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Abstract2

The development of accurate water models is of primary importance for molecular3

simulations. Despite their intrinsic approximations, three-site rigid water models are4

still ubiquitously used to simulate a variety of molecular systems. Automatic opti-5

mization approaches have been recently used to iteratively optimize three-site water6
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models to fit macroscopic (average) thermodynamic properties, providing “state-of-the-7

art” three-site models that still present some deviations from the liquid water properties.8

Here we show results obtained by automatically optimizing three-site rigid water models9

to fit a combination of microscopic and macroscopic experimental observables. We use10

Swarm-CG, a multi-objective particle-swarm-optimization algorithm, for training the11

models to reproduce the experimental radial distribution functions of liquid water at12

various temperatures (rich in microscopic-level information on, e.g., the local orienta-13

tion and interactions of the water molecules). We systematically analyze the agreement14

of these models with experimental observables and the effect of adding macroscopic in-15

formation into the training-set. Our results demonstrate how adding microscopic-rich16

information in the training of water models allows achieving state-of-art accuracy in an17

efficient way. Limitations in the approach and in the approximated description of water18

in these three-site models are also discussed, providing a demonstrative case useful for19

the optimization of approximated molecular models in general.20

Introduction21

The development and optimization of classical molecular models is typically challenging and22

time-consuming.1,2 Despite notable progresses in developing efficient methods and optimiza-23

tion approaches,3–8 accurately predicting experimental observables and ensuring transfer-24

ability across varying thermodynamics conditions remains in most cases a significant chal-25

lenge.9–11 A considerable example is the case of water, for which current state-of-art models26

struggle in matching all the relevant cases of interest at the same time,12 e.g., bulk proper-27

ties,13 free energy of hydration of compounds,14 stabilization of lipid membranes,15 interac-28

tion with proteins,16 etc.29

Although intrinsically approximated, classical three-site rigid water models are widely used30

in molecular dynamics (MD) simulations.13 One key requirement is that such simplified31

models can capture fairly well the properties of water even relying on a reduced number of32
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parameters. In such a representation, the interaction potential is centered on three sites,33

each of which corresponds to one of the atoms in the water molecule (O, H, H). Early ver-34

sions of these models, including, e.g., TIP3P17 and SPC,18 were originally parameterized to35

accurately reproduce basic thermodynamic properties, e.g., density and enthalpy of vapor-36

ization under standard conditions. Despite their age, these models continue to be extensively37

utilized in classical MD simulations, and most general-purpose forcefields are parametrized38

on them.19–21 With the increase in computing power, it has become possible to perform39

high-throughput parameterization, often in an automatic fashion,22,23 by considering a large40

set of experimental observables under different conditions as the reference data to fit.41

Over the past decade, two notable general-purpose three-site water models that have been42

obtained through iterative optimization, TIP3P-FB24 and OPC3,25 led to a substantial im-43

provement of the state-of-the-art. Such models were refined to accurately reproduce a set44

of thermodynamic properties including density, heat of vaporization, coefficient of thermal45

expansion, isothermal compressibility, isobaric heat capacity, and static dielectric constant.46

In particular, TIP3P-FB has been optimized to accurately reproduce these observables over47

a wide range of thermodynamic conditions, spanning a total of 40 training points at different48

temperatures and pressures. Such a parallel/multi-objective parametrization has a positive49

effect on the transferability of the optimized model,26 e.g., across different conditions. In50

contrast, OPC3 was optimized to match such observables under standard conditions (29851

K and 1 bar), while simultaneously imposing a constraint on the geometry of the water52

molecule. Specifically, a fixed Hydrogen-Oxygen-Hydrogen angle value is imposed to ensure53

that the resulting linear quadrupole moment is equal to zero. This constraint is applied54

because the quadrupole moment is known to have minimal significance in the context of the55

model’s overall performance and accuracy.27 While both models have demonstrated similar56

accuracy in reproducing thermodynamic properties, they do exhibit some distinct character-57

istics. TIP3P-FB is characterized by a larger geometry, with a distance of 0.101 nm between58

the Oxygen and Hydrogen sites (dOH) and 0.164 nm between the Hydrogen sites (dHH).59
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Furthermore, the Oxygen site in TIP3P-FB carries a partial charge of -0.848 e. In contrast,60

OPC3 exhibits a smaller geometry, with dOH and dHH equal to 0.098 nm and 0.160 nm61

respectively. Additionally, the Oxygen site in OPC3 has a charge of -0.895 e. The variability62

observed between the optimized models may be attributed to an intrinsic limitation aris-63

ing from the simplified description of the system. Furthermore, as both models are trained64

solely on average parameters derived from a top-down approach, it becomes intriguing to ex-65

plore the potential advantages of integrating additional data on microscopic target features66

through a bottom-up approach.67

In recent works, we introduced Swarm-CG ,7,9 a versatile optimization software that is able68

to integrate bottom-up and top-down references in a multi-objective and multi-directional69

optimization framework for coarse-grained models. Building upon Swarm-CG ’s capabili-70

ties, we propose a novel strategy for optimizing three-site water models by incorporating71

experimental data on the microscopic structure of water, particularly the radial distribu-72

tion functions (RDF) of its atoms. Specifically, we utilize the Oxygen-Oxygen RDF (gOO),73

Oxygen-Hydrogen RDF (gOH), and Hydrogen-Hydrogen RDF (gHH) as the primary refer-74

ences for deriving our model. While our main objective is not to develop the most accurate75

three-site rigid model, we aim to explore the capabilities of Swarm-CG and assess the room76

for improvement in what can be considered de facto a coarse-grained description of water.77

The results we obtain are significant for two main reasons. Firstly, we demonstrate that by78

selecting optimization targets spanning different scales (micro + macro), such as the RDFs,79

density, and dielectric constant, it is possible to obtain an optimized water model with80

comparable accuracy to state-of-the-art models like TIP3P-FB and OPC3, while maintain-81

ing computational efficiency and robustness. Secondly, our findings allow us to investigate82

the chemical and physical origins that control the accuracy limits (indeterminacy) of model83

optimization. We investigate how these limits are intrinsic and connected to the physical84

constraints of the model itself. The insights gained from this study hold significance not85

only for optimizing the specific system presented in this paper but also for any approxi-86

4

https://doi.org/10.26434/chemrxiv-2023-88fpn ORCID: https://orcid.org/0000-0002-3473-8471 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-88fpn
https://orcid.org/0000-0002-3473-8471
https://creativecommons.org/licenses/by/4.0/


mated model that relies on higher-accuracy data or incorporates top-down constraints based87

on experimental evidence.88

Methods89

The optimization work conducted herein builds on a multi-reference particle swarm op-90

timization software that we developed recently: Swarm-CG.7,9 In particular, Swarm-CG91

has been developed to optimize bonded and non-bonded parameters in molecular mod-92

els to fit experimental results (top-down references) and the behaviour seen in all-atom93

MD trajectories (bottom-up references). Swarm-CG has been successfully tested to opti-94

mize a variety of molecular systems (e.g., lipid models26). In this paper, Swarm-CG has95

been adapted for this specific case study (a dedicated variant can be found at: https:96

//github.com/GMPavanLab/wateropti). The five parameters of a general three-site rigid97

water model that are iteratively tuned (illustrated in Figure 1a) are: (i) the intramolecular98

distance between the Oxygen and the Hydrogen sites, dOH , (ii) the intramolecular distance99

between the two Hydrogen sites, dHH , (iii) the absolute charge of the Oxygen site, q, and the100

two functional parameters of the Lennard-Jones potential which is centered on the Oxygen101

site, namely (iv) sigma σ and (v) epsilon ε. We conducted our optimizations initializing102

swarms composed of 15 particles in the first and third subsections of the results, and 26 par-103

ticles in the second subsection. In each optimization procedure, a series of classical molecular104

dynamics simulations are performed and their discrepancy from the target properties is eval-105

uated according to a scoring function (described below). Finally, the obtained optimized106

models are simulated at various temperature across the liquid regime, and observables of107

interest are computed.108

Scoring function109

To quantify the discrepancy between the RDFs obtained from the simulations of the mod-110

els vs. the experimental ones from liquid water (at various temperatures), we introduced a111
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scoring function based on the Earth mover’s distance (EMD) or Wasserstein distance.28 The112

Wasserstein distance is a measure of the dissimilarity between two probability distributions,113

based on the concept of optimal transport.29 It represents the minimum cost of transforming114

one distribution into the other, where the cost is proportional to the distance between pairs115

of points. In our case, we used the Wasserstein distance to compare the simulated RDFs116

with the experimental RDFs, with the distance matrix representing the differences between117

the radial distance of the bins of the distributions. In our work, we modified the standard118

computation of the Wasserstein distance by using the square of the distance matrix instead119

of the distance itself. Such a modification allowed to better account (weights more) the dif-120

ference between the g(r) at larger distance, which is important for capturing the long-range121

behavior of the water-water interactions and to avoid overfitting on short-range interactions.122

Preliminary tests demonstrated that this provided the best setup to compare g(r) curves as123

a whole in the most robust way. This modification also allows mitigating potential problems124

emerging from the fact that classical three-site water models usually have difficulty repro-125

ducing the first peak of the RDFs (due to the fact that quantum effects are not included in126

the description of the system).30127

In particular, the scoring function used in the optimization presented the first subsection of128

the results is:129

S = EMDgOO
+ EMDgOH

+ EMDgHH
, (1)

where S represents the score and EMDgOO
, EMDgOH

, and EMDgHH
represent the Earth130

mover’s distance measurements of the three RDFs considered, namely the Oxygen-Oxygen,131

Oxygen-Hydrogen, and Hydrogen-Hydrogen, respectively. In this way, the scoring function132

does not capture discrepancies only in terms of distances and spatial displacement of the133

water molecules respect to each other, but also in terms of their natural orientation. This134

provides us with a scoring function which is rich in microscopic structural information on135

the system.136

The optimizations presented in the second and third subsection of the results involved not137
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only fitting of microscopic features, but also the density and static dielectric constant (macro-138

scopic observables). The adopted score is expressed as:139

S = wEMD(EMDgOO
+ EMDgOH

+ EMDgHH
) + wρ |ρsim − ρexp|+ wε |εsim − εexp| , (2)

where the first term represents the difference between the simulated and experimental RDFs140

for each type of particle-particle correlation. The second and third terms take into account141

the difference between the simulated and experimental values of density ρ and static dielectric142

constant ε, respectively. Each term in the score function has a weight assigned to it, which143

determines its relative importance in the optimization process. The weights were chosen as144

wEMD = 0.5, wρ = 0.3, and wε = 0.2. Preliminary tests demonstrated that these weights145

ensured a balanced representation in the optimization process, allowing us to prioritize and146

place emphasis on fitting the RDFs over other macroscopic features of the systems. A147

comparison of experimental RDF with simulated g(r) examples scored according to our148

metrics is present in Figure S1 of the Supporting Information.149

Results and Discussion150

This part is organized as follows. The first subsection presents the results of the model opti-151

mized to reproduce the experimental RDFs (gOO, gOH , and gHH) under standard conditions152

of 298 K and 1 bar. This approach focuses primarily on a pure bottom-up methodology,153

where the optimization is driven by the microscopic features of the water model. In the sec-154

ond subsection, we extend our analysis by optimizing the model to reproduce not only the155

RDFs but also experimental density and static dielectric constant. Furthermore, the system156

is trained at two additional temperatures, specifically 280 K and 343 K. This comprehensive157

optimization approach aims to capture a broader range of experimental observables, combin-158

ing both bottom-up and top-down references. Finally, the last subsection provides a detailed159

investigation into the indeterminacy of the optimization problem within the context of the160
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three-site representation.161

Figure 1: Overview of the study. a Representation of a water molecule and schematic of
the five parameters that define the three-site model. b Experimental data used in this
work: radial distribution functions g(r) (bottom-up reference), liquid water density (ρ) as
a function of temperature and static dielectric constant (ε) as a function of temperature
(top-down references). c Workflow diagram illustrating the process of the study. Reference
experimental data serve as the targets guiding the optimization process. Swarm-CG runs
iterative MD simulations, adjusting the parameters of the water molecule to reach the best
match with the reference experimental data. The resulting optimized model is then evaluated
and validated a posteriori againsts a set of experimental observables at different temperatures
not in the training set.

Multi-objective optimization based on microscopic system features162

In a first optimization test, we trained the optimized water model according to a purely163

bottom-up approach to reproduce the experimental RDFs (gOO, gOH and gHH) of water at164

the standard conditions of 298 K and 1 bar. At every iteration, Swarm-CG tests new param-165

eters in the attempt to minimize the discrepancy between the gOO, gOH and gHH obtained166

from the model and the experimental ones in standard conditions. The obtained results are167

presented in Figure 2. A comparison with other popular three-site water models of the same168
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Figure 2: Results obtained from the first optimization, where the model OPTI 1T has been
trained to reproduce experimental RDFs at 298 K and 1 bar. a RDFs reproduction and
comparison with other three-site water models: complete data (without superposition of
curves) are provided in the Supplementary Information (Figure S3). b Ranking of RDFs
reproduction accuracy based on our score. c A posteriori validation of the model with
respect to density and static dielectric constant. Dashed vertical gray lines indicate the
temperature at which the model was trained.
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type (OPC3,31 TIP3P-FB,24 SPC,18 SPCE,32 SPCEb33 and TIP3P17) is also provided. A169

summary of the parameters for these models can be found in Table S1 of the Supplementary170

Information.171

According to the score that we formulated to quantify the deviation of the simulated RDFs172

from the experimental reference (equation (1)), our model exhibited the highest level of ac-173

curacy in replicating the experimental RDFs (Figure 2b). Despite the fact that a model174

optimized as such is found the best one, this is not surprising since our model was optimized175

to reproduce experimental RDFs. Nonetheless it can be noticed that also in our case the176

Oxygen-Hydrogen RDF is overlocalized which appears as unavoidable in such models, where177

the nuclear quantum effects are not explicitly included. Similarly, in the attempt to fit at178

best the 2nd and 3rd solvation shell in the Oxygen-Oxygen RDF (identified by the 2nd and179

3rd gOO peaks) produces an unavoidable overlocalization of the 1st peak (an enlarged plot of180

the RDFs around the solvation shells is provided for clarity in Figure S2 of the Supporting181

Information).182

It is worth noting that, even at the training temperature, the value of the dielectric constant183

predicted by our best model deviated from the target by a substantial amount. Such a lack184

of accuracy can be attributed to the fact that training the water model on RDFs alone does185

not provide sufficient information on the interactions between atoms. As a result, quantities186

such as the static dielectric constant, which depends on dipole fluctuations and is sensitive187

to the charges on the water model, are not reproduced accurately enough if the model is188

not trained to do so. This also means that, although the RDFs are well reproduced, this is189

not a sufficient condition for macroscopic properties to emerge spontaneously in the system.190

These considerations motivated us to incorporate also additional top-down experimental tar-191

gets into the scoring function. The results of this integration are illustrated in the following192

section.193

In terms of computational time, the refinement of 5 parameters of the water model at single194

temperature condition required 4 days (wall-clock time) to reach convergence (500 swarm195
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iterations) using 26 particles in the swarm and using 36 CPU cores, each simulation running196

on 9 CPU cores equipped with a GPU.197

198

Multi-objective multi-temperature optimization based on microscopic199

and macroscopic observables200

Figure 3: Validation of the model OPTI 3T, trained at the temperatures of 280 K, 298 K, and
343 K. Reproduction of RDFs, isothermal compressibility, surface tension, and quantification
of the deviation of simulated observables with respect to experimental data are provided in
the Supporting Information (Figures S3-S6)

In a second test, we trained our water model using a hybrid approach, incorporating both201

top-down and bottom-up references, to attain an accurate reproduction of the experimental202

radial distribution functions (RDFs), density, and static dielectric constant at three distinct203
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temperatures: 280K, 298K, and 343K. This is thus a multi-temperature multi-objective op-204

timization combining top-down (microscopic) and bottom-up (macroscopic) target observ-205

ables. Figure 3 illustrates the model’s performance in reproducing observables of interest206

in the liquid regime, namely density, static dielectric constant, enthalpy of vaporization,207

thermal expansion coefficient, isobaric heat capacity and self-diffusion coefficient. The plots208

containing RDFs, the values of isothermal compressibility and surface tension are present in209

the Supporting Information (Figures S3, S4 and S5). The overall accuracy of the model that210

we obtained can be compared with the most advanced state-of-the-art data-driven trained211

models, such as TIP3P-FB24 and OPC3.31 In particular, it is worth noting the agreement212

of our model (OPTI-3T, in green) with the experimental enthalpy of vaporization and self-213

diffusion coefficient at all explored temperatures. The enthalpy of vaporization reflects the214

strength of interactions between water molecules in the liquid state, representing the energy215

required to transition a molecule from the liquid to the vapor phase. On the other hand, the216

self-diffusion coefficient characterizes the dynamics of individual molecule diffusion within217

the liquid, indicating the ease of movement in a medium comprised of other water molecules.218

Notably, our optimized model demonstrates remarkable agreement with experimental results219

for these two parameters, despite not being explicitly targeted during training. This agree-220

ment underscores the significance of training the model on the radial distribution function221

and these two additional macroscopic targets, as they provide essential information for ac-222

curately reproducing fundamental thermodynamic and kinetic properties at the local level.223

A quantification of the accuracy of our OPTI-3T model by means of average deviation from224

the various experimental observables is present in Figure S6 of the Supporting Information.225

Overall, these results show the striking positive effect of training the water model based on226

microscopic information rich observables (e.g., the RDFs), and how microscopic characteris-227

tics of the model significantly influence most of its properties.228

In terms of computational time, the refinement of 5 parameters of the water model at 3 levels229

of temperature required 8 days (wall-clock time) to reach convergence (300 swarm iterations)230
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using 15 particles in the swarm and using 36 CPU cores, each simulation running on 9 CPU231

cores equipped with a GPU.232

These results give rise to several important considerations. Firstly, the results obtained233

with our method demonstrate that, despite the fact that our model reproduces globally well234

the explored thermodynamic properties across the different conditions, the performances of235

OPTI-3T are not distant from those of e.g., OPC3 and TIP3P-FB. This demonstrates that,236

substantially, there is a limited room for radically improving the performances of three-site237

rigid water models. All our results suggest that there is an intrinsic limit in the accuracy238

that is achievable with models where the representation of the water molecule is so simpli-239

fied. This leads us to fundamental questions. What are the key factors underpinning such240

limits? Are these imputable, e.g., to limitations in the optimization method itself, or to241

intrinsic limits of the model? In the next section, we will deeper investigate these questions,242

obtaining interesting insights.243

Intrinsic physical limits and indeterminate optimizations of rigid244

three-site water models245

Recently, Izadi et al.31 suggested that three-site water models somehow possess inherent ac-246

curacy limitations due to their oversimplified nature, which hinders their ability to achieve a247

complete and experimentally consistent reproduction of observables across the liquid phase.248

Nevertheless, an relevant question that remains unanswered is the precise reason behind this249

instrinsic limitation.250

The performance of an automatic optimization procedure may be significantly influenced by251

a priori choices concerning the methodology and training variables. As a result, the model’s252

ability to accurately fit different observables may vary to some extent. In the case of OPC3,253

for example, it was considered crucial to impose constraints on the geometry of the molecules254

in order to ensure a quadrupole moment of zero.31 In the case of TIP3P-FB, a predominant255

emphasis was placed on a top-down approach, involving the simultaneous fitting to multiple256
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Figure 4: Results obtained by running a series of identical optimizations, initialized in differ-
ent points of the parameters space. a Models obtained as solutions, displayed with principal
component analysis. Each color represents a different optimization run. b Density isolines.
c Parameters that are tuned during the optimization - dHH and Oxygen charge - as a func-
tion of the number of iterations. d Example of quantities calculated a posteriori that are
related to the energy of interaction between molecules - e.g., enthalpy of vaporization and
dipole moment - as a function of the number of iterations.e Schematic representation of the
solutions obtained from the series of optimizations: inter-dependence between size of the
molecule and and partial charges.
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thermodynamic observables across the liquid regime of water.24 To investigate the impact of257

these initial conditions and gain a comprehensive understanding of the optimization process,258

we conducted a series of six optimizations under identical constraints. Specifically, we mini-259

mized the discrepancy of radial distribution functions (RDFs), density, and static dielectric260

constant, at the standard conditions of 298 K and 1 bar. Since the results obtained with261

such optimization cycles vary to some extent, this setup did not produce a single solution262

(identical in all six runs) but rather a group of solutions. Noteworthy, the obtained solutions263

demonstrate a comparable score (as illustrated in Figure S7 of the Supporting Information).264

Moreover, we conducted a Principal Component Analysis (PCA) of all explored solutions265

achieved through the use of Swarm-CG. Figure 4a shows the high density regions (i.e., the266

solutions projected on the first two principal components) that represent the optimal solution267

obtained from our optimization cycles. The different colors represent the different runs. The268

contour lines illustrated in Figure 4b represent density isolines, which enable us to identify269

the regions of higher density points containing a set of optimal water models (according to270

our scoring function), which are characterized by slightly different set of parameters. These271

data demonstrate how Swarm-CG brings the model systematically not to a to a specific so-272

lution (i.e., to a specific optimal model), but to a region of the space which contains “equally273

optimal, although slightly different solutions". Interesting questions are, for example, why274

the method behaves in this way, and specifically why slightly different solutions are “equally275

optimal".276

A deeper inspection of the “optimal solutions" provided by Swarm-CG revealed interesting277

patterns. In particular, it is interesting to observe that the dipole moment of all the models278

belonging to this minimum is identical. Namely, despite the fact that their geometry or par-279

tial charges can be slightly larger/smaller (Figure 4c) in the various solutions, these change280

in such a way that the dipole moment the molecule is conserved. In such a way, the enthalpy281

of vaporization is also conserved across the various solutions (Figure 4d).282

It is worth noting that these two properties (the dipole moment and the enthalpy of vapor-283
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ization) are evaluated a posteriori and are not explicitly used to train the models during284

the optimization process. Moreover, both such observables are related to the extent of the285

intermolecular interactions, as the enthalpy of vaporization is proportional to the potential286

energy in the system, and the interaction between dipoles of the molecules plays a key role287

in it. Figure 4d presents a visual representation of the variability in charge and geometry288

of the water models generated by the different optimization runs. In qualitative terms, an289

increase in charge corresponds to a reduction in the size of the molecule, while a decrease290

in charge results in an increase in size (Figure 4c,e). Additionally, we observed changes in291

the Lennard-Jones interactions with variations in sigma and epsilon values (Figure S8 in the292

Supporting Information). The obtained results and considerations illustrate how the collec-293

tive properties of these models are largely controlled by the interplay of molecular dipoles294

and their interactions with each other.295

Since in such a simplified three-site models the majority of water-water intermolecular in-296

teraction are largely governed by the dipole moment, this introduces an intrinsic level of297

indeterminacy in the optimization. Recently, we have observed similar results also in the298

framework of the automatic optimization of, e.g., lipid models using Swarm-CG, where a299

certain level of model accuracy can be achieved, although accompanied by an inherent un-300

certainty. While uncertainties can arise from various sources in automatic approaches, such301

as the number of objectives, parameter selection, and optimization methods, it is worth not-302

ing that the uncertainty we are referring to in this context originates elsewhere. Here, due303

to the simplified physical description of the three-site rigid water model, the optimization304

problem becomes inherently undetermined as it seeks to find an optimized dipole, which is305

a composite variable represented by the product of charge and geometry (µ = qd). This306

leads to a degeneracy characterized by different optimal solutions with varying combina-307

tions of charge and geometry. To overcome this limitation, a potential improvement could308

involve incorporating additional parameters that decouple the geometric and electrostatic309

characteristics of the water model during the training process. For example, one approach310
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could be training the model to reproduce a specific geometry obtained with higher accuracy311

from quantum mechanical (QM) approaches or by calculating the electrostatic potential.312

However, implementing such an approach encounters challenges due to the substantial dif-313

ferences between the geometric and electrostatic descriptions at the QM level compared to314

the all-atom models, as demonstrated by recent research on OPC3.25315

An interesting outcome of these considerations is that while our approach can achieve opti-316

mal solutions at least as good as the state-of-the-art models in a very efficient way, it also317

underlines how such all atom water models are de facto a coarse grained description of the318

real water molecule features. Like other coarse-grained models, they encounter a degeneracy319

due to simplified representations of system degrees of freedom, resulting in a certain level of320

precision combined with inherent indeterminacy. This indeterminacy implies that different321

parametrizations can lead to similar behaviors. Notably, in our case, this degeneracy yields322

a set of non-identical solutions that belong to a minimum that is identified by the PCA.323

These considerations suggest that similar principles used to parameterize other three-site324

rigid water models generally encounter similar limitations (i.e., the challenges and con-325

straints faced in developing and optimizing water models based on similar principles are326

likely to be shared). To reduce the uncertainty in the model outcomes, another possible327

solution is to employ extra sites in the model, such as in the four-site models like TIP4P17 or328

TIP4P-ICE.34 Such an addition permits to expand the degrees of freedom to tune, allowing329

for a better fit of some properties , e.g., the curve of density across different temperatures.330

De facto, this underlines how, to improve substantially the performances of three-site water331

models, it is necessary to increase the resolution of the model accounting for more degrees332

of freedom.333
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Conclusions334

In this work, we explored the effect of combining microscopic-rich and macroscopic-rich in-335

formation into a training set of experimental observables used to automatically optimize336

classical three-site water models. In particular, as the microscopic target observables, we337

use the experimental gOO, gOH , and gHH radial distribution functions of liquid water at var-338

ious temperatures that, altogether, contain information not only of how strongly the water339

molecules interact but also on how the molecules are organized in space respect to each340

other. A first optimization of the water model under standard conditions (298 K and 1 bar)341

using only such a bottom-up (microscopic) reference demonstrated how such microscopic342

information alone is insufficient to obtain an experimentally consistent reproduction of all343

other screened macroscopic observables for the liquid phase of water, especially for what344

pertains to the density and dielectric constant of liquid water.345

346

Including in the training-set and in the score, in a second test, the density and static347

dielectric constant of liquid water, was then seen to provide considerable improvements. The348

obtained model showed a remarkable improvement in reproducing macroscopic properties,349

especially with respect to self-diffusion coefficient and enthalpy of vaporization. This also350

suggests that these properties – density and dielectric constant – are not strongly dependent351

on the g(r) of water. Overall, we found that our optimized water model (called OPTI-3T352

herein) exhibits a comparable level of accuracy as two models, OPC3 and TIP3P-FB, which353

were also obtained through automatic optimization approaches and are considered state-of-354

the-art models in the realm of three-site rigid water models. Nonetheless, it is worth noting355

how, in our case, combining microscopic and macroscopic target properties allows achieving356

such a level of accuracy in an efficient way, and with a relatively reduced computational357

time (e.g., TIP3P-FB is trained on a large amount of thermodynamic properties at various358

temperatures in a computationally intensive process). At the same time, our tests show that359

there is little room for further improvement in these models by, e.g., adding more experimen-360
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tal observables in the training-set, etc., which suggested that all these models are somewhat361

very similar and possibly nearly consistent with each other, considered the precision that it362

is reasonable to expect from them.363

364

The series of optimizations that we conducted herein under identical constraints (namely,365

fitting the experimental RDFs, density and static dielectric constant at standard conditions)366

shows that these models are somewhat intrinsically limited in their accuracy. The same367

is true in some sense concerning the determinacy of their optimization cycles. The results368

shown in Figure 4 show how many of the screened thermodynamic observables are controlled369

in these simplified water models by the water dipole (µ), which is a composite variable that370

depends on both the charge (q) and geometry (d) of the water model (µ = qd). This leads to371

an inherent indeterminacy in the solutions that are systematically obtained. This means that372

different combinations of charge and size can correspond to equally optimal solutions toward373

the fitting of the targeted properties. A set of optimal solutions is thus typically obtained in374

such automatic optimizations instead of a single specific one. The PCA data of Figure 4a,b375

show how all such obtained "optimal" solutions belong, in our case, to the same global high-376

density minimum. In Figures 4c,d it is demonstrated how all the slightly different solutions377

belonging to such minimum represents share nearly identical molecular dipole and enthalpy378

of vaporization. While the broadness of such minima could be interpreted, e.g., as to be379

imputable to some kind of statistical error/limit in the particle swarm optimization method380

used herein, these results suggest that this is most likely related to an intrinsic indeterminacy381

in how the problem is posed. In particular, the degrees of freedom in such "coarse-grained"382

atomistic description of the water models are so limited that the optimization process de-383

generates, providing equally optimal solutions that are nonetheless different from each other.384

385

These results are interesting because they demonstrate that, when dealing with the opti-386

mization of approximated models, there will be inevitably intrinsic limits due to degeneration387
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of the optimal set of parameters that satisfy the conditions that are posed. In such a case,388

further improvements cannot be achieved without introducing additional degrees of freedom389

that can decouple in some way such composite variables into the fundamental ones allow-390

ing to fine-tune the model. One way could be, e.g., to add some higher (quantum) level391

additional constraint that allows to decouple the dependence on the charge (q) from that392

of geometry (d) in the solution. However, the geometry and electrostatics of QM water393

molecules are so different from those of these AA models, that tests in this sense proved394

inefficient. In the case of the classical water models studied herein, reaching higher precision395

thus requires expanding the model’s representation by adding additional “classical" degrees396

of freedom, for example, allowing for a more flexible and accurate description of the system.397

This is exactly the case of the higher precision that can be achieved by, e.g., 4- or 5-site mod-398

els.35,36 Moreover, altering the degrees of freedom can have important effects for example399

on subtle dynamical mechanisms associated with water reorientational dynamics as recently400

shown.37 However, these results are also interesting for the development of approximated401

molecular models in general. Recently, we have observed similar intrinsic limitations also in402

the optimization of, e.g., coarse-grained models of a variety of other molecular systems.7,9,26403

This observation serves as a valuable lesson for developing models of all kinds, not just in the404

context of water simulations. Such inherent limitations and these challenges encountered in405

optimizing approximated models demonstrate the importance of considering the complexity406

of the system being studied, and the type of information lost with approximated molecular407

models. The integration of multiple references, and in particular combining bottom-up and408

top-down microscopic/macroscopic-level information in the training-set can improve the effi-409

ciency and robustness in the models’ optimization. Nonetheless, the results discussed herein410

also offer an unambiguous example of how, understanding the physical limits of approxi-411

mated models, can provide a precious knowledge for guiding future research towards more412

robust and reliable modeling approaches.413
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Computational details414

MD Simulations415

All the simulations have been conducted using GROMACS version 2021.538 with the fol-416

lowing protocol. The starting systems’ configuration is a cubic box containing 1024 water417

molecules, arranged in initial random configurations, using Packmol.39 After a preliminary418

energy minimization via steepest descent algorithm (for 2 · 103 steps), the system is then419

equilibrated for 5ns in NpT ensemble and simulated for 10ns in the same ensemble. Both420

these equilibration and production phases are simulated with a 2 fs timestep. We kept tem-421

perature constant with velocity rescale thermostat40 (with a time constant of 0.2 ps), and422

pressure constant to 1 bar with cell rescale barostat41 (with a coupling constant of 1 ps423

and compressibility of 4.5 · 10−5 bar). A cutoff distance of 1 nm was used for short-range424

electrostatic and van der Waals interactions, and the long-range interactions were computed425

with the particle-mesh Ewald summation method.42 Corrections to long-range pressure and426

potential energy were considered.43427

Observables428

Density. The mass density of water ρ is calculated as follows:429

ρ =
N ·mH2O

NA · Vbox
, (3)

where N is the number of water molecules (1024 in our case), mH2O is the mass of water430

molecules in u.a., NA is Avogadro’s number, and Vbox is the volume of the simulation box.431

Experimental reference data of ρ are taken from Ref.44432

Static dielectric constant. We calculate the static dielectric constant from the fluctu-433

21

https://doi.org/10.26434/chemrxiv-2023-88fpn ORCID: https://orcid.org/0000-0002-3473-8471 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-88fpn
https://orcid.org/0000-0002-3473-8471
https://creativecommons.org/licenses/by/4.0/


ations of the total dipole moment M of the simulation box, i.e., as:434

ε = 1 +
〈M2〉 − 〈M〉2

3ε0V kBT
, (4)

where ε0 is the permittivity of the vacuum, V the volume of the simulation box, kB the435

Boltzmann constant, T the temperature of the system, and 〈·〉 represents the thermodynamic436

average. We calculated this observable using the routine gmx dipoles of GROMACS suite.437

Experimental reference data of ε are taken from Ref.44438

Radial distribution functions. We calculated the radial distribution functions of439

Oxygen-Oxygen, Oxygen-Hydrogen and Hydrogen-Hydrogen (gOO(r), gOH(r), gHH(r)) pairs440

with MDAnalysis 2.0.0.45 We considered a cutoff of 10Å and 500 equally spaced bins. Ex-441

perimental reference data of radial distribution functions are taken from Ref.46442

Self diffusion coefficient. The self-diffusion coefficient D is calculated using Einstein’s443

relation for a diffusive particle as:444

D = lim
t→∞

〈|~r (t)− ~r (0) |2〉
6t

, (5)

where the quantity in the numerator is the mean square displacement (MSD), averaged over445

the trajectories of individual particles. Diffusion coefficients calculated with MD simulation446

are often referred to as DPBC , because they contain systematic errors due to the finite box447

size.47 Following Ref.,47 it is possible to correct this artifact obtaining the theoretical value448

of self-diffusion coefficient of water in an infinite box (D0). To this end, we calculated DPBC449

in cubic simulation cells with N = 512, 1024, 2048, 4096 and 8192 water molecules. The450

protocol used for these simulations is identical to the one described in section , except for a451

different production time, i.e., 20 ns (N = 512), 15 ns (N = 1024, 2048), 10 ns (N = 4096,452

8192). We calculated the various DPBC values using the gmx msd routine of GROMACS,38453

and D0 with linear interpolation. Experimental reference data are taken from Ref.48454

Enthalpy of vaporization. The enthalpy of vaporization ∆Hvap of one mole of liquid455
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water in the gas phase can be approximated as:49456

∆Hvap ≈ −U +RT − psatV − Epol + C , (6)

where U and V are respectively the average potential energy and the volume of one mole of457

water molecules at pressure p and bath temperature T . psat is the value of saturation pressure458

at temperature T . The term Epol represents the depolarization energy of one mole of water459

molecules when it is transferred from the liquid to the gas phase.32 It can be expressed as:460

Epol =
(µ− µgas)2

2αgas
(7)

where µ is the dipole moment of the simulated model, µgas and αgas are the dipole moment461

and average polarizability of a water molecule in the gas phase,49 respectively. The last462

term in equation (6) contains corrections that account for the vibrational effects of water463

molecules and non-ideality of the gas phase. These corrections are reported in Ref.49 for464

different temperatures. Experimental reference data are taken from Ref.49465

Specific heat capacity . We computed the isobaric heat capacity cp using the enthalpy466

fluctuation formula, namely:467

cp =
〈H2〉 − 〈H〉2

NkB〈T 〉2
, (8)

We computed this observable by using the gmx energy routine of the GROMACS38 suite.468

The value obtained was then corrected to account for quantum effects that are not considered469

in the classically computed heat capacity in eq.(8). Specifically, these corrections include470

estimation of intra-molecular vibrational energies (due to the fact that our model is rigid)471

and inter-molecular high frequency modes. The values of these correction are reported in472

the Ref.49 of Horn et al. The experimental reference data of cp are taken from Ref.50473

Thermal expansion coefficient. We calculated the thermal expansion coefficient αT474
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using the enthalpy-volume fluctuation formula:475

αT =
〈V H〉 − 〈V 〉〈H〉
kB〈T 〉2〈V 〉

, (9)

We computed this observable by using the gmx energy routine of the GROMACS38 suite.476

The experimental reference data of αT are taken from Ref.50477

Isothermal compressibility. We calculated the thermal expansion coefficient κT using478

the volume fluctuation formula:479

κT =
〈V 〉2 − 〈V 2〉
kB〈T 〉〈V 〉

, (10)

We computed this observable using the gmx energy routine of GROMACS38 suite. The480

experimental reference data of κT were taken from Ref.50481

Surface tension. The interface between water and void was prepared and simulated482

following the good practices outlined in Ref.51 Firstly, a cubic box containing 1024 water483

molecules was equilibrated in the NPT ensemble. To represent the void phase, the z-axis of484

the simulation box was elongated by a factor of 4. The resulting biphasic system was then485

simulated for 50 ns in the NV T ensemble. The surface tension of the water-void interface486

was calculated using the mechanical or pressure approach,52 which involves evaluating the487

inhomogeneity of the pressure tensor as follows:488

γ(t) =
Lz
2

(
Pzz(t)−

Pxx(t) + Pyy(t)

2

)
, (11)

where Lz is the elongation of the z-axis, and Pxx, Pyy, and Pzz are the diagonal components489

of the pressure tensor. To perform the analysis, we used the gmx energy routine of the490

GROMACS suite.38 Experimental reference data for the surface tension are obtained from491

Ref.53492
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Model Refs. Sigma
[nm]

Epsilon
[kJ/mol]

O charge
(e)

O-H distance
[nm]

H-H distance
[nm]

SPC ref.1 0.31655700 0.65062900 -0.820000 0.1000000 0.1633000
SPCE ref.2 0.31655700 0.65062900 -0.847600 0.1000000 0.1633000

SPCEb ref.3 0.31657195 0.64977520 -0.847600 0.1010000 0.1649300
TIP3P ref.4 0.31506100 0.63638600 -0.834000 0.0957200 0.1513900

TIP3P-FB ref.5 0.31779646 0.65214334 -0.848448 0.1011811 0.1638684
OPC3 ref.6 0.31742704 0.68369070 -0.895170 0.0978882 0.1598507

OPTI 1T 0.31921898 0.61796336 -0.935014 0.0940835 0.1518014
OPTI 3T 0.31657153 0.69750474 -0.889239 0.0977138 0.1590416

Table S1: Summary of the classical three-site rigid water models compared in
this work.

Figure S1: Comparison of experimental RDF and simulated RFDs examples
scored according to our metrics. Notably, the orange curve receives a higher
score (i.e., worse performance) compared to the blue one, despite capturing
the first peak more accurately. The difference in scores arises from the orange
curve’s poorer reproduction of the second and third peaks. This observation
highlights the scoring function preference for favoring long-range reproduction
of RDFs in the evaluation of simulated curves.
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Figure S2: Enlarged plot of the reproduction of RDFs contained in Fig.2a
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Figure S3: Radial distribution functions obtained of the model OPTI-3T along
with a comparison with other models.
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Figure S4: Isothermal compressibility as a function of temperature. Dashed
vertical gray lines indicate the temperature at which the model was trained.
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Figure S5: Surface tension as a function of temperature. Dashed vertical gray
lines indicate the temperature at which the model was trained.
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Figure S6: Average deviation of simulated observables with respect to experi-
mental data in the liquid regime. The plots show water density, static dielectric
constant, enthalpy of vaporization, thermal expansion coefficient, isobaric heat
capacity, diffusion coefficient, adiabatic bulk modulus and surface tension.
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Figure S7: Score as a function of iteration number of the six optimizations.
Each color represent an independent optimization run.

Figure S8: Values of sigma, epsilon and distance between the Hydrogens atoms
as a function of iteration number. Each color represent an independent opti-
mization run.
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