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Abstract

Modelling the formation of solid-liquid interphase (SEI) is challenging as its strict

requirement with both simulation accuracy and length. Machine learning potential

(MLP) based molecular dynamics (MD) simulation is expected to play a role in this

field while currently its use is hindered by sampling efficiency and simulation stability.

In this work, we tackle the two challenges together. We propose the stability-indicated-

sampling (SIS) algorithm for efficiently sampling training data using physical infor-

mation (temperature). Unlike previous strategies, our method does not need prior

knowledge of reaction networks or training multiple MLPs for uncertainty estimation.

Compared with the recent proposed methods HAIR and DP-GEN, our approach gives

significant improvement of sampling efficiency with less requirements with the initial

training data, to realize > 10 ns MLPMD simulation using ab initio MD (AIMD)

trajectory of just a few ps. We introduce the concept underlying instability consis-

tency by showing the accuracy of reaction mechanisms and radial distribution function
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(RDF) can be improved by SIS-MLPMD, although their information is not explicitly

used in our sampling decision. Furthermore, we show that long-time MLPMD simu-

lation of Lithium metal battery (LMB) can not only reproduce some well-known SEI

components including LiF, Li2O, LiOH, LiS and the incomplete N-S breaking in high-

concentration systems, but also ionic aggregation structures of LiF, which is not shown

in our AIMD training data but matches previous results of electrochemical impedance

spectroscopy. Our work is expected to help accelerate future investigations, especially

for studying long-time (≥ ns scale) reaction dynamics in interfacial problems.

1. Introduction

Understanding electrode-electrolyte interface and associated interface engineering is at the

heart of modern battery chemistry.1–3 The structure and components of SEI affects many

crucial aspects of batteries including safety, duration, energy density and costs.4 Electrolyte

engineering is a crucial strategy to tune SEI and to develop advanced batteries through

designing electrolyte concentration, structure and other aspects.5–8 For example, it was re-

ported that the concentration of electrolyte solution strongly affect the components and

structures of SEI in LMB.5,6,8 By tuning Li-O/F network, the number and positions of

electron-withdrawing groups (EWG), Yu and co-workers made rational design of solvent

molecules in electrolyte solution to reach an excellent performance with multiple properties

including solvation and Coulombic efficiency.7

Simulating battery molecules and materials with physics-based and data-driven approaches

enables high-throughput screening and design of battery electrolyte engineering, while it

needs accurate and low-scaling interatomic potential to investigate the dynamics of related

systems. In details, an accurate description of the fundamental electron-transfer (ET) and

redox process requires modelling electrons with ab initio methods such as density functional

theory (DFT) or post Hartree-Fock (HF) methods.9 However, key process in battery sys-

tems (e.g., the formation of SEI) usually needs long-time simulation which hinders the use of
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these ab initio methods, which makes the development and choice of simulation methods a

challenge.10 Among different low-scaling methods such as ReaxFF11 and GFN-XTB,12 ma-

chine learning potential (MLP) is one of the most active areas in recent years. In a nutshell,

MLP leverages neural network based deep learning architecture or Gaussian approximation

potential (GAP) to fit parameters to reproduce (or approach) the accurate energies and

forces labelled with ab initio methods. Thus it is expected to transfer knowledge learnt from

short-time simulation of small-scale systems to long-time simulation of large-scale systems.13

MLP has made a diverse range of battery applications, to name just a few here. Jiao and co-

workers employed deep potential molecular dynamics (DPMD)14 to study the homogeneous

deposition and surface self-healing of Lithium metal.15 Batzner and co-workers developed

NequIP, an E(3)-equivariant neural network approach, which efficiently gives accurate pre-

dictions on force, energy, radial distribution function (RDF) and diffusivity of Li4P2O7, a

promising solid electrolyte for LMB.16

Despite the great success of MLP in batteries, a large part of research has not been

performed yet. First, currently available works mainly focus on the properties of either bulk

electrode materials15 or bulk electrolyte solution,16,17 while the main bottleneck for battery

simulation is actually modelling interfaces and SEI.2 Using MLP for interfaces modelling is

challenging, one reason is that the studied systems are much more complicated than that in

the bulk phase, which introduces higher requirements for interfaces.18,19 Another challenge

is that interfaces usually hold complex interactions between different species, e.g., long-

range interactions,2,20 many-body interactions21 and field effects,22,23 which calls for higher

accuracy of MLP.

Second, to the best of our knowledge, although have been employed for studying fun-

damental properties in electrochemistry (e.g., redox potential17) and reactions in other do-

mains,24,25 current MLP methods have not been used for modelling bond-breaking and bond-

forming reactions of Li-salts at battery interface, because the complexity in reaction networks

of SEI formation cannot be handled by a simple design of collective variables,26 although
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these reactions are essential to understand the formation of SEI and the complex reaction

network in batteries. Developing reactive interatomic potential is notoriously difficult as it

usually needs extra efforts with sampling strategies (e.g., enhanced sampling methods).24,25

The recent work of Zhang and co-workers demonstrated massive computational resources are

required to develop reactive MLP even for just simple CHON species.27 Battery systems, as

a contrast, often contains much more elements beyond CHON such as Li, F, P, S, Co, Ni,

Mn, Fe and others. Another strategy to solve the sampling issue is active learning (AL),

an extensive introduction about adaptive subsampling with active learning can be found in

the recent work of Wen and co-workers.28 However, the use of AL based sampling strategies

often require uncertainty estimation using an ensemble of MLPs, which brings large compu-

tational costs.29–31 Additionally, AL-based sampling requires a high diversity of the initial

training data and data augmentation strategies.32

Last but not the least, the stability issues associated with MLP based molecular dynamics

(MD) simulations has been discussed recently. For example, Fu and co-workers benchmarked

several state-of-the-art (SOTA) MLP models for organic molecules and materials and found

none of these models can generate stable simulations for all systems.33 A more important

information from this work is that simulation instability is an indicator for sampling insuf-

ficiency.33 More strikingly, the recent work of Wu and Li showed stability is an issue with

many SOTA MLPs even for the dynamics of one single simple organic molecule C7O2H10.
34

Interestingly, although stability issue gains attention for MLP applications for small organic

molecules, it has rarely reported for battery interface systems, which is much more compli-

cated and is expected to meet more severe stability issues.

This work aims to address some of above-mentioned knowledge gaps and our contributions

are summarized as follows:

(1) We present the first study (simulation length > 10 ns) using MLP to model reactions

of SEI formation in LMB. We highlight some crucial while previously uncovered factors

in dealing with cut-off radius Rcut, using bulk configurations of electrodes and electrolyte

4

https://doi.org/10.26434/chemrxiv-2023-4x3gr ORCID: https://orcid.org/0000-0001-7314-2913 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-4x3gr
https://orcid.org/0000-0001-7314-2913
https://creativecommons.org/licenses/by-nc-nd/4.0/


solution, and fixing atoms in slab model.

(2) We propose the SIS-MLPMD algorithm (see Figure 1) for efficiently sampling training

data leveraging instability of physical information (temperature). Our method does not need

prior knowledge of the reaction network or training an ensemble of MLPs for uncertainty

measurement. It shows superior performance regarding efficiency and accuracy compared

with other methods.

(3) We demonstrate the underlying instability consistency across different MLPs and

properties, which justifies using only temperature instability information itself alone is suf-

ficient to guide sampling.
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(a)

(b)

(c)

Figure 1: Scheme of our (a) SIS-MLPMD workflow (b) temperature stability indicated
sampling and (c) 1M interface model. Pink, red, yellow, blue, green, cyan and white spheres
in (c) respectively represents Li, O, S, N, F, C and H atoms. In (a), the input (structure,
energy and force data) are obtained with a short ab initio molecular dynamics (AIMD)
simulation without or with geometry optimization. In each generation, a long MLPMD is
conducted with the trained MLP to find the temperature catastrophic point (tcp, red cross
in (b)) and associated starting point tnext (green dot in (b)) for next generation. The new
training data is merged into that in the previous generation and the MLP model is fine-tuned
with tunable learning rate and energy/force weight in the loss function. The iterations ends
when a long and stable MLPMD output is obtained without any tcp. Based on the final
MLP, properties and reactions of the Li|LiFSI/DOL battery system are studied. See details
in Note S1-S2.

6

https://doi.org/10.26434/chemrxiv-2023-4x3gr ORCID: https://orcid.org/0000-0001-7314-2913 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-4x3gr
https://orcid.org/0000-0001-7314-2913
https://creativecommons.org/licenses/by-nc-nd/4.0/


2. Methods

2.1. Generating training data

Three systems are studied in this work, namely Li electrode, lithium bis(fluorosulfonyl)imide

(LiFSI) in 1,3 dioxalane (DOL) electrolytes in different concentrations, and the interface

between Li slab and LiFSI/DOL (see Figure 1c). All training data of energies and forces are

labelled with ab initio MD (AIMD) simulation using CP2K (version 7.1).35 AIMD labelled

data are converted to deepmd/npy format using the dpdata tool in DeepMD-kit (version

2.1.1).36 See more details in Note S1.

2.2. Training and test of MLP

Unless otherwise noted, all DPMD training in this work uses following procedure. All DFT

data are shuffled and splitted into 60% training data, 20% validation data, and 20% test

data. se e2 a descriptor is used.

As discussed above and elsewhere,33,34 stability is one of the major bottlenecks for cur-

rent MLPMD simulation and the root of poor stability is usually the poor quality (e.g., data

imbalance and data sparsity) of training data.33 Although sampling strategies based on AL

(e.g., DP-GEN14) have made great success, they often require training an ensemble of multi-

ple MLPs, or the so-called query by committee method,31 which brings extra computational

costs in training multiple MLPs. As a contrast, herein we leverage instability issue itself as

an indicator for sampling and consequently propose a sampling method SIS-MLPMD, see

Figure 1. The idea in designing this algorithm is simple: once the MLP meets MD instability

issue in one region R of sampling space, the probability of lacking training data in R is 100%

(see relevant discussions in Ref.33), so in a nutshell, we don’t use the uncertainty of model

accuracy (that used in AL strategies) but the certainty of model inaccuracy (instability) to

guide sampling.

In details, we start the SIS-MLPMD workflow by building the initial training data D0
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and training the initial MLP model M0 with training data labelled with a short 2.5 ps AIMD

simulation. Then we run a long MLPMD at target temperature T (default 300 K). If the

temperature Ti at time ti (i is the iteration number of SIS-MLPMD) is smaller than TL or

greater than TH , we label the point ti as the catastrophic point (ticp). Then we run another

short AIMD starting from tinext before ticp, see details in Figure1b and Note S2.

TL and TH can be tunable on-the-fly with a coarse-to-fine strategy, i.e., in the first a

few generations of SIS-MLPMD, [TL, TH ] can be a large range (e.g., [0K, 1000K]) to include

many off-equilibrium structures and enable fast evolution of the MLP model to cover the

expected time length (e.g., 1 ns), which we call low-fidelity model. While at the last a few

generations, the temperature range is set as a small one (e.g., [200K, 500K]) to guarantee the

quality of the final MLP model, which we call high-fidelity model. If the AIMD simulation

from tinext is unstable or slow, this indicates the structure at tinext is too unphysical to get a

converged wavefunction or a stable MD simulation, then the structure at tinext is optimized

using PBE-D3/DZVP-MOLOPT-GTH in CP2K, before running the AIMD simulation.35

After getting the new training data Di, we merge the old training data Di−1 with Di

and obtain the new MLP model Mi while the initial learning rate is decreased accordingly

to implement the mechanism of learning without forgetting,37 which is crucial while often

ignored in the field of MLP simulation. See more relevant details in Note S2.

2.3. MLPMD

All MLPMD in this work are run with LAMMPS (version 29 Oct 2020).38 We run an energy

minimization before NVT simulation, stopping tolerance for energy and force is respectively

1.0e-4 and 1.0e-6. The coordinates of the system are saved every 1 ps for further analysis.
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3. Results and Discussion

3.1. Bond breaking sequence of LiFSI

The comprehensive reaction mechanism regarding with the degradation of Li salt on metal

electrodes and associated formation of SEI remains a topic under debate.5 One of the most

crucial questions in this field concerns the bond breaking sequence of Li slat, and how it is

affected by the concentration and solvation structure of electrolyte solution.39–41 Specifically

with bond breaking sequence, one question remains unclear is whether N-S bond or S-F bond

of LiFSI breaks first in forming SEI. Our AIMD simulation obtained with CP2K supports

the previous conclusion reported by Liu and co-workers,5 i.e., we found F-S bond breaks

at around 0.26 ps of the reaction, while N-S bond breaks at around 0.28 ps. A scheme

visualizing system change through the reaction can be found in Note S3.

3.2. Overlooked effects of Rcut, bulk configurations, and fixing atoms

One reason why MLP has not yet been widely used in modelling reactions at battery interface

is that many factors can affect the modelling accuracy as the system complexity is much

higher than that of bulk electrode15 and bulk electrolyte,17 while there lacks a comprehensive

study available to showcase the protocol. Here we raise three questions for crucial factors

in battery modelling, namely the choice of suitable cut-off radius (Rcut), the correct use of

bulk configurations of Li electrode and electrolyte solution, and the effects of freezing atoms

in slab models.

Rcut is widely recognized as an important hyper-parameter determining the accuracy of

trained MLP models, both in Behler-Parinello neural network (BPNN) based and graph

neural network (GNN) based MLPs. It is also widely believed that the accuracy of trained

MLP model would be necessarily benefited when increasing Rcut.
32,42 Here we challenge this

opinion and our question is Q1: Does larger cut-off radius always guarantee higher accuracy?

There lacks a uniform agreement concerning whether or not to use bulk configurations
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in the training set for modelling interfaces. For example, in the work of Eckhoff and Behler,

bulk LixMn2O4 and water structures are used in the training data in studying LixMn2O4-

water interface,19 while in some other interface works bulk configurations were not used.43

Wu and co-workers recently proposed ModDP strategy which builds training data for two

end points along a reaction with DP-GEN, then refining the training data of intermediate

states using random configurations.44 The philosophy is actually pretty similar with using

bulk configurations in the interface, see Fig.S6. So our question is Q2: Is it helpful to use

bulk configurations in the training set for studying interfaces?

Freezing a few bottom layers of solid is one regular strategy in studying solid-liquid inter-

faces with slab models,45,46 however it remains unclear whether this strategy is reasonable

in generating training data for MLP, as artificial zero force is usually applied when freezing

atoms, however DFT labelled forces is the main training data for MLP. Thus, the same ele-

ment (e.g., Li) with the same chemical environment could have distinctly different reference

values of force in DFT calculations, which could make the training data inaccurate. Our

question is Q3: Should atoms of Li slab be fixed or not in generating training data?

To answer these questions, we conducted simulations for three systems: 1M and 4M bulk

LiFSI/DOL electrolyte solution, and 1M Li|LiFSI/DOL interface, the tested Rcut values

starts from 6 Å, which is a value frequently used in related works,32,42,47 to up to 20 Å. All

the answers to these questions are obtained by comparing test force RMSE of trained model.

The main results can be seen in Figure 2, more details with hyper-parameters effects can be

found in Note S4. Before discussing specific conclusions, a general observation in Figure 2

and Note S4 suggests our test RMSE of force and energy of all systems are respectively

in the range of [0.06, 0.17] eV/Å and [1.63e-03, 9e-04] eV. Though small force and energy

RMSEs are not sufficient to conclude the good quality of trained MLP,33,34 we think they

are the minimum requirements for a good MLP model. The accuracy is comparable with

other battery-related MLP works in recent years,16,17,32,48 which suggests our protocol to

train MLP is reliable. Next, we discuss conclusions to the above three questions one-by-one.

10

https://doi.org/10.26434/chemrxiv-2023-4x3gr ORCID: https://orcid.org/0000-0001-7314-2913 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-4x3gr
https://orcid.org/0000-0001-7314-2913
https://creativecommons.org/licenses/by-nc-nd/4.0/


6 8 10 12 14 16 18 20
Rcut (Å)

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.130

0.114

0.143
Te

st
 F

or
ce

 R
M

SE
 (e

V/
Å)

1M Electrolyte (15 Å)
1M Interface (Fixed)
4M Electrolyte
1M Electrolyte (20 Å)
1M Interface (Unfixed)
1M Interface (Unfixed)
+ Bulk (52.6%)
1M Interface (Unfixed)
+ Bulk (35.7%)

(a)

33713 33712 33711 33710 33709 33708 33707 33706
MLP Energy (eV)

33712

33711

33710

33709

33708

33707

33706

DF
T 

En
er

gy
 (e

V)

Fixed Interface, R2=0.84
Fixed Interface + Bulk, R2=0.68
Unfixed Interface + Bulk Gen0, R2=0.92
Unfixed Interface + Bulk Gen1, R2=0.89

(b)

Figure 2: (a) Effects of studied factors on test force RMSE of trained MLPs. 1M and 4M
respectively means the concentration of electrolyte solution, 15 Å and 20 Å respectively
represents the size of unit cell. Bulk indicates using bulk configurations. Fixed and Unfixed
respectively denotes whether atoms of Li slab are fixed in generating training data. 52.6%
and 35.7% are the ratio of bulk configurations in the training set. Default options are: 1M,
15 Å, no bulk configurations, unfixed. (b) Parity plot between predicted MLP energies and
DFT energies for 1M interface, using Rcut6. Note the training data size is the same for fixed
and unfixed interface.
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For Q1, our answer is that larger Rcut does not always guarantee higher accuracy, es-

pecially for low-concentration electrolyte solution (see Rcut10 in 1M Electrolyte (15 Å) in

Figure 2a and Tab.S4), and the conclusion is not affected by tuning various hyper-parameters

(see Tab.S5-Tab.S9). A closer analyze of the results suggests that the position of jump point

is related with the size of unit cells, it locates around (2 × (d/2)2)1/2 where d is the length

of unit cell (see Fig.S4-S5).

For Q2, we found it is crucial to use bulk configurations in modelling battery interface (see

the difference between Fixed Interface and Fixed Interface + Bulk in Figure 2b). Without

using bulk configurations of Li electrode and electrolyte solution, the predicted energies

are systematically underestimated compared with DFT reference, and this error is almost

unchanged by the increase of Rcut, see Fig.S7. Besides, our experiments with MACE49

show the same trend, which further solid the conclusion that the observed systematically

underestimation of predicted energies is independent on the choice of MLP models, but

the missing of bulk configurations. To validate our assumption, we add bulk configurations

of Li slab and electrolyte solution into the training data. Consequently for Rcut8, force

improvement is around 12.3% (see Figure 2a, from 0.130 to 0.114 eV/Å). See details in Note

S4-2.

For Q3, we found freezing atoms does lead to artificial zero force in the training data.

After freeing the fixed atoms, the predicted energies and forces can be further improved,

see Figure 2b. At Rcut8, force improvement is around 9.1% after unfixing atoms (see Figure

2a, from 0.143 to 0.130 eV/Å). To the best of our knowledge, our work is the first one

highlighting the errors introduced by fixing atoms, which raises our concerns over whether

slab model should be used in generating MLP training data. This matters not only for

battery applications but also for other important chemistry problems at interfaces, e.g.,

electrocatalysis.50,51 See details in Note S4-2.

Besides answering above three important questions, another interesting observation is

that once bulk configurations are used, the RMSE of predicted energies and forces are nearly
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independent on Rcut values. Using the smallest Rcut value can even give the best result,

which we call Rcut6 performs best (see Note S4-3), and the result is not affected by tuning

hyper-parameters, see Tab.S12-S14. This observation is out of our expectation as it seems

widely recognized that interface systems require larger Rcut values for including long-range

interactions.2 However this result further validates our previous conclusion larger Rcut does

not guarantee higher accuracy. As this phenomenon only appears when we use bulk configu-

rations (see brown and purple lines in Figure 2a), we suspect a possible reason is that using

bulk configurations and using larger Rcut values can both address long-range interactions,

while using both strategies together can lead to double counting effects. To prove our as-

sumption, we conducted a simple experiment by decreasing the ratio of bulk configurations

in the training set, see results in Tab.S15, which concludes that Rcut6 performs best indeed is

from the double-counting effects (see brown and pink lines in Figure 2a), and this observa-

tion keeps true for 10 M interface (see Tab.S16). The finding is useful as MLP training time

is significantly affected by Rcut, and our results suggest that using a small Rcut value with

bulk configurations might be the most accurate and economic way to modelling interfaces.

As high-concentration battery interface is a crucial topic for current battery research,52–54

this finding will be very valuable for future MLP works about batteries.

Our experiments with 1M interface using Rcut6 and Rcut11 suggests the choice of Rcut

values not only affect MLP accuracy, but also the evolution of MLP for long-time simulations.

With Rcut6, our MLP prediction with forces is pretty satisfied after only two iterations of

SIS-MLPMD (see Gen1 in Figure 2b) while the tests with Rcut11 is much worse after the

same number of iterations (see Gen1 in Fig.S8). As a result, our SIS-MLPMD can reach >

1 ns simulation (see details below) after only 3 iterations with Rcut6, while with Rcut11, the

SIS-MLPMD cannot reach 1 ns simulation after 7 iterations.

In summary, above three crucial yet easily overlooked factors, worth to be carefully

treatment in future studies.
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3.3. Comparison with HAIR and DP-GEN

After figuring out the roles of above factors, next we compare the performance of our SIS-

MLPMD model with others. Here we choose HAIR5 and DP-GEN29 as HAIR represents one

of the most advanced multi-scale physics methods to simulate long-time reactions. While

DP-GEN represents one of the most sophisticated sampling strategies in MLP related re-

search.17,48

Here we compare their performance with our method regarding both model accuracy and

sampling efficiency, using 1M electrolyte solution as the test case. For sampling efficiency,

we define a metric, acceleration ratio (AR), which measures the ratio of time-length of the

whole trajectory and that of AIMD. HAIR method uses a fixed AR as 11 (i.e., a 0.5 ps AIMD

followed by each 5 ps ReaxFF-MD, 11 = (0.5 + 5)/0.5, see Ref.5). While our method gives

AR as > 57 (i.e., 17.5 ps AIMD used to get 1 ns MLPMD simulation). The temperature of

our MLPMD simulation is stable around our target 300 K except for the first a few steps

of energy minimization, see Figure 3a. Note also our MLPMD time length could be much

longer than 1 ns (see examples for 1 M and 10 M interface later) and thus AR could be

much larger than 57. Nevertheless, it is clear that our AR is already over 5 times of that

in HAIR, which means our method can realize long-time ( > 1 ns) simulation using much

smaller number of DFT data (< 20% of that in HAIR).
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Figure 3: (a) Temperature fluctuation in our 1 ns MLPMD simulation. (b) Number of
new training data and model accuracy in each generation of DP-GEN. (c) Li-O (DOL) RDF
comparison between HAIR, SIS-MLPMD and DP-GEN-MLPMD simulation trajectory, with
AIMD result as the reference, see detailed data in Tab.S17.

For accuracy comparison, as it is not practical to use HAIR for energy/force test, here

we choose to use RDF prediction (Li-O (DOL)) to measure model accuracy. As we need

AIMD result as the ground truth for the comparison and AIMD simulation is impractical

for long-time simulation, we extract a short trajectory (2.5 ps to 8 ps) for RDF calculation.
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We choose this time range as we did not use DFT training data from it. For HAIR, the

simulation consists 0.5 ps AIMD and 5 ps ReaxFF-MD and the merged trajectory is used to

calculate RDF. For SIS-MLPMD simulation, we directly used the trained model in Figure 3a.

RDF results in Figure 3c suggest that our method gives RDF generally more consistent with

AIMD reference, and HAIR produces two unphysical RDF peaks at around 200 pm. Note

that unlike HAIR, our model only used DFT data for MLP training while did not use them

for the RDF calculation, so our result could be further improved by running additional

generations of SIS-MLPMD to further improve model quality, or combining short AIMD

with long MLPMD while keeping a satisfied AR.

For a fair comparison between SIS and DP-GEN, we use Gen6 model of both sampling

methods, i.e., MLPs after 6 iterations of adding new training data, see Figure 1a and Ref.29

Note SIS and DP-GEN start from the same initial training data, i.e., first 2.5 ps AIMD of

electrolyte solution, so their only difference is sampling strategy. After 6 iterations, our SIS

method collects DFT data of 17500 configurations (i.e., 17.5 ps AIMD) of electrolyte solution

while DP-GEN collects only 2831 configurations (see black solid line in Figure 3b). However,

this does not suggest DP-GEN gives better sampling efficiency but poor sampling sufficiency

as its model accuracy is only < 50 % (see the blue dashed line in Figure 3b), far from the

convergence threshold of DP-GEN.29 As a consequence, the unsatisfied model accuracy gives

the DP-GEN-MLPMD-Gen6 RDF result in Figure 3c, which shows poor agreement with the

AIMD reference. The root for this is that AL based sampling methods are strongly dependent

on the diversity of initial training data, so various data augmentation methods are usually

necessary, e.g., perturbing DFT-relaxed structures, collecting DFT labelled data from MD

simulations with different temperature, pressure, unit cell, thermodynamic ensemble, etc, see

Ref.32,55,56 Without these data augmentation, the model evolution becomes slow (see Model

accuracy in Figure 3b). As a contrast, our SIS method is less dependent on the diversity

of initial training data. Although DP-GEN labels much less DFT data after 6 generations,

this is meaningless if the model accuracy is low. Considering multiple MLPs (default 4 for
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DP-GEN, so 24 MLP training for 6 iterations) need to be trained in each generation for AL-

based sampling, the total computational cost is not necessarily smaller than that required

by our SIS-MLPMD method.

3.4. Underlying instability consistency

As mentioned in the previous section, the main difference between DP-GEN and our SIS

sampling strategy is that DP-GEN and other similar AL-based sampling methods needs to

train multiple MLPs (usually 4 or even more) in each iteration for uncertainty estimation.29,31

As a result, though these methods usually reduce the number of needed DFT training data

and associated computational costs, this is realized by adding computational costs of MLP

training, especially when multiple GPU are not available. As a contrast, our method just

train one MLP but running multiple MLPMD.

To test whether training multiple MLPs is really necessary or not, we perform an experi-

ment by training two MLPs with the same training data but different seed numbers (10 and

24) in MLP, see Figure 4a. After running their long-time MLPMD simulation, we spot their

tcp. However we only use tcp1 information here as the indicator to sample new training data.

The simulation with refined MLP suggests that not only tcp1 itself is fixed by introducing

training data around tcp1, tcp0 in MLP0 is resolved as well. This observation means that

the information in multiple MLPs, which is frequently used in AL based sampling, could be

redundancy and add unnecessary costs.
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(a) Underlying instability consistency between different MLPs

(b) Underlying instability consistency between temperature and
reaction mechanism, see details in Fig.S9 and Fig.S10.
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(c) Underlying instability consistency between temperature and
RDF (Li-O(DOL), 0 to 2.5 ps)

Figure 4: Evidence for underlying instability consistency across different MLPs and proper-
ties.

Besides, many sampling methods to develop MLP rely on monitoring multiple properties
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such as inter-atomic distances and RDF together in one loss function.33,56 Here we intend

to prove it is less necessary than previously reported as the underlying instability consis-

tency guarantees model improvement transferable between properties (see Figure 4b and

Figure 4c).

Bond breaking sequence of Lithium salt and solvent molecules is one crucial factor in

studying SEI formation, as different bond breaking mechanism gives distinctly different SEI

components and structures.5 This stands for the heart for electrolyte engineering of batteries.

As mentioned in Section 3.1, the AIMD ground-truth of bond breaking sequence of LiFSI

is that one F-S bond breaks first, followed by N-S bond breaking, and finally the other F-S

bond breaks, as illustrated in Fig.S2. However, our SIS-MLPMD-Gen0 simulation gives a

wrong prediction where both two F-S bond breaks before the N-S bond breaking, see the

reaction process in Fig.S9. After only one additional generation (i.e., SIS-MLPMD-Gen1 in

Figure 4b), the reaction mechanism becomes correct, see Fig.S10. Additionally, the results

in Figure 4c also suggests the RDF agreement with AIMD reference is improved after one

additional generation of SIS-MLPMD. Note none of their information of reaction mechanism

and RDF is explicitly used in our sampling as we use temperature instability information

as the only sampling indicator. So we can conclude the underlying instability consistency

is true across different properties. Using multiple properties (e.g., temperature, reaction

mechanism, and RDF) together as sampling indicators could give redundant information.

Besides HAIR and DP-GEN, here we also highlight the difference of our SIS-MLPMD

method compared with some other relevant works. For a similar target application scenario

of electrolyte solution (though without reactions), Dajnowicz and co-workers developed a

sampling strategy using both uncertainty estimation and the so-called spurious reaction.56

However, the definition of spurious reaction is unclear and may rely on monitoring multiple

properties in the simulation such as interatomic distance and RDF like that in the work of

Fu and co-workers.33 Additionally, one point worth to be highlighted particularly is that our

implementation of learning without forgetting mechanism by using a decreased initial learning
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rate.37 Though the strategy is simple and more complicated methods to solve catastrophic

forgetting issues exist in other tasks in computer vision and natural language processing,57,58

their use in MLP is currently less uncovered.29,56 Results in Tab.S1-S3 suggest this strategy

is effective and non-trivial. Similarly for modeling reactions (though not battery systems),

some works employed enhanced sampling methods to aid the sampling of training data,25,59

which is not practical for modelling SEI formation because of the complex reaction network

hinders the design of simple collective variables. However, combining our SIS-MLPMD

method with other advanced sampling and generative models could be a direction forward

to develop general reactive MLPs beyond CHNO species.27,33 Magar and Farimani recently

proposed two sampling strategies by re-distributing data iteratively (transfering data from

test set to training set) leveraging the data point with largest test error and its similar

points,60 however, the recent work of Fu and co-workers suggests only energy or force error

is not sufficient for sampling,33 besides, the current implementation of their method requires

building the whole database (e.g., 18928 data points for perovskites) in the first place, while

no new data is added into this database (i.e., fixed 18928 data points) through the iterations,

so it inherently has higher requirement with the diversity and size of the database.

3.5. Long-time MLPMD simulation of interfaces

Here we report long-time simulation of both 1 M and 10 M interfaces of Li|LiFSI/DOL. For

both systems, the time length of MLPMD simulation reaches over 1 ns after 3 iterations

of SIS-MLPMD. For 1 M interface, using just 16.5 ps AIMD training data gives stable

MLPMD over 10 ns, which gives AR as over 606. While for 10 M interface, though the

system is complicated, using 21 ps AIMD training data gives stable MLPMD over 3 ns,

which gives its AR as over 142. The temperature of both systems is well located around our

target value, 300 K, see Figure 5a and Figure 5b.
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Figure 5: Good temperature stability of (a) 1M and (b) 10 M interface systems. (c) Ion
aggregations of LiF to form Li2F2. (d) Complete S-F breaking and incomplete N-S breaking
for 10 M interface system. For clarity, we only use CPK drawing style for relevant atoms in
VMD.

Our MLPMD trajectories can reproduce some well-known SEI components including

LiF, Li2O, LiOH, LiS. More interestingly, ionic aggregation of LiF is observed in our long

MLPMD simulation of 1M Li|LiFSI/DOL interface system (see Figure 5c), though it is not

found in our AIMD training data. A possible reason why we did not observe it in AIMD

simulation is that AIMD sampling configurations (those in the 16.5 ps AIMD trajectories)
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and that in ionic aggregation region give similar MLP, while they are far in the configuration

space. This phenomenon is physical according to previous works with accurate post-HF

methods and electrochemical impedance spectroscopy.61,62 Jones and co-workers concluded

that the experimental molar conductivity Λ can be fitted by taking into account higher ion

aggregations.62 Considering LiF is one determining component in studying SEI while current

understanding of it is limited1 and the importance of Li2F2 has not been well recognized,63,64

the properties of Li2F2 and even larger ion aggregation structures deserve more investigations

in the future, which remains true even for low-concentration battery systems. For high-

concentration system (see Figure 5d), in our MLPMD simulation we observe complete S-F

breaking, incomplete N-S breaking and no DOL decomposition, which agrees well with the

central finding in Ref.5 for the mechanism of electrolyte concentration effects on SEI. This

further validates the accuracy of our method while our simulation reaches the conclusion

requiring much less (< 20% of that in HAIR, see Section 3.3) computational costs for AIMD.

4. Conclusions

This work presents a method (SIS-MLPMD) for efficiently sampling training data in de-

veloping MLP and associated MD simulations. The method leverages physics information

(temperature instability information) as the sampling indicator. The efficiency and accu-

racy of our method is justified by comparing it with previous sophisticated physics-based

and data-driven models, HAIR and DP-GEN. Our sampling strategy is found less dependent

on the diversity of initial training data. With SIS-MLPMD, we study the bond breaking

sequence of LiFSI in DOL solvent and the associated mechanism in the formation of SEI

in LMB. Some crucial while frequently ignored factors are highlighted. Our study suggests

using larger Rcut values does not guarantee higher accuracy, especially for interface systems

and low-concentration electrolyte solution. We found using bulk configurations and avoid

fixing atoms are crucial to develop MLP for interfaces. We propose the concept of underlying
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instability consistency by showing MLP improvement can be transferable between different

MLPs and properties. Our long-time MLPMD simulation reveals the incomplete N-S break-

ing in high-concentration systems, which echoes previous works with HAIR simulation.5

Finally, our long-time MLPMD simulation suggests ion aggregation of LiF deserves further

investigations for better understanding of SEI. Our work will be useful for future studies

on reaction dynamics in interfaces, e.g., the long-time simulation of Lithium crystallization

process at solid interfaces.65

Based on our work, future research can be developed along different directions: (1) The

sampling efficiency could be further improved by using uncorrelated configurations from

AIMD trajectories. The uncorrelated configurations could be chosen using a fixed time step

or other techniques such as entropy maximization66 and Minimum-Redundancy-Maximum-

Relevance (MRMR).67 (2) Our method can be combined with physical methods, AL based

sampling techniques and deep generative models in different fashions, e.g., SIS-MLPMD

works as the data augmentation strategy to build a diverse initial dataset, which is expected

to significantly accelerate AL based sampling29,31 and to refine molecule/conformation gen-

erations.34 Additionally, short AIMD and long MLPMD can be combined in a similar way of

HAIR.5 Conformation/configuration generation module can be used to generate initial train-

ing data with high diversity, similar with the implementation in Uni-Mol+.68 (3) Transform-

ing MD simulation and associated data sampling problems into time sequence problems.69,70

(4) Incorporating field effects in MLP for modelling charged interfaces under external po-

tential.22
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