formed in good yield (Scheme 

7B). The reactions conditions 

 

had to be carefully controlled; when the reaction was warmed 

to room temperature, chloride 49 was the exclusive product. 

Crystal structures of 48 (CCDC: 2277025) and 49 (CCDC: 

2277024) have allowed us to confirm identity and relative ste-

reochemistry. Similar reactions with 26 allowed for formation 

of products 50 (CCDC: 2279638) and 51, which are epimers of 

48 and 49 (Scheme 7B). Bicyclic oxathiazinane ureas 48 and 

50 could be ring-opened with a diverse array of nucleophiles, 

allowing for the facile construction of C–C, C–O, C–N, and C–

S linkages (Scheme 7C). 

 In summary, we have shown that the ring-opening of 

aziridines by pendant sulfamates is a viable strategy for the 

preparation of vicinal diamines. Our reaction is compatible with 

both cis and trans di-substituted aziridines; unsubstituted, N-al-

kyl, and N-aryl sulfamates engaged effectively. In all cases ex-

amined, the cyclization reaction was perfectly regioselective 

and stereospecific. The product oxathiazinane heterocycles 

could be activated and ring-opened with a diverse range of 
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nucleophiles. 

Given the importance of vicinal diamines to multiple areas, this 

strategy is a welcome addition to existing protocols. 
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