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19
Abstract20

Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the21

development of effective drugs. To address these challenges, it is essential to analyze the22

polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This23

study presents KinomeMETA, a framework for profiling the activity of small molecule kinase24

inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural25

network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms26

benchmark multi-task models and other kinase profiling models. It provides higher accuracy for27

understudied kinases with limited known data and broader coverage of kinase types, including28

important mutant kinases. Case studies on the discovery of new scaffold inhibitors for PKMYT129

and selective inhibitors for drug-resistant mutants of FGFRs demonstrate the role of30

KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA31
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has the potential to accelerate kinase drug discovery by more effectively exploring the kinase32

polypharmacology landscape.33

Introduction34

Protein kinase-mediated cellular signaling pathways are responsible for a range of35

physiological and pathological processes. Kinase-targeted inhibitors have emerged as a promising36

therapeutic approach and have been applied clinically for a wide range of diseases, including37

cancer and inflammation1, 2. However, due to the structural similarity of kinases, many kinase38

inhibitors modulate multiple target proteins, resulting in either therapeutic effects or unwanted39

side effects. Single-target kinase inhibitors are preferred as have fewer off-target interactions and40

lower side-effect risks, making them clinically safer3. However, many severe diseases require41

modulation of multiple targets or overcoming therapeutic resistance, leading to the development42

of multi-target kinase inhibitor. Such inhibitors have the potential to be more effective than43

individual inhibition processes, which are frequently bypassed by alternative compensatory44

biological routes4, 5.45

Kinase inhibitors which can target multiple signaling pathways with minimal risks associated46

with polypharmacy are crucial for developing highly effective targeted therapies. To design and47

optimize kinase-targeted drugs rationally, it is essential to gain insights into the selectivity or48

promiscuity of inhibitors. Kinome-wide activity profiling can provide multidimensional49

structure–activity relationships simultaneously against hundreds of kinases, but experimental50

screening for a broad spectrum of kinases remains time-consuming, technically challenging, and51

costly5, 6. Moreover, this type of profiling is usually carried out during the later stages of drug52

discovery, making it challenging to offer guidance for molecular design. Recent advances in deep53

learning technology have made in-silico screening assays more reliable, allowing investigators to54

annotate compounds with the kinase spectrum more rapidly and cost-effectively in the early stages55

of drug discovery. Various models have been proposed to predict the polypharmacological effects56

of small molecular kinase inhibitors, such as naive Bayes (NB)7, Random forest (RF)8, Support57

vector machine (SVM)7, 9, 10, 11 and Deep neural network (DNN)12, 13. Merget et al. used single-task58

(ST) random forest to create activity prediction models for more than 280 kinases. They showed59

that models with a high number of active compounds (more than 1000) typically have auROC60

values above 0.88. In our prior work we developed a multi-task (MT) DNN model based on the61
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molecular ECFPs to predict the inhibitory effects of small molecules against 391 kinases. The62

MT-DNN model showed superior performance over ST machine learning (ML) models with an63

average auROC of 0.90, especially for kinases with limited activity data. The generalization64

ability of MT-DNN demonstrated that multi-task transfer learning is an effective strategy for the65

prediction of a large panel of kinases14. Recently, Bao et al. applied graph neural networks (GNNs)66

to MT learning to predict the inhibition profiles for small molecules against 204 kinases. GNNs67

can produce task-specific representation for molecules and has been proved to have better68

performances than models based on pre-defined descriptors15. In addition to ligand-based69

strategies, multidimensional relationships can also be constructed from the perspective of70

heterogeneous networks that describe the compound-protein interactions. IDDkin applied graph71

convolution networks (GCNs) to diffuse the information of heterogeneous networks to enhance72

the prediction of kinase inhibitors16. However, network-based methods have limitations in the case73

of large graphs, making it hard to diffuse information for large-scaled datasets of74

compound-kinase pairs. Therefore, only around 1000 molecules were used for building the75

network of IDDkin.76

Developing virtual profiling methodologies for kinases presents a challenge due to77

insufficient data for understudied kinases. This limitation is a significant bottleneck for accurately78

predicting a broader spectrum of kinases, particularly “dark” or mutant kinases, where the number79

of known active compounds is insufficient for building accurate models. Additionally, existing80

models for predicting kinases are often not extensible, making it difficult to generalize to new81

kinases that have not been included in training (unseen tasks). Even if additional data are obtained82

from new literature or wet-lab experiments, traditional models struggle to incorporate this new83

data and extend the predictable kinase spectrum.84

Meta-learning is a promising algorithm that can address the challenge of low-data, which85

leverages previous knowledge acquired from data to solve novel tasks quickly and efficiently.86

Meta-learning has been adopted in some fields of drug discovery, such as molecule optimization17,87

drug response prediction18, chemical-protein interactions prediction19, T-cell receptor-antigen88

binding recognition20, etc. The advantages are as follows: the ability to learn from a handful of89
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examples, learning or adapting to novel tasks quickly, and the capability to build more90

generalizable systems21. Therefore, meta-learning has the potential to become a new paradigm for91

the future drug discovery, which demands a closed-loop automated procedure that synergies92

between the components of the conventional discovery procedures and extensible AI methods22.93

This study presents KinomeMETA, a general framework for profiling the activity of small94

molecule kinase inhibitors across a panel of 661 kinases. One of the key challenges in virtual95

profiling methodologies for kinases is the limited availability of data, particularly for some mutant96

forms and understudied kinases. To address this challenge, KinomeMETA utilizes a modified97

meta-learning strategy integrated with a graph neural network. This strategy enables98

KinomeMETA to effectively learn from limited data and enhance its predictive capabilities, thus99

expanding the coverage of kinome-profiling. Additionally, the framework incorporates fast100

fine-tuning that enables it to generalize to unseen kinases with high accuracy, overcoming the101

limitations of previous machine learning models that were restricted to specific kinases within102

their modeling domains (Fig. 1). We assess the performance of KinomeMETA from three103

different perspectives, corresponding to different application scenarios including kinome-wide104

activity profiling, mutant kinase selectivity prediction, and rapid adaptation to previously unseen105

kinases. Moreover, we apply KinomeMETA in these practical scenarios, such as the discovery of106

new scaffold inhibitors for PKMYT1 and retrospective analysis of selective inhibitors for107

drug-resistant mutants of FGFRs. By integrating it into the iterative predict-experiment cycles, we108

show that KinomeMEAT can aid in the rational design of kinase inhibitors with a more favorable109

selectivity profile. This paves the way for the development of more effective targeted therapies.110
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111

Fig. 1 | The overall architecture of KinomeMETA.112

113

114
Results115
Processing Kinase Inhibitor Data116

The structure and activity data of kinase-compound pairs were collected and integrated from117

open-source databases, ChEMBL23, PubChem24 and DKKB25 (Dark Kinase Knowledgebase)118

Briefly, those kinase-compound pairs passing the following filters were retained: (i) the assay type119

was binding, (ii) the bioactivity type was IC50, Ki, EC50, Kd or %Inh and (iii) the target is single120

protein kinase whose confidence score is 9 in ChEMBL. For building classification model,121
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bioactivity data were converted to two classes: positive (pKi/pKd/pIC50/pEC50 ≥ 6 or %Inh ≥ 80%)122

and negative (pKi/pKd/pIC50/pEC50 < 6 or %Inh < 80%). Only kinases with positive compounds123

were kept. Specifically, the final datasets encompass over 612,000 manually curated bioactivity124

datapoints, spanning over more than 160,000 distinct compounds and 661 kinases, including 118125

mutants. The specific data statistics are shown in Fig. 2. There are 543 wild-type kinases that126

mainly belong to Homo sapiens, Mus musculus and Rattus norvegicus (Fig. 2c), along with 118127

mutations involving 44 different kinases, mostly human tyrosine kinases (TK) and tyrosine128

kinase-like (TKL) kinases (Fig. 2d). Furthermore, as meta-learning reduces the demand for129

training data, a large number of kinase domains with data records less than 50 were retained to130

build a broader task panel, including kinases that have not been fully studied and some rare131

mutation types (Fig. 2a and 2b).132

In addition, we have built a credible set of negative samples to reduce false positive133

predictions caused by the imbalanced distribution of samples. In real-world virtual screening134

scenarios, negative results often greatly outnumber positive results, but the135

experimentally-validated negative samples are often insufficient. Here, three property-matched136

decoys26 have been sampled for each positive data from BindingDB database, resulting in a137

negative-positive ratio of approximately 1:5 in the final datasets. The distribution of molecular138

weight and logP of decoys is relatively consistent with that of the original samples (see139

Supplementary Fig. 1). This approach encourages the model to learn an information-rich140

representation of molecules rather than biases in their properties, thus improving its prediction141

accuracy.142

143
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144

Fig. 2 | Statistics of the dataset. a, Statistics of wild-type kinase data: Histogram illustrates the145

distribution of tasks across different ranges of data sizes. Each task represents a class of kinase146

and data points correspond to the inhibitors of the kinase. The light blue area within each bar147

represents the number of Homo sapiens kinases, while the gray area represents kinases from other148

organisms. b, Statistics of mutant kinase data. The dark blue area within each bar represents the149

number of Homo sapiens kinases, while the gray area represents kinases from other organisms. c,150

Distribution of organisms and subfamilies of wild-type kinases. d, Distribution of subfamilies of151

mutant kinases.152

153
The implementation of KinomeMETA154

155
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KinomeMETA is a general framework designed to assess the probabilities of a molecule156

inhibiting a panel of kinases. The framework integrates a model-agnostic meta-learning algorithm,157

Reptile27, with Attentive-FP28, a graph attention neural network-based molecular representation158

model. Kinases are considered to be broadly related tasks, many of which are not thoroughly159

studied and therefore qualify as few-shot tasks. The meta-learning algorithm generates a160

well-generalized meta-learner by training it on a distribution of various learning tasks that are161

intrinsically related. As a result, the meta-learner can transfer new tasks with just a few training162

samples, making it suitable for few-shot learning.163

To implement KinomeMETA, the collected kinases were divided into training tasks ������ ,164

validation tasks ������ and test tasks ����� at task level. ������ were used to train a meta-learner165

with the optimal initialization parameters, while both ������ and ����� were used to build166

kinase-specific base-learners for evaluating the generalization of the meta-learner in fine-tuning167

scenarios. Specifically, ������ was used for optimizing the meta-learner, whereas ����� was used168

for the comparisons with other methods. At the instance level, 20% of the compounds in every169

task were segregated for testing the performance of the kinase-specific base-learners. In the170

training tasks, the remaining compounds were further randomly divided into a support set and171

query set at a ratio of 4:1, similar to a normal meta-learning process (Fig. 3a).172

During the meta-training phase, the meta-learner performs multiple gradient descents within173

the task by utilizing the support set. This process generates a model that updates its parameters174

based on the prediction errors made on the query set, as shown in Fig. 3b. In the fine-tuning phase,175

the meta-learner undergoes additional gradient steps on the support set of N test tasks, creating N176

task-specific base-learners that can effectively classify examples in the query set for each of the N177

test tasks, as shown in Fig. 3c. To build KinomeMETA for the specific case of N-way K-shot178

few-shot classification problems, we selected the strategy of 2-way 3-shot classification. This179

means that for each of the two classes of compounds (N = 2), namely positive and negative, we180

sampled three compounds (K = 3, determined through hyperparameter searching as shown in181

Supplementary Fig. 3 and Supplementary Table 1) for the selected kinase tasks.182

In fact, we do not need to train the meta-model with a fixed partition ratio of tasks to183

establish a generalizable meta-learner, but only with a few representative kinase tasks.184

Transferring knowledge among tasks with heterogeneous attribute spaces, such as kinases, is185
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challenging in general meta-learning framework. To address this challenge, we have modified the186

meta-training strategy by training the meta-learner hierarchically in a task cluster-wise manner,187

based on the hierarchical cluster of the task representations for 661 kinases (see Fig. 3d for details,188

as well as the Method sections and Supplementary materials). We sampled kinases from every189

cluster as equally as possible and progressively added them into the meta-learner as training tasks.190

After training on 113 kinases, we obtained a meta-learner with the best generalization, with an191

average MCC of 0.73 on validation tasks (Supplementary Fig. 2c). By progressively training the192

meta-learner in a cluster-wise manner, we can balance the knowledge learned across193

heterogeneous kinase tasks, preventing the meta-model from being dominated by closed tasks in194

the majority cluster and improving its generalization. Supplementary Fig. 2c compared the195

cluster-wise training strategy with the baselines by adding random tasks iteratively or by adding196

all tasks in the first iteration.197

198

Fig. 3 | Data Splitting Strategy and Training Process. a, Data Splitting Strategy. b, The199

meta-training phase. c, The fine-tuning phase. d, Cluster-wise training strategy.200
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201

202
KinomeMETAdemonstrates high performance for kinase profiling203

204

During the meta-training phase, the meta-learner was established in a task cluster-wise205

manner, involving 113 kinases. In the subsequently fine-tuning phase, the meta-learner was206

optimized for unseen tasks originating from a diverse attribute space. To enable comprehensive207

polypharmacology profiling across the kinome, a panel of fine-tuned models encompassing 661208

kinases including training, validation and test tasks needed to be constructed and assessed. Our209

objective was to evaluate the performance of KinomeMETA from three different perspectives,210

corresponding to various application scenarios. First, we evaluated the overall performance on211

kinome-wide tasks. This involved constructing kinase-specific base-learners for all kinases not212

included in the meta-training set (����� ), and assessing the model's generalization capabilities.213

Additionally, we built base-learners for the 113 tasks in ������ , which formed the foundation of214

the kinome-wide virtual screening panel essential for evaluating inhibitor selectivity. Second, we215

assessed KinomeMETA's performance on tasks involving mutated kinases, as kinase mutations216

play a critical role in human diseases, particularly in cancer, and are of significant interest. Lastly,217

we evaluated KinomeMETA's performance on few-shot kinase tasks that were not incorporated218

during the model's training phase. Evaluating unseen few-shot tasks was given priority to219

demonstrate the meta-learning's ability to construct more generalized systems. Moreover, few-shot220

tasks corresponded to kinases with limited characterization, making them particularly worth221

exploring.222

We implemented a baseline method that uses a multi-task transfer learning approach based on223

Graph Neural Networks (GNN). The multi-task GNN model (MTGNN) is based on our previous224

work14, which was initially pre-trained on ������ and subsequently fine-tuned on each task in225

����� , following the similar procedure as KinomeMETA. Further implementation details can be226

found in the Supplementary materials and Supplementary Fig. 7.227

228

Overall performance on kinome-wide tasks. KinomeMETA outperforms MTGNN on both229

meta-training tasks ������ and unseen tasks ����� . It adapts well to tasks within the training field230

(Fig. 4a) while maintaining a high level of generalization to unseen kinases. Fig. 4b showed that231
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most kinase-specific learners built from KinomeMETA have MCCs above 0.6 (452 out of 517 test232

tasks). This suggests that KinomeMETA can provide accurate predictions for kinome-wide233

activity profiles. Specifically, for 412 predictable wild-type human kinases, MCCs of 189 kinases234

are higher than 0.8, while only 12 of them have MCCs less than 0.4 (Fig. 4c and Supplementary235

Table 5 provides details on each task). These results confirmed that KinomeMETA has overcome236

the limitations of previous models that could only predict a small range of targets, achieving the237

goal of large-scale kinase prediction and selectivity analysis.238

Performance on mutations tasks. Generalizing to mutants of kinases is a challenging task. This239

challenge stems not only from insufficient data but also from inherent conflicts resulting from data240

distribution differences among tasks. In other words, molecules for wild-type kinases and241

corresponding mutant tasks may have some opposing labels due to drug resistance caused by242

mutations. In transfer learning, these distribution differences can lead to negative transfer,243

especially when model parameters are extensively shared across all tasks, such as in MTGNN29.244

To examine whether KinomeMETA can adapt to the different distribution between wild-type245

kinases and their mutant forms, we compared it with MTGNN and another baseline model called246

"SameAsWild". This baseline represents an overfitted model that can only learn the label247

distribution from wild-type kinases and transfer this "naïve knowledge" to their mutant forms.248

When compared to MTGNN, KinomeMETA demonstrates significantly superior performance249

on mutation tasks (Fig. 4d). Further evaluation for each kinase with at least four mutation types250

reveals robust performance of KinomeMETA for the majority of mutations. As shown in Fig. 4e,251

the data points mostly concentrated in the second and fourth quadrants, indicating higher MCC252

values of KinomeMETA. In contrast, MTGNN shows MCCs of 0 for many tasks. Comparing with253

"SameAsWild," KinomeMETA also exhibits substantial superiority (Fig. 4d). This is true even254

when modeling data is scarce, as exemplified by KIT-D820Y, KIT-K642E, and KIT-Y823D shown255

in Fig. 4f (refer to Supplementary Fig. 4 for labels of samples in KIT and its mutant forms;256

Supplementary Fig. 5 displays the heatmaps for other kinases' mutant forms). In addition,257

MTGNN demonstrates moderate performance similar to "SameAsWild" (Fig. 4d) and even258

performs worse than "SameAsWild" in certain mutant tasks due to negative transfer. These results259

demonstrate that KinomeMETA can identify the drug resistance of wild-type kinase’s active260

compounds to their mutant forms, rather than simply overfitting to the training data. This ability261
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can be attributed to the advantage of the meta-learning approach employed by KinomeMETA,262

which mitigates overfitting through two different time scales of learning: slow learning for263

common features of molecular interactions with kinases during meta-training phase, and fast264

learning for task-specific aspects of kinase inhibition in the fine-tuning phase. This combination265

allows meta-learning to develop an understanding of a wide range of kinase tasks from more266

stable parts, while also enabling faster adaptation for changes with less data30. This ability is267

crucial for the successful screening of inhibitors targeting drug-resistant kinase mutants.268
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269

Fig. 4 | The performance of KinomeMETA on overall tasks and mutations tasks. a, The270

MCC-based performance comparison between KinomeMETA and MTGNN on the training tasks.271

b, The MCC-based performance comparison between KinomeMETA and MTGNN on test tasks. c,272

The phylogenetic tree of 412 predictable wild-type human kinases, with each point representing273

the MCC of a specific kinase. d, The MCC-based performance comparison between274

KinomeMETA, MTGNN and “SameAsWild” on human kinase mutation tasks. The statistical275
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analyses were performed by one-tailed Wilcoxon Signed-Rank test. (*) 0.01 ＜ p ≤ 0.05; (**)276

0.001 ＜ p ≤ 0.01; (***) p ≤ 0.001. e, The performance of KinomeMETA and MTGNN for277

kinases with over 4 mutation types (KITmuts, ABL1muts, EGFRmuts, ALKmuts, METmuts, FLT3muts, and278

RETmuts), as well as for kinases with less than 4 mutation types (Othersmuts). The scatter plot279

visualizes the relationship between KinomeMETA and MTGNN MCC values for different mutants280

of corresponding wild-type kinases. Each point on the plot represents a mutant form, with red281

points indicating a higher MCC for KinomeMETA and blue points representing a higher MCC for282

MTGNN. f, The performance of KinomeMETA for KIT mutants, comparing it to MTGNN and the283

"SameAsWild" prediction, all measured by MCC.284

285

Performance on few-shot learning tasks.When addressing few-shot tasks through meta-learning,286

the size of the available data affects the fine-tuning performance. While having more available287

data should improve task-specific base-learners, training understudied kinase tasks with a very288

large amount of data is impractical. KinomeMETA aims to reduce data requirements in such cases.289

We conducted a statistical analysis of model performance across kinases with varying data sizes290

and found that KinomeMETA is effective for kinases with less than 50 active samples (as shown291

in Fig. 5a). In fact, KinomeMETA significantly outperformed MTGNN for all ranges of data sizes292

(Fig. 5b).293

We designed a data-adding experiment to demonstrate the usage of KinomeMETA in a294

low-data scenario for drug discovery. Specifically, we selected EGFR, a kinase with a large dataset295

of 6250 active compounds in ����� to simulate the low-data scenario. We trained EGFR-specific296

base-learners with increasing data size to determine when we could achieve satisfactory297

performance. This process is referred to as a "data-adding experiment". We evaluated the298

performances of KinomeMETA, MTGNN, and a "random prediction" baseline model on 20% of299

the compounds, which were randomly and consistently split. The results are shown in Fig. 5c300

measured by MCC and Supplementary Fig. 6 measured by auROC. Comparing with the "random301

prediction" model can verify the effectiveness of the trained model. To do this, we randomly302

assigned active/inactive labels to test compounds and calculate the metrics with true labels. With303

one-shot learning setting, i.e., training with one active and one inactive compound,304

KinomeMETA’s EFGR model achieved an MCC of 0.11 and an auROC of 0.62, while the305
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“random prediction” model achieved an MCC of 0 and an auROC of 0.5. These findings306

demonstrated that KinomeMETA can effectively learn from a very small amount of data.307

Furthermore, KinomeMETA was able to be optimized more quickly than MTGNN when the data308

size was increased by adding an active and an inactive data point each time. The performance gap309

between KinomeMETA and MTGNN increased as well. Within only 20-shot learning,310

KinomeMETA achieved a strong performance (MCC = 0.68, auROC = 0.91), which was close to311

the performance achieved when training with all 4999 active compounds in the training set (MCC312

= 0.72, auROC = 0.92). In contrast, MTGNN had slower performance growth and earlier313

convergence, resulting in significantly lower performance metrics compared to KinomeMETA.314

The size of the training data plays a crucial role in determining the predictive power of a315

task-specific base-learner. However, KinomeMETA demonstrated impressive performance on316

different fine-tuning shot numbers, highlighting its practical value in low-data scenarios for317

understudied kinases. Additionally, modeling with few-shot kinases offers an added benefit of318

quickly training new models for previously unseen kinases. With as few as 10 samples,319

KinomeMETA can be used to construct a model with decent performance for a new task. This320

means that KinomeMETA can be continuously extended to effectively address the problem of321

previous machine learning models that could only predict specific kinases within their modeling322

domain.323
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324

Fig. 5 | KinomeMeta’s performance on few-shot learning tasks and comparison with325

previous models. a, Performance comparison between KinomeMETA and MTGNN on few-shot326

learning setting, where the range of training active compounds is from 1 to 50. For each range,327

small scatters represent the Matthews correlation coefficient (MCC) of each task in the328

corresponding range, while the large scatters with error bars represent the average and standard329

deviation of them. b, Overall performances comparison between KinomeMETA and MTGNN330

using a bar plot. Each bar indicates the average MCC of tasks within the underlying range, and its331

error bar indicates standard deviation of them. KinomeMETA is colored in red and MTGNN in332
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blue. c, Performance comparison between KinomeMETA and MTGNN in the data-adding333

experiment, in terms of MCC. d, Comparing KinomeMETA’s performance with RF, MT-DNN,334

IDDkin, ST-DNN and Auto-Sklearn based on the dataset of IDDkin. Bar plots of model335

performance on MCC. A bar indicates the average MCC of all modelling kinase tasks, and its error336

bar indicates standard deviation of them. e, Comparing KinomeMETA’s performance with RF,337

MT-DNN, IDDkin, ST-DNN and Auto-Sklearn based on the dataset of IDDkin on few-shot kinase338

tasks (< 10 active data points) measured by MCC. All Statistical analyses were performed by339

one-tailed Student’s t-test. (*) 0.01 ＜ p ≤ 0.05; (**) 0.001 ＜ p ≤ 0.01; (***) p ≤ 0.001.340

341

342

KinomeMETAoutperforms previous kinase profiling models343

We conducted a comparative analysis of KinomeMETA and several machine learning344

methods for kinase profiling, including RF8, multi-task DNN14 (MT-DNN) and network-based345

IDDkin16. Additionally, we evaluated two widely used general target prediction methods:346

single-task DNN (ST-DNN) and Auto-Sklearn31. Since IDDkin is not suitable for large graphs due347

to the use of the GCN, we used the modelling dataset reported in IDDkin to train the meta-learner348

of KinomeMETA and fine-tuned it on these kinases. The remaining methods were also trained349

using the same dataset as IDDkin. The implement of each method can be found in the350

Supplementary materials, and the parameter settings for each model are provided in351

Supplementary Table 2.352

The results show that KinomeMETA outperformed all other methods significantly (Fig. 5d353

and Supplementary Table 3). Fig. 5e illustrates the kinase-specific performance of each algorithm354

on 35 few-shot learning tasks that have less than 10 positive training samples. KinomeMETA355

exhibited superior performance on 22 tasks, with MCC over 0.4 for 23 tasks, demonstrating its356

robustness. Single-task algorithms exhibit quite unstable performances on these tasks.357

Auto-Sklearn achieved MCC values higher than 0.4 on four tasks, while ST-DNN failed to358

achieve values higher than 0.4 on any task. In contrast, the performance of multi-task algorithms,359

such as MT-DNN, was relatively stable on few-shot kinases, with 11 kinases’ MCC above 0.4, as360

previously reported14. However, the average MCC of MT-DNN is moderate, possibly due to361

negative transfer for some tasks caused by the hard parameter sharing mechanism. IDDkin, the362
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network model, performed only slightly better than random prediction when measured by MCC.363

Although IDDkin has previously reported high auROC values, it had very low F1-scores, which364

can be attributed to treating all unknown kinase-compound pairs as negative samples during365

training, resulting in biased prediction. In conclusion, KinomeMETA consistently outperformed366

other models in most kinases, particularly in those with less known data, regardless of whether it367

is a single-task, multi-task, or network algorithm. The robustness of KinomeMETA further368

supports its ability to enhance kinome-wide virtual profiling.369

370

371

KinomeMETA-aided discovery of kinase inhibitors372

Discovery new scaffold inhibitors for PKMYT1. Kinases are key targets for therapeutic373

development efforts, but the biological function of nearly one-third of kinases is largely unknown.374

The Dark Kinase Knowledgebase (DKKB; https://darkkinome.org) is specifically focused on375

developing a better understanding of the approximately 160 understudied kinases whose function376

in human biology is poorly understood25. Among them, the membrane-associated tyrosine- and377

threonine-specific cdc2-inhibitory kinase (PKMYT1) is of particular interest and has been selected378

in the early stages of this project. PKMYT1 preferentially phosphorylates and inactivates379

cyclin-dependent kinase 1 (CDK1), and is a compelling therapeutic target for the treatment of380

certain types of DNA damage response cancers due to its established synthetic lethal relationship381

with CCNE1 amplification32.382
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383
Fig. 6 | The screening results of PKMYT1. a, The inhibition rates for 50 screened compounds at384

an inhibitor concentration of 20 µM. b, The inhibition rates, IC50 and structures for 9 compounds385

with inhibition rate >60%. c, Uniform manifold approximation and projection (UMAP) and386

representative chemical structures for FDA approved kinase-targeted drugs (gray scatters), new387

identified PKMYT1 inhibitors (red scatters), previously reported PKMYT1 inhibitors (a variety of388

blue and green scatters).389

390
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PKMYT1 is a highly selective kinase that is difficult to inhibit compared to other kinases.391

According to a comprehensive analysis of kinase inhibitor selectivity by Davis et al.33 only 4.17%392

of the tested compounds inhibit PKMYT1, including the multi-targeted tyrosine kinase inhibitors393

dasatinib (Fig. 6c), bosutinib, and some pyridopyrimidine derivatives34. Only 2% of all the tested394

kinases have such low propensity for compound binding. Platzer et al.35 tested 800 compounds395

from kinase inhibitor libraries PKIS I and II and identified only 10 PKMYT1 inhibitors with IC50396

values in the nanomolar and micromolar range (e.g., GW559768X in Fig. 6c). They subsequently397

designed a set of diaminopyrimidine derivatives, which are active in the sub-micromolar range398

(e.g. compound 5l in Fig. 6c)36. A patent (US11332473B2)37 claimed a set of substituted399

pyrazolo[3,4-d]pyrimidines as Wee1 inhibitors, in which compound “1.40” is active against400

PKMYT1 with an IC50 of 0.121 μM. In 2022, Szychowski et al.38 reported the discovery of the401

first potent, selective, and orally bioavailable PKMYT1 inhibitor, RP-6306. This inhibitor shows402

an IC50 of 0.002 μM, and high selectivity observed over the highly homologous enzyme Wee1.403

Currently, PKMYT1 inhibitors are limited to several scaffolds, including pyridopyrimidine,404

azastilbenes, 4-aminoquinolines, aminopyrimidines and pyrrolo[2,3-b]pyridin-2-amine (Fig. 6c)36.405

The lack of potent and selective PKMYT1 inhibitor with new scaffolds has hindered further406

research. To address this challenge, a virtual screening with KinomeMETA combined with407

molecular docking was performed to discover new PKMYT1 inhibitor scaffolds. From HTS408

Compound collection of Life Chemical Screening Library, which contains over 525,000 drug-like409

compound, 50 candidates were selected and purchased for further experimental evaluation (see410

method; details of these compounds are shown in Supplementary Table 6). Nine compounds411

showed inhibition rate >60% in the initial screening performed at 20 µM inhibitor concentration412

(Fig. 6a). The IC50 values were determined for these hits using the FP binding assay, and the413

potent compounds with inhibitory activity in the low-micromolar range were confirmed (Fig. 6b414

and Supplementary Fig. 8). Despite the difficulty of inhibiting PKMYT1, as evidenced by the hit415

rate of 4.17% reported by Davis et al.33 and 1.25% (10/800) reported by Platzer et al.35 from416

known kinase inhibitor libraries, KinomeMETA can distinctly enrich PKMYT1 inhibitors from a417

large-scale compound library with a high hit rate of 18.00% (9/50), demonstrating its effectiveness418

for virtual screening.419
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As shown in Fig. 6c, the spatial projection of newly identified PKMYT1 inhibitors is far420

from that of known PKMYT1 inhibitors and FDA approved kinase-targeted drugs. This421

demonstrated that KinomeMETA can identify new PKMYT1 inhibitors with structural novelty,422

providing different scaffolds such as xanthine (compound 27, 8, and 7),423

pyrazolo[3,4-d][1,2,4]triazolo[4,3-a]pyrimidin-5-one (compound 26), 1,2,4-oxadiazole424

(compound 21). These scaffolds are not present in any known PKMYT1 inhibitors and therefore425

are not used in the training of PKMYT1’s model. However, KinomeMETA can still identify these426

scaffolds since some of them have been identified active for other kinases and trained in the427

meta-learner. For example, xanthine and its derivatives have been revealed as potential apoptotic428

antitumor agents that inhibit EGFR, KDR and BRAF39, 40, 41. KinomeMETA has incorporated a429

methylxanthines derivative in the meta-training process on KDR task. Similarly, 1,2,4-Oxadiazole430

derivatives have been reported to target EGFR and c-Met degradation in TKI resistant NSCLC42.431

In contrast, to the best of our knowledge, pyrazolo[3,4-d][1,2,4]triazolo[4,3-a]pyrimidin-5-one has432

not been included in any previously approved drugs or known kinase inhibitors. This new scaffold433

can be referred to as “settler” that contributes to important advancements for new therapies43.434

In summary, the identification of PKMYT1 inhibitors with new scaffolds highlights the435

KinomeMETA’s effectiveness in large-scale virtual screening scenarios. KinomeMETA436

significantly improves the hit rate in experimental screens for challenging-to-inhibit kinases with437

limited available inhibitors. Additionally, KinomeMETA's strong generalization ability, which438

results from its fitting to diverse chemical spaces during meta-training process, facilitates439

innovation in small molecule drugs by enabling the discovery of structurally novel compounds.440

This potential for target-specific therapies holds promise for the development of novel and441

effective treatments.442

443

Retrospective analysis of the inhibitors targeting understudied FGFR mutants.444

In the treatment of various types of tumors, fibroblast growth factor receptors (FGFRs)445

inhibitors have been successfully used 44. However, gain-of-function mutations in FGFRs can lead446

to drug resistance, which requires the development of alternative treatment strategies. Identifying447

new agents that target the gatekeeper and other high incidence resistant mutant of FGFRs could448

provide therapeutic promise for a subclass of patients of lung cancers, gastric cancer, breast449
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cancers, etc.45, 46.450

We conducted a retrospective analysis to assess the effectiveness of KinomeMETA in451

identifying effective and selective inhibitors for FGFR drug-resistant mutants. In our previous452

study, we obtained a high-potency lead compound 1 as a multi-target FGFRs inhibitor (compound453

1547) that acts as a multi-target inhibitor of FGFRs. We subsequently synthesized and evaluated a454

series of derivatives of compound 1548, 49. Among these compounds, we identified compound 2e as455

a highly selective inhibitor for the drug-resistant mutant FGFR2-N549H (Fig. 7a)49. Here, we456

utilized KinomeMETA to predict the kinome spectrum of compound 15 and compound 2e, aiming457

to evaluate its ability to profile the kinome-wide potency and selectivity of these compounds.458

There is limited knowledge about selective inhibitors for some understudied FGFR mutants,459

such as FGFR1-V561M, FGFR2-V564F, FGFR2-N549H, and FGFR3-V555M. These mutants460

pose a few-shot learning challenge for KinomeMETA. To address this, we fine-tuned the461

kinase-specific models according to newly added data. The base-learners for FGFR1-V561M,462

FGFR2-N549H and FGFR3-V555M were expanded through fast adaption to recently reported463

compounds (Fig. 7b)50, 51, 52, 53, 54, 55, 56. Compared to the moderate performance of the original464

models of FGFR1-V561M and FGFR2-N549H, the performance of these finetuned models465

improved, while the performance of FGFR3-V555M remained consistently high (Fig. 7c). Further466

details regarding the data and model performance of the FGFRs are shown in Supplementary467

Table 4. Using these fine-tuned models, we conducted kinome profiling to determine the468

inhibitory probabilities of these compounds against predictable human kinases, and identified469

compound 2e as a high-selective inhibitor of drug-resistant mutant FGFR2-N549H.470

The predictions generated by KinomeMETA agree well with the experimental results471

obtained from Kinomescan profiling by Eurofins Discovery. The experimental profiling against a472

panel of 412 kinases at 1 μM concentration indicates that compound 2e could selectively inhibit473

FGFR2-N549H mutant with an IC50 values of 16 nM, and has no substantial inhibitory effect474

against 95.7% (397/415) tested kinases. For the 331 predictable kinases in the Kinomescan panel,475

the auROC between experimental and predicted profile of KinomeMETA is up to 0.84 (Fig. 7d).476

Specifically, for FGFR mutants, KinomeMETA correctly predicted that the compound 2e is active477

toward FGFR2-N579H, while inactive toward FGFR1-V561M, FGFR2-V564F, and478

FGFR3-V555M (Fig. 7f). All experimental and predicted results are shown in Supplementary479
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Table 7.480

Moreover, KinomeMETA's high-precision kinome-wide profiling capabilities render it a481

valuable tool for evaluating selectivity. We calculated the standard scores3 (see Method) of both482

the lead compound 15 and the optimized compound 2e. Fig. 7g compared the standard scores483

obtained from the experimental and predicted profiles for these compounds. These profiles484

showed consistent trends, indicating the reliability and accuracy of KinomeMETA in assessing485

selectivity.486

To comprehensively assess of the sensitivities of kinase inhibitors, we used KinomeMETA to487

predict the activity profiles and selectivity scores of 243 kinase inhibitors that are either approved488

for clinical use or in clinical trials. The obtained results agreed well with the selectivity scores489

determined by a chemical proteomic approach57 (Fig. 7e), showing a significant rank correlation490

(Spearman correlation = 0.752) and similar distribution. The distribution also revealed that491

compound 2e possesses higher selectivity than most known kinase inhibitors, whereas compound492

15 exhibits moderate selectivity. This highlights the potential of KinomeMETA to prioritize493

inhibitors based on their kinome-wide selectivity.494

In conclusion, the experiment confirmed the exceptional predictive performance of495

KinomeMETA. It may serve as a valuable tool for accurately profiling kinase inhibitors and496

assessing their selectivity. Moreover, it can effectively address low-data scenarios, such as497

drug-resistant kinase mutations, due to its ability to incorporate newly added activity compounds.498
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499

Fig. 7 | The retrospective analysis of the inhibitors targeting understudied FGFR mutants. a,500

Chemical structures of compound 15 and 2e. b, Distribution of data points in the base-learners for501

FGFR1-V561M, FGFR1-V564F, FGFR2-N549H, and FGFR3-V555M. The red solid bars indicate502

the original number of positive compounds, while the blue solid bars represent the original503

number of negative compounds. Similarly, the red hollow bars indicate the number of positive504

compounds added, while the blue hollow bars represent the number of negative compounds added.505
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c, Model performance measured by MCC for the original and expanded base-learners for506

FGFR1-V561M, FGFR2-N549H, and FGFR3-V555M. d, Model performance measured by ROC507

curve of compound 2e against 331 predictable kinases screened in the Kinomescan panel. e,508

Distribution of standard scores for 243 kinase inhibitors calculated from KinomeMETA's509

predicted profile (x-axis) and reported experimental profile (y-axis). f, Inhibitory activities and510

predicted active probability of compound 2e against FGFR mutants. g, Phylogenetic tree depicting511

predicted profiles for compound 15 (left) and compound 2e (right). The table presents standard512

scores obtained from the experimental and predicted profiles for these compounds.513

514

Discussion515

Kinases represent a crucial family of therapeutic targets, especially in cancer treatment.516

However, the efficacy of kinase inhibitors is limited by drug resistance resulting from mutations517

and hindered by adverse reactions due to off-target effects. Conventional experimental methods518

are time-consuming, expensive, and unsuitable for high-throughput screening. Existing519

computational models have limitations in predicting new diverse kinases or adapting to new520

kinase tasks with limited data. To address these challenges, we propose KinomeMETA, a general521

framework for predicting kinome-wide inhibitory activity profile.522

KinomeMETA is a powerful tool that integrates meta-learning and GNN with task clustering.523

This integration enables KinomeMETA to exhibit strong generalization capabilities and rapid524

adaptability. It consistently outperforms baseline models and other previously reported models525

across various tasks, including mutated and understudied kinases. Its superior performance may526

enhance the efficiency of drug screening. For understudied kinases, the identification of527

structurally novel active compounds can contribute to a better understanding of these kinases.528

PKMYT1 is a challenging kinase with a low screening hit rate and limited numbers of active529

compounds. By combining KinomeMETA and molecular docking, we significantly enhanced the530

hit rate for PKMYT1 (18.00% vs 4.17%), identified new compounds with scaffolds that differ531

from known active compounds, and greatly reduced the experimental cost (only 50 compounds532

were tested). On the other hand, KinomeMETA's accurate prediction ability in kinome-wide533

profiling enables the screening of selective drugs. The selectivity of kinase inhibitors is crucial for534

their efficacy and safety. FGFR is an important therapeutic target in various cancers, whose535
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mutations may lead to drug resistance. The retrospective analysis demonstrated that536

KinomeMETA is capable of identifying compound 2e as a highly selective inhibitor for537

FGFR2-N549H, surpassing the selectivity of the lead compound 15. This highlights the538

effectiveness of KinomeMETA in identifying effective and selective inhibitors for FGFR539

drug-resistant mutants. Adding newly reported data has significantly improved the performance of540

FGFR mutation task-specific models with limited samples. This feature allows KinomeMETA to541

quickly adapt to new kinase tasks by learning from a small amount of added data. As a result,542

KinomeMETA can be further expanded, overcoming the limitations of conventional models that543

can only predict within a narrow range of kinases or low generalization ability to new kinases.544

Although KinomeMETA shows good performance and potential in predicting kinase545

inhibitory activity, there are still some aspects that can be improved. Firstly, the performance of546

KinomeMETA is still limited by the quality and quantity of available data, especially for new547

kinases that differ greatly from those well studied. Therefore, collecting more experimental data to548

cover a wider range of the kinome will be a direction for further improvement. Secondly, the549

prediction ability of KinomeMETA may be affected by the diversity and feature representation of550

compounds. In addition to collecting more data, improving the method of molecular representation551

is a feasible option. Incorporating 3D information in the molecular representation of552

KinomeMETA is a promising direction, considering the successful application of these strategies553

in predicting molecular properties58. Additionally, characterizing molecules by phenotypic profiles,554

such as gene-expression profiles and Cell Painting images, may enable models to capture the555

connections between biological features of compounds, mitigating the constraints imposed by556

chemical structural similarity59.557

Overall, KinomeMETA is a valuable tool for rational design of multi-targeted selective558

kinase inhibitors. It not only helps us quickly identify novel hit compounds through large-scale559

virtual screening, but also contributes to the design of more effective and safer kinase inhibitor560

through kinome-wide activity profiling. Its scalability and rapid adaptation for new kinases make561

it well-suited for exploring so far understudied kinases, which may offer new possibilities for562

treating more diseases and addressing unmet clinical needs. We envisage that KinomeMETA will563

become an important component in the future kinase drug discovery and development.564

565
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Method566

Meta-learning Algorithms567

Reptile27 is a task-agnostic meta-learning algorithm that mathematically similar to first-order568

MAML60 (Model-Agnostic Meta-Learning). It takes less computation than MAML by performing569

standard form stochastic gradient descent (SGD) on each task in a standard form, instead of570

expanding the calculation graph or calculating any second derivative.571

Randomly sampling n tasks in a batch, Reptile algorithm performs SGD on the mixture of all572

these tasks to update initial parameter vector ϕ each iteration by573

ϕ←ϕ+β1
n �=1

� (ϕi� − ϕ)�574

where ϕi� = UTi
k (ϕ) which is the updated parameters on the ith task. Intuitively, for each task,575

there are parameters that are optimal. Taking several tasks, Reptile tries to get the initialization576

parameters for which the distance to the optimal parameters for each task is minimal. Then, based577

on the initialization that broadly suitable for many tasks, a small number of gradient updates will578

lead to fast learning on a new similar task. Hence, Reptile-based KinomeMETA first produce an579

agent (model), i.e., meta-learner, that has good average performance on any kinase task. Then, the580

meta-learner can be fine-tuned slightly (fast adaptation) with the least samples (compounds with581

bioactivity data) that are task-specific to reach the optimum base-learner for any new kinase task.582

Molecular representation algorithm583

In this study, a graph attention neural network-based molecular representation algorithm584

called Attentive-FP28 was embedded into Reptile. Attentive-FP is a molecular representation585

model, which directly takes the structural feature of small molecules as input, and defines586

molecules as graphs composed of nodes (atoms) and edges (bonds). The molecular graph of drugs587

is regarded as the structural data of the graph, which is more flexible than the predefined588

molecular descriptors and fingerprints. In particular, Attentive-FP introduces attention589

mechanisms at both local and global levels, assigning different weights to different parts of the590

input, so that the model can extract key parts of the input information.591
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Hierarchical clustering for tasks based on protein embedding592

Task heterogeneity is a critical challenge in meta-learning, which is limited to settings where593

the current task is closely related to previous ones61. However, distribution heterogeneity on594

sequences and structures of the protein kinases62, means that in practical transfer learning595

scenarios the new kinase task might not be tightly linked to previous kinases learned in the596

meta-learner. In addition, given the imbalanced kinase groups, overfitting to a dominant group597

such as TK will impair global generalization.598

Hence, to consider the task heterogeneity in the procedure of meta-training to promote599

generalization, tasks were hierarchically clustered based on its protein embedding. Protein600

embedding was generated from ESM-1b. ESM-1b is an advanced deep protein language modeling601

that condense protein sequence to learn chemical and biological concepts including structure,602

function, binding, etc., which could address the shortcomings in commonly used Phylogenetic603

trees63, 64. Then, the hierarchical clustering average linkage algorithm was used to cluster the604

protein embedding. Average linkage represents a way to measure the dissimilarity between groups605

of samples, in which dissimilarity between groups R and S is the average dissimilarity between606

each point in one group and each point in another group:607

D(R, S) =
avg

i ∈ R, j ∈ Sdij

Accordingly, all 661 kinases (including mutations) were divided into 12 groups, including a608

group for all outlier kinases. Supplementary Fig. 2a illustrates the distribution of kinase clusters,609

while Supplementary Fig. 2b displays the distribution of the training, validation, and test kinases610

sampled from these clusters.611

Metrics612

For model quality assessment, the auROC (area under the ROC curve), Recall, Precision,613

F1-score, MCC (Matthews correlation coefficient) and BACC (balanced accuracy) were evaluated614

(Table 1). The MCC is the metric we mainly discussed in this work, as is a more reliable statistical615

rate which produces a high score only if the prediction obtained good results in all of the four616

confusion matrix categories. It can produce a more informative and truthful score in evaluating617

label-imbalanced binary classifications than auROC, accuracy and F1-score65.618

Table 1. Description of the Evaluation Metrics619
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evaluation metric equation

Recall TP/ (TP + FN)

Precision TP/ (TP + FP)

F1-score 2× ��������� × ������
��������� + ������

MCC ��×��− ��×��
(��+��)(��+��)(��+��)(��+��)

BACC ( ��
��+��

+ ��
��+��

)/2

*TP is the number of correctly predicted actives (true positives). TN is the number of correctly620

predicted inactive (true negatives). FP is the number of incorrectly identified actives (false621

positives), and FN is the number of incorrectly identified inactive (false negatives).622

623

Standard score624

The standard score is computed by dividing the number of kinase hits above or below a625

threshold value by the total number of kinases tested. In the case of the predicted profile, the626

standard score is calculated by dividing the number of kinases predicted as positive (probability >627

0.5) by the total number of predictable human kinases (524). For the experimental profile of628

compound 15 and 2e, the standard scores are determined by dividing the number of kinase hits629

above a threshold of 50% inhibition at 1 μM by the total number of kinases tested. In Fig. 7e,630

which displays data for 243 kinase inhibitors, the standard scores are calculated by dividing the631

number of kinase hits above a threshold of 1000 nM (IC50 determined by a chemical proteomic632

approach) by the total number of kinases tested.633

634

Virtual screening and experimental evaluation for PKMYT1635

First, the kinase-specific base-learners of PKMYT1 were applied to score the compounds636

from the HTS Compound collection of Life Chemical Screening Library, which contains over637

525,000 drug-like compounds. Second, all other kinase-specific base-learners were applied to638

predicted the kinome spectrum to calculate selectivity scores for these compounds. Third,639

compounds with PKMYT1 probability > 0.5 and selectivity score < 0.25 were selected for further640

molecular docking to the crystal structure of PKMYT1 (PDB accession code: 8D6E) via the641
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Maestro module of Schrödinger software package. Finally, after filtered pan assay interference642

compounds (PAINS) and clustered these molecules automatically based on their extended643

connectivity fingerprints (ECFP), a total of 50 candidates were purchased for further experimental644

evaluation. The initial screening was performed at 20 µM inhibitor concentration, with RP-6306645

(1 µM) used as inhibitory control (100% effect, measured as displacement) and 1% DMSO as646

vehicle control (0% displacement). The IC50 values for nine compounds with a tracer647

displacement >60% were determined for confirmed hits using the FP binding assay.648

649
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