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Abstract

Polycyclic aromatic systems are highly impor-
tant to numerous applications, especially to or-
ganic electronics and optoelectronics. High-
throughput screening and generative models
can help to identify new molecules that can
advance these technologies but require large
amounts of high-quality data, which is ex-
pensive to generate. In this report, we
present the largest freely available data set of
geometries and properties of cata-condensed
poly(hetero)cyclic aromatic molecules calcu-
lated to date. Our data set contains ~500k
molecules comprising 11 types of aromatic and
antiaromatic building blocks calculated at the
GFN1-xTB level and is representative of a
highly diverse chemical space. The method-
ologies used to enumerate and compute the
various structures and their electronic prop-
erties (including HOMO-LUMO gap, vertical
and adiabatic ionization potential, and electron
affinity) are detailed. Additionally, we bench-
mark the values against a ~50k data set cal-
culated at the CAM-B3LYP-D3BJ/def2-SVP
level and develop a fitting scheme to correct
the xTB values to higher accuracy. These new
data sets represent the second installment in
the COMputational database of Polycyclic Aro-
matic Systems (COMPAS) Project.
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Background and Summary

Polycyclic aromatic systems (PASs) are
molecules composed of fused aromatic rings.
They are an important and pervasive class
of molecules, found in both the natural and
man-made worlds, that has captivated re-
searchers across many scientific disciplines,
thanks to their remarkable structural and func-
tional diversity. To date, PASs have been
employed in a wide variety of uses, includ-
ing as highly tunable fluorescent emitters,!
catalysts,?® organic semiconductors,%® light-
emitting diodes,® field effect transistors,!0 12
organic photovoltaics, '3 '® synthetic metals, '
chemical sensors,!” and even medicines. '8
To design new molecules that can fully har-
ness the potential functionality of PASs, it
is necessary to understand their underlying
structure-property relationships. However, due
to the large structural diversity of these com-
pounds, uncovering such relationships is not
straightforward. The sheer vastness of this
space severely hinders any effort to realize
transferable chemical trends via synthetic char-
acterization alone. Data-driven approaches
hold great promise, but they require large
amounts of data of sufficient and uniform qual-
ity, which are not easily available. Although
high-throughput calculation of structures and
properties has become increasingly common-
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place, allowing exploration of new swaths of
chemical space,?* 2 it has seen limited appli-
cation to PASs.20728 Because PASs are gen-
erally mid- to large-sized molecules, compu-
tational characterization remains a resource-
intensive endeavor. As a result, the chemical
space of PASs has been under-represented in
many existing databases. Indeed, there are only
a few examples of publicly accessible reposito-
ries that contain large numbers of PASs, such as
the Harvard Clean Energy Project.?’ However—
until recently—there was no dedicated database
for PASs.

Big-data endeavors are crucial to guiding ex-
perimental efforts and advancing our chemical
understanding.? With this understanding, we
were motivated to address the paucity of data
for the highly important PAS chemical space.
Therefore, we conceptualized and initiated the
COMPAS Project (COMputational database
of PASs). We note that the recently estab-
lished OCELOT?? and PAH3353! data sets also
demonstrate the growing interest in this type
of data. Among the key features of the COM-
PAS database are: a) each data set is gener-
ated at a uniform and suitable level of theory,
which is necessary to allow the use of data-
driven approaches and extraction of chemical
insight; b) the data are curated and stored in
a manner that is optimal for use with data sci-
ence tools; ¢) inexpensive computational meth-
ods are benchmarked and fit to higher levels
of accuracy, which enables rapid and affordable
expansion of the database; d) all data is freely
and openly accessible, in compliance with the
FAIR principles.3?

Herein, we present the second installment
of the COMPAS Project, focused on cata-
condensed heterocycle-containing PASs (cc-
hPASs). Such molecules are especially promis-
ing as organic semiconductors.3¥3® We describe
the construction of two data sets: COMPAS-2x
and COMPAS-2D. The former contains the op-
timized geometries of 524,392 unique cc-hPASs
calculated at the GFN1-xTB level;?® the latter
contains the optimized geometries of 52,000
cc-hPASs calculated at the CAM-B3LYP-
D3BJ/def2-SVP level.?%45 The molecules in
both data sets range in size from 1 to 10 rings
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and are constructed from a library of 11 build-
ing blocks of diverse size, composition, and
aromatic character. To our knowledge, these
represent the largest and most structurally di-
verse data sets of cc-hPASs prepared to date.
At the same time, we emphasize that the COM-
PAS Project is under constant expansion and
future installments are already underway.

The current contribution joins the first
installment, data sets COMPAS-1x and
COMPAS-1D, which contain the structures and
properties of cata-condensed polybenzenoid hy-
drocarbons (cc-PBHs) ranging in size from 1
to 11 rings (at the GFN2-xTB level) or from
1 to 10 rings (at the B3LYP-D3BJ/def2-SVP
level), respectively.® These data can assist in
guiding the synthesis of novel molecules, in
screening for structures or substructures of in-
terest, in probing fundamental properties (e.g.,
aromaticity, reactivity), or in training machine
learning and deep learning models for various
tasks. Indeed, we have recently reported on
interpretable models for extracting chemical
insight trained on COMPAS-1x,478 as well as
on a novel guided diffusion model for generat-
ing cc-hPASs with targeted properties, trained
on some of the data described in this report.4’

In the present report, we describe and discuss
the following: a) the composition of the data
sets; b) the workflow employed for data gen-
eration; c¢) benchmarking of the data against
higher-level calculations and a fitting scheme
for obtaining density functional theory (DFT)-
level properties from GFN1-xTB calculations.

Methodology

In this section, we discuss our protocol for
the enumeration of a random subset of the
chemical space of cata-condensed heterocycle-
containing PASs (cc-hPASs) and the high-
throughput computations employed to obtain
optimized structures and their properties with
different methods.

Building-block library For the construc-
tion of the cc-hPAS molecules in COMPAS-2,
we used a library of 11 cyclic building blocks,
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Figure 1: Various aspects of the COMPAS-2 generation protocol: a) Library of cyclic building
blocks used in COMPAS-2; b) An example of an enumeration pathway for generating a tricyclic cc-
hPAS molecule; ¢) The data generation workflow, from structure enumeration to high-throughput
calculations to obtain optimized structures and molecular properties.
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varying in size (from four- to six-membered
rings), composition (B, N, O, and S mono-
and di-substitution), and aromatic character
(aromatic and antiaromatic). Namely, these
building blocks are: benzene, pyridine, bori-
nine, pyrazine, 1,4-diborinine, 1,4-dihydro-1,4-
diborinine, pyrrole, borole, thiophene, furan,
cyclobutadiene (shown in Figure la). These
specific moieties were chosen due to their preva-
lence and importance in various functional
PASs, in particular in the field of organic elec-
tronics. 3330738 The number of building blocks
was limited to 11, which allows us to sample
a broad diversity of structures and properties
within a feasible number of molecules.

Enumeration Protocol To generate cc-
hPASs from the building blocks detailed in
Figure la, we designed and implemented
an enumeration pipeline using SMARTS
(SMILES arbitrary target specification lan-
guage;"? SMILES - Simplified Molecular Input
Line Entry System).?!%? Using the SMARTS
representation, we encoded different ‘reactions’
of fusing two rings together in a cata-condensed
fashion (cata-condensation refers to a manner
of ring fusion whereby each atom is shared by,
at most, two rings). Each ‘reaction’ creates
a fused bond that is shared by two adjoin-
ing rings, i.e., two neighboring atoms that are
endocyclic to both rings (see Section S2 in
the Supporting Information for a discussion
on the SMARTS representation). By perform-
ing sequential ‘reactions’, we generated 600,000
polycyclic compounds.

In generating the structures, we imposed sev-
eral (arbitrary) constraints. Firstly, to simplify
the generation rules and the resulting struc-
tures, we opted to allow only carbon atoms
on the fused bonds. In other words, hete-
rocyclic moieties can only fuse at their C-C
bonds; heteroatoms remain on unfused bonds
(the SMARTS formalism for this ‘reaction’ is
shown in Table 1). Secondly, to ensure only
cata-condensation is achieved, both carbons in
the C-C bond chosen for fusion must belong to
only one ring of the evolving cc-hPAS. Thirdly,
in cases where more than one C-C bond is suit-
able for fusion, the choice of which bond to

use as the fusion site is random. Fourthly, in
the ring choice step, we invoked a bias of 10:1
favoring benzene over all other rings (see Sec-
tion S2 in the Supporting Information). This
was done to ensure a more realistic distribution
of structures. Finally, we biased the genera-
tion towards molecules of intermediate size (8
and 9 rings) and limited the size of generated
molecules to 10-ring systems. The rationale be-
hind this choice was that these sizes provide
large structural diversity, and any structure-
property relationships should already become
obvious in systems of this size (as we previ-
ously showed for the cc-PBHs).4%*® Thus, there
was no need to perform calculations of larger
systems, which would be substantially more
resource-consuming.

The structure generation workflow consists of
the following steps:

e Step 1: Generate a random integer (n)
between 1 and 10.

e Step 2: Randomly select n building blocks
from the library and store them in a list.
The order of the list will be the order
of addition of the building blocks to the
nascent molecule.

e Step 3: Initialize the nascent molecule
with the first building block in the list.

e Step 4: Join the next building block in the
list to each of the available C-C bonds in
the molecule in turn, each time creating
a new structure.

e Step 5: Check all of the resulting struc-
tures for chemical validity. Correct er-
rors (e.g., double-bond placement) and re-
move duplicates.

e Step 6: Randomly select one of the struc-
tures. This is now the nascent molecule.

e Step 7: Repeat steps 4-6 until all building
blocks in the list have been added.

Figure 1b presents a schematic illustration of
an enumeration process leading to a tricyclic
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product. In the scheme, we show all of the pos-
sible resulting structures (which are constitu-
tional isomers), however, in practice, a deter-
ministic choice was made at each step, leading
to a single product at the end of each enumera-
tion process. In our example, the process began
by randomly choosing n = 3 and a list of build-
ing blocks comprising pyridine, 1,4-diborinine,
and benzene (in that order). In principle, pyri-
dine (shown in blue) has four C-C bonds that
can serve as fusion sites. However, only two of
them are unique, due to the symmetry of the
molecule (these are circled in purple and green,
respectively). The next building block that was
randomly chosen was 1,4-diborinine (shown in
turquoise), which has only one type of fusion
site (circled in gray). Joining this new build-
ing block to the nascent molecule (pyridine) at
the bond circled in purple led to the bicyclic
product shown on top (following the purple ar-
row); joining the new building block at the C-C
bond circled in green led to the bottom bicyclic
product (following the green arrow). The al-
gorithm then randomly chose to continue with
the bottom product (hence, the top one is faded
out and there was no continuation of molecular
construction). This nascent molecule had three
potential fusion sites (circled in pink, green, and
purple, respectively). Following the similarly-
colored arrows led to each of the three tricyclic
products that were obtained through the fu-
sion of the third building block, benzene (shown
in gray). At this point, the algorithm once
again randomly selected only one of the prod-
ucts (in this case, the bottom one; the other
two are faded out). Having reached the end of
the building block list, the algorithm recognized
that the construction has been completed and
entered the selected molecule into the data set.
All other structures generated in the process
were discarded.

We performed this generation process 600k
times, and following each generation process,
the resulting cc-hPAS was annotated with its
canonical SMILES and InChI®*5* representa-
tions using RDKit.?® The InChl representa-
tion was used to identify and remove dupli-
cate entries. We note that the current enu-
meration protocol is not memory efficient and
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may be improved using graph-theoretical meth-
ods. Nevertheless, it ensures an exhaustive ex-
ploration of the constitutional isomer chemi-
cal space (within the described constraints) and
generates unique cc-hPASs. The histograms of
the various structural features present in the
data set (Figure 2) show that the distribution
of molecular sizes and compositions is well sam-
pled.

High-throughput data generation Using
the protocol described above, we enumerated
the InChl representations for a diverse set of
600,000 cc-hPASs. These molecules were then
put through a high-throughput computational
pipeline to obtain optimized geometries and
molecular properties. The steps of the work-
flow (shown schematically in Figure 1c) are as
follows:

e Step 1: Embed the molecule in 3D space
using the Experimental-Torsion Distance
Geometry (ETDKG) method with addi-
tional "basic knowledge",%®5" as imple-

mented in RDKit.

e Step 2: Pre-optimize the structure with

the universal force field (UFF),?® as im-
plemented in RDKit.!

e Step 3: Optimize the structure at the
GFN1-xTB level using the xTB soft-
ware® (see Section S3 in the Supporting
Information for further details on bench-

marking and choice of method).

e Step 4: Calculate harmonic vibrational
frequencies to ensure the geometry is a

minimum on the potential energy surface
(i.e., Nimag = O)

e Step 5: Filter out molecules that did not
optimize correctly (i.e., optimization did
not converge, presence of imaginary fre-
quencies, presence of bond lengths greater

IBecause sp? hybridized B parameters are unavail-
able in UFF (RDKit), we used sp® B parameters. Al-
though this led to suboptimal pre-optimized structures,
the subsequent steps ensured close approximations to
the ground truth.
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Table 1: Table of fragments and their SMARTS encodings

Fragment attached SMARTS encoding

Benzene [#6;R1:1]~[#6;R1:2]»[c:2]:1:[c:1]:[c:3]:[c:4]:[c:5]:[c:6]:1
Pyridine [#6;R1:1]~[#6;R1:2]»[c:6]:1:[c:2]):[c:1]:[n:3]:[c:4]:[c:5]:1
Borinine [#6;R1:1]~[#6;R1:2]»[#5;a:3]:1:[c:1]:[c:2]: [#6;a:6]:[c:5]:[c:4]:1
Pyrazine [#6;R1:1]~[#6;R1:2]»[c:2]:1:[c:1]:[n:3]:[c:4]:[c:5]:[n:6]:1

[#6;R1:1]1~[#6;R1:
[#6;R1:1]1~[#6;R1:

21> [#5;H0;a:6]:1: [#6:2]: [#6:1] : [#5;H0;a:3]: [#6:4]: [#6:5]:1
2] > [H] [#5:31-1-[c:1] [c:2]-[#5:6] ([H])-[c:5] [c:4]1-1

1,4-diborinine
1,4-dihydro-1,4-diborinine

Pyrrole [#6;R1:1]~[#6;R1:2]»[c:2]:1:[c:5]:[c:4]:[n:3]([H]):[c:1]:1
Borole [#6;R1:1]1~[#6;R1:2]»[c:2]:1:[c:5]:[c:4]:[b:3]1([H]):[c:1]:1
Thiophene [#6;R1:1]~[#6;R1:2]»[c:2]:1:[c:5]:[c:4]:[s:3]:[c:1]:1
Furan [#6;R1:1]~[#6;R1:2]»[c:2]:1:[c:5]:[c:4]:[0:3]:[c:1]:1
Cyclobutadiene [#6;R1:1]~[#6;R1:2]»[c:1]1[c:2] [c:4] [c:3]1

than 2.0 A, or presence of atom-atom dis-
tances shorter than 0.1 A.)

e Step 6: If the obtained structure passes
the validity check, optimize the geome-
tries and calculate the frequencies of the
anionic and cationic forms of the molecule

at the GFN1-xTB level.

e Step 7: Repeat Step 5 for the cationic and
anionic forms.

With this pipeline, we obtained the op-
timized geometries and molecular properties
of 524,392 cc-hPASs (corresponding to 22,735
unique molecular formulae), calculated at the
GFN1-xTB level-these comprise the COMPAS-
2x data set. Figure 2a shows the structural
diversity of the molecules contained in the
COMPAS-2x data set in terms of molecular
size and the distribution of heterocyclic moi-
eties among the molecules.

We note that the majority of COMPAS-2x
molecules are medium-sized molecules with ~50
atoms, comprising 8 or 9 rings (Figures 2a and
b, top row). This is because we used a quasi-
Poisson distribution to bias the size of the gen-
erated molecules towards 8 and 9 rings. Hence,
the 10-ring family is smaller even though the
number of possible structures increases sub-
stantially with the increase in the number of
rings. We observe a distribution of the number
of heterocycles per molecule, with most of the
compounds containing 3 or 4 heterocycles (Fig-
ure 2c, top row). The distribution of the dif-
ferent heterocycles is uniform (Figure 2d, top
row). Overall, the histograms show that the
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enumeration protocol successfully generates a
random and broad sampling of the chemical
space.

From COMPAS-2x, we randomly chose
52,000 molecules (approximately 10%), for
which we performed geometry optimizations
and property calculations with DFT using the
ORCA software. 6! For these calculations, we
employed the CAM-B3LYP functional®® with
the def2-SVP basis set,* using Grimme’s D3
dispersion correction'*? with Becke-Johnson
damping.*® The DFT-optimized geometries
and molecular properties of these 52,000 cc-
hPASs comprise the COMPAS-2D data set
(corresponding to 9,776 unique molecular for-
mulae). The assessment of structural diversity
for the COMPAS-2D data set (Figure 2, bottom
row) shows that the distribution of COMPAS-
2D is similar to that of COMPAS-2x, indicating
that the selection was successfully random and
that this data set is a good sampling of the
chemical space, as well.

Data Records

The COMPAS Project is hosted on the Poranne
Group’s GitLab repository (https://gitlab.
com/porannegroup/compas) and is openly and
freely available.  The current contribution,
located in the subdirectory COMPAS-2, ex-
pands the existing database with two data
sets: COMPAS-2x (524,392 cc-hPASs; geome-
tries and properties calculated with GFNI1-
xTB) and COMPAS-2D (52,000 cc-hPASs; ge-
ometries and properties calculated at the CAM-
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B3LYP-D3BJ/def2-SVP level). Additionally,
we include in COMPAS-2x properties of the
neutral compounds in COMPAS-2x, which have
been corrected from the GFNI1-xTB to the
CAM-B3LYP-D3BJ/def2-SVP level, using a
multi-linear regression correction scheme (see
below for further details). Jupyter notebooks
used to perform data analyses and multi-linear
regressions are also available on the GitLab
repository.

File Format

All molecular geometries optimized at the
GFN1-xTB and CAM-B3LYP-D3BJ/def2-SVP
levels are publicly available for download as
compressed sdf files COMPAS-2x.sdf.gz and
COMPAS-2D.sdf.gz files, respectively, from
https://gitlab.com/porannegroup/compas.
These files contain the optimized geometries
(Cartesian coordinates and connectivity in-
formation) of 524,392 and 52,000 molecules,
respectively.  All molecular properties com-
puted at the GFN1-xTB and CAM-B3LYP-
D3BJ/def2-SVP level for these optimized ge-
ometries in their neutral, cationic, and an-
ionic forms are publicly available for down-
load as COMPAS-2z.csv, and COMPAS-2D.csv
files, respectively, from https://gitlab.com/
porannegroup/compas.

Properties

The columns of the .csv files correspond to
the properties described in Table 2. For ev-
ery molecule in COMPAS-2x and COMPAS-
2D, the respective data set contains the molec-
ular formula, number of atoms, types of atoms,
InChl, SMILES, charge, energy of the high-
est occupied molecular energy (HOMO), en-
ergy of HOMO-1, energy of the lowest unoc-
cupied molecular orbital (LUMO), energy of
LUMO+1, energy of the HOMO-LUMO gap
(Gap, Eq. 1), adiabatic ionization potential
(AIP, Eq. 2), and adiabatic electron affinity
(AEA, Eq. 3), along with several structural
properties, as listed in Table 2. In addition,
COMPAS-2x contains the zero-point correc-
tion to the energy (ZPE) and the total GFN1-
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xTB energy (Eio(xTB)), which is the sum of
the electronic energy calculated with the self-
consistent-charge method (this includes the D4
dispersion correction). COMPAS-2D contains
the DFT total energy (Eq(DFT)), which is the
sum of the self-consistent field electronic energy,
the nuclear repulsion, and the D3-BJ dispersion
correction. COMPAS-2x.csv also contains "cor-
rected" properties for the neutral state of the
524,392 molecules in COMPAS-2x; i.e., these
are values that have been linearly regressed
with respect to the COMPAS-2D.csv (corrected
from xTB to DFT level). The input templates
used to compute the properties for COMPAS-
2x and COMPAS-2D are provided in Section S1
of the Supporting Information.

The Gap, AIP, and AEA are calculated as
follows:

Gap = LUMO — HOMO (1)

(2)
(3)
where Eiq is the dispersion-corrected to-
tal energy of the optimized molecule in the
neutral form, and E,®"°" and E,®°" are
the dispersion-corrected total energies of the
molecule in the cationic and anionic forms, re-
spectively.

AIP = Etotcatlon _
anion neutral
AEA = Etot - Etot

neutral

neutral
Etot

Technical Validation

Comparison between GFN1-xTB
and CAM-B3LYP-D3BJ results

The speed and low computational cost of
GFN1-xTB make it ideal for high-throughput
exploration of large chemical spaces. Naturally,
this comes at the expense of accuracy; although
xTB is considered to give good energies for re-
actions, as a semi-empirical method it is less
accurate than higher-level ab initio and most
modern DFT methods. Nevertheless, it is possi-
ble to leverage the advantages of the less expen-
sive calculations if a robust scheme can be con-
structed to correct the GFN1-xTB calculated
properties towards a higher accuracy level. In
this section, we compare the results obtained
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Table 2: Property keys, units of the respective quantities, and description of the molecular data
present in COMPAS-2x.csv and COMPAS-2D.csv files. HOMO, LUMO, Gap, AIP, and AEA are
provided only for neutral systems. Energies are provided in electron volts (eV) or Hartree (Eh)
units. Charge is reported in atomic units (a.u.). The dipole vector for COMPAS-2x is in Debye
(D) while it is in atomic units (a.u.) for COMPAS-2D.

COMPAS-2x  COMPAS-2D

Properties Units  Description

name

9-character alpha-numeric name

AN

AN

charge e Charge on the molecule

formula - Molecular formula v v
inchi - InChI descriptor v’ v’
smiles - SMILES descriptor v v’
rings - Number of rings v’ v’
aromatic_ rings - Number of aromatic rings v v
atoms - Total number of atoms v v’
heteroatoms - Number of heteroatoms v’ v’
heterocycles - Number of heterocycles v’ v’
branch - Number of branches v’ v
cyclobutadiene - Number of cyclobutadiene rings v’ v
pyrrole - Number of pyrrole rings v’ v
borole - Number of borole rings v’ v’
furan - Number of furan rings v’ v’
thiophene - Number of thiophene rings v’ v’
dhdiborinine - Number of 1,4-dihydro-1,4-diborinine rings v’ v’
14diborinine - Number of 1,4-diborinine rings v v
pyrazine - Number of pyrazine rings v’ v’
pyridine - Number of pyridine rings v v
borinine - Number of borinine rings v v’
benzene - Number of benzene rings v’ v’
h - Number of hydrogen atoms v’ v’
c - Number of carbon atoms v v’
b - Number of boron atoms v v’
s - Number of sulfur atoms v v
o} - Number of oxygen atoms v v
n - Number of nitrogen atoms v’ v’
homo eV Energy of the HOMO v v
lumo eV Energy of the LUMO v’ v’
lumo+1 eV Energy of the LUMO+1 v’ v
homo-1 eV Energy of the HOMO-1 v v’
gap eV Energy of the LUMO — Energy of HOMO v v’
zero _point_energy Eh Zero point energy of molecule v’

dispersion Eh Dispersion correction v’ v’
energy Eh Final energy of molecule v v
aip eV Adiabatic ionization potential v’ v
aea eV Adiabatic electron affinity v v
dipole D/a.u. Dipole vector of the molecule v v’
homo_corr eV xTB-level HOMO corrected to DFT-level v

lumo_corr eV xTB-level LUMO corrected to DFT-level v’

gap_ corr eV xTB-level Gap corrected to DFT-level v’

energy corr Eh xTB-level E;,; corrected to DFT-level v’

aip__corr eV xTB-level AIP corrected to DFT-level v

aea_ corr eV xTB-level AEA corrected to DFT-level v
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with GFN1-xTB to those obtained with CAM-
B3lYP-D3BJ/def2-SVP and implement such a
correction scheme.

Figure 3 displays contour plots of the HOMO,
LUMO, Gap, AIP, AEA, and E,; data calcu-
lated with the two methods. From the axis val-
ues, it is immediately apparent that the values
calculated with GFN1-xTB cover an entirely
different range than those calculated with DFT.
For DF'T, the orbital energy values are almost
always less negative (for HOMO by 4 eV, for
LUMO by 7 eV, and accordingly for Gap by
3 eV. For AIP, DFT values are 5 eV higher,
consistent with a higher HOMO. Similarly, for
AEA, DFT gives values that are 5 eV lower,
which agrees with a higher-lying LUMO. De-
spite the offsets in the property value ranges,
the plots of the data show that the two meth-
ods are reasonably well correlated. The Pear-
son correlation coefficients (noted for plots a—
e on each respective plot) range from 0.78 to
0.93, implying that the individual correlations
are largely linear. Taking into account only
the 80% of the data present in the densest re-
gions increases the coefficients to 0.93-0.97 (see
Section S4 in the Supporting Information for
scatter plots of the data). We note that the
agreement for the AEA is the poorest of all the
properties, just as it was for the cc-PBHs we
studied previously.?® We consider that this is
because the basis set used for the DFT calcu-
lations (def2-SVP, which does not contain dif-
fuse functions) is not optimal for anionic sys-
tems, especially non-planar ones. Despite this,
the overall satisfactory agreement suggests that
the choice of this inexpensive basis set is justi-
fied. An interesting phenomenon is observed
in the plot of the Ey (Figure 3f): a series of
separate linear correlations is obtained, rather
than one main grouping. By examining the
structural features of the molecules contained
within each grouping, we determined that the
differentiation stems from the number of sul-
fur atoms in the molecule (for further informa-
tion, see Section S5 in the Supporting Informa-
tion). We note that a similar issue was reported
for organosilicon compounds,%? indicating that
there may be a general discrepancy between
xTB and DFT in treating third-period atoms.
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This means that any correction scheme must
take this structural information into account.
Nevertheless, the remarkably good linear corre-
lation between the two methods suggests that
a suitable regression can be constructed to cor-
rect this behavior.

GFN1-xTB Corrected Towards
CAM-B3LYP

The high Pearson coefficients of the scatter
plots (Figure 3) imply that linear regressions
may be sufficient to correct the GFN1-xTB
data towards the CAM-B3lYP-D3BJ/def2-SVP
level. Hence, we employed a multi-linear regres-
sion, using the GFN1-xTB calculated property
value as the baseline and the molecular formula
of the molecule as the feature set (for further de-
tails see Section S6 of the Supporting Informa-
tion, which also describes additional regression
models that were tested). The advantage of this
model is its simplicity—it does not require any
knowledge of the specific molecular structure
beyond the atomic composition. This model is
reminiscent of the quasi-atom corrections% 6
often used in correcting DFT-level properties,
such as formation enthalpies, with respect to
composite wavefunction theories. %

We used the COMPAS-2D molecules as the
benchmarking data set and extracted the prop-
erty values of the exact same 52,000 molecules
from the COMPAS-2x data set. We then sepa-
rated the 52,000 molecules into training (80%)
and test (20%) sets and used the training set
to optimize the coefficients of the multi-linear
regression for each property with respect to
the individual features (i.e., numbers of atoms
of each type). The coefficients and intercepts
obtained from the multi-linear regression are
detailed in Table 3. We specifically note the
anomalously high coefficient for sulfur atoms in
the regression for E., which relates to our pre-
vious observation regarding the dependence of
the energy on the number of sulfurs, described
above.

The resulting fitting equations were then used
to correct the GFN1-xTB calculated proper-
ties of the test set. The agreement between
the values predicted by the corrected scheme
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Figure 3: Comparison of GFN1-xTB and CAM-B3LYP /def2-SVP calculated values for: a) HOMO
(eV), b) LUMO (eV), ¢) Gap (eV), d) AIP (eV), e) AEA (eV), and f) E (Eh). The colors of
the contour plots indicate the density of points in the region: darker shades indicate high density,
lighter shades indicate low density.
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and the DFT-calculated values was evaluated
(Table 3). Gratifyingly, we obtained remark-
ably good correlations with this very simple
regression method. The mean absolute errors
(MAEs) indicate that the properties are calcu-
lated with satisfying accuracy (especially con-
sidering the computational cost): 0.11 eV, 0.12
eV, 0.17 eV, 0.15 eV, 0.23 eV, and 0.02 Eh
for the HOMO, LUMO, Gap, AIP, AEA, and
Eiot, respectively. The coefficients of determi-
nation (ranging between 0.72-1.00) indicate a
high measure of linear correlation and good pre-
diction performance. We note that the prop-
erty with the highest error is the AEA. This
is not surprising, given that this property also
showed the lowest linearity in Figure 3e, as
we discussed above. Although slightly better
agreements can be achieved with more sophis-
ticated models (see Section S6 in the Support-
ing Information), the simplicity, transparency,
and interpretability of the multi-linear regres-
sion make it an attractive choice.

To evaluate the performance of our correc-
tion scheme, we plotted superimposed his-
tograms of the corrected properties and the
DFT-calculated properties for the molecules in
our test set (20% of the molecules in COMPAS-
2D, which were not used in training the mod-
els, vide supra). These histograms are shown in
Figure 4 (the values predicted with our correc-
tion scheme are shown in light blue; the values
calculated for the same molecules with DF'T are
shown in darker blue). Across all properties, we
note a very high degree of overlap, suggesting
that the models capture not only the average
values (see Table 3), but also the distribution
of the data well, and our correction scheme is
therefore transferable to other cc-hPASs. This
allows us to generate additional data sets with
rapid and inexpensive calculations, and easily
correct the values towards the more expensive
and more accurate DFT level (as we have in
COMPAS-2x). Although higher accuracy is
not always necessary to gain insight and learn
structure-property relationships (as we have re-
cently shown in??), it can be crucial in certain
cases. For example, for calculation of properties
such as oxidation potential and power conver-
sion efficiency, which are parameterized against
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experimentally obtained reference states.

In summary, the COMPAS-2 data sets are the
second installment in the still-growing COM-
PAS Project, and represent the largest freely
available data set of PASs to date. COMPAS-2
promises discoveries of hitherto unknown chem-
ical trends in the cc-hPAS chemical space. Con-
sidering the importance and prevalence of PASs
in chemistry and materials science, these new
data can be used to advance a wide variety
of disciplines with new opportunities for data-
driven investigations to enable the identifica-
tion of novel functional molecules that may find
applications in organic semiconductors and op-
toelectronics.

Acknowledgement The authors thank Ms.
Alexandra Wahab for fruitful discussions and
Prof. Dr. Peter Chen for his support and for
providing access to the Euler cluster at ETH
Zurich The authors also express their deep ap-
preciation to the Branco Weiss Fellowship for
supporting this research as part of a Society in
Science grant. R.G.P. is a Branco Weiss Fellow
and a Horev Fellow.

Supporting Information Avail-
able

General computational details, details of the
xTB-correction, description of benchmarking
procedure, histograms of data distribution,
color-coded plots for all studied structural fea-
tures, further analysis of the effect of sulfur on
Etot-

References

(1) Boens, N.; Leen, V.; Dehaen, W. Flu-
orescent indicators based on BODIPY.
Chem. Soc. Rev. 2012, 41, 1130-1172,
DOI: 10.1039/C1CS15132K.

Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.;

Jangjili, P.; Kim, J. S.; Lin, W.
Coumarin-based small-molecule flu-
orescent chemosensors. Chem. Rev.

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

Table 3: Statistical data for correction schemes from xTB-calculated properties to DFT-level prop-
erties, for the COMPAS-2D molecules. For all multi-linear regressions, the coefficients of atomic

features, R?, RMSE, and MAE are reported. RMSEs and MAEs for all properties are reported in
eV, except for Ei;, which is reported in Eh.

Property H C B S Q) N xTB Intercept | R? RMSE MAE
HOMO 0.0124  0.0065  -0.0423 -0.0370 0.0258  -0.0253 1.2397 6.2841 |0.89 0.16 0.11
LUMO 0.0160  -0.0079  -0.0862 -0.0303 0.0238  -0.0093 1.0648 8.1821 |0.94 0.14 0.10

Gap 0.0263 -0.0245 -0.0358 0.0222 0.0190 0.0331 1.1815  3.4427 |0.89 0.23 0.16

AIP 0.0061  0.0088 0.0608 0.0824 0.0042 0.0538 1.3537 -10.3931 | 0.84 0.22 0.14

AEA 0.0504 -0.0103 -0.1113 0.0012 0.0469 0.0164 0.8820  4.6421 0.74  0.32 0.23

Eiot -0.2102 -36.3793 -23.6932 -395.1947 -71.4597 -52.1923 0.7880  0.1285 | 1.00 0.02 0.02
a) HOMO (eV) b) LUMO (eV) c) Gap (eV)

A MAE = 0.16 MAE = 0.17 MAE = 0.24

£

o -8 -7 -6 -5 -3 -2 -1 0 2 3 4 5 6 7

£

*g d) AIP (eV) e) AEA (eV) f) Eyr (ED)

8 MAE = 0.24 MAE = 0.32 MAE = 0.02

v
3 4 5 6 7 8 -6 -4 -2 0 —2500 —2000 —1500 —1000 —500
- CAM-B3LYP-D3BJ

[ ICalculated [ ICorrected [ Overlap

Figure 4: Comparison of electronic properties obtained with the multi-linear correction scheme
(Corrected) against DFT-calculated properties (Calculated) on the test set (20% of COMPAS-2D).

13

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

2019, 119, 1040310519, DOLI:
10.1021/acs.chemrev.9b00145.

Yang, M.; Park, I. S.; Yasuda, T.
Full-color,  narrowband, and high-
efficiency electroluminescence from

boron and carbazole embedded poly-
cyclic heteroaromatics. J. Am. Chem.
Soc. 2020, 142, 19468-19472, DOLI:
10.1021/jacs.0c10081.

Herrmann, W. A. N-heterocyclic carbenes:
a new concept in organometallic catalysis.
Angew. Chem. Int. Ed. 2002, 41, 1290—
1309.

Wang, M. H.; Scheidt, K. A. Co-
operative catalysis and activation with
N-heterocyclic carbenes. Angew. Chem.
Int. Ed. 2016, 55, 14912-14922, DOL:
10.1002/anie.201605319.

Chen, Z.; Li, W.; Sabuj, M. A.; Li, Y.;

Zhu, W.; Zeng, M.; Sarap, C. S
Huda, M. M.; Qiao, X.; Peng, X.,
et al. Evolution of the electronic
structure in open-shell donor-
acceptor organic semiconductors.
Nat. Commun. 2021, 12, 5889, DOI:
10.1038/s41467-021-26173-3.

Lopez, S. A.; Pyzer-Knapp, E. O
Simm, G. N.; Lutzow, T.; Li, K,

Seress, L. R.; Hachmann, J.; Aspuru-
Guzik, A. The Harvard organic photo-
voltaic dataset. Sci. data 2016, 3, 1-7,
DOI: 10.1038/sdata.2016.86.

Jiang, W.; Li, Y.; Wang, Z. Heteroarenes
as high performance organic semiconduc-
tors. Chem. Soc. Rev. 2013, /2, 6113-
6127, DOI: 10.1039/C3CS60108K.

Guo, J.; Li, X.-L.; Nie, H.; Luo, W.;
Gan, S.; Hu, S.; Hu, R.; Qin, A
Zhao, 7Z.; Su, S.-J., et al. Achieving high-
performance nondoped OLEDs with ex-
tremely small efficiency roll-off by com-
bining aggregation-induced emission and
thermally activated delayed fluorescence.
Adv. Funct. Mater. 2017, 27, 1606458,
DOI: 10.1002/adfm.201606458.

14

(10)

(11)

(12)

(13)

(14)

Kono, T.; Kumaki, D.; Nishida, J.-i.;
Sakanoue, T.; Kakita, M.; Tada, H.; Tok-
ito, S.; Yamashita, Y. High-performance
and light-emitting n-type organic field-
effect transistors based on dithienylben-
zothiadiazole and related heterocycles.
Chem. Mater. 2007, 19, 1218-1220, DOI:
10.1021/cm062889+.

Chini, M. K.; Mahale, R. Y.; Chatter-
jee, S. Effect of heterocycles on field-
effect transistor performances of donor-
acceptor-donor type small molecules.
Chem. Phys. Lett. 2016, 661, 107-113,
DOI: 10.1016/j.cplett.2016.08.073.

Zhao, 7Z.; Yin, Z.; Chen, H.; Zheng, L.;
Zhu, C.; Zhang, L.; Tan, S.; Wang, H.;
Guo, Y.; Tang, Q., et al. High-
performance, air-stable field-effect tran-
sistors based on heteroatom-substituted
naphthalenediimide-benzothiadiazole
copolymers exhibiting ultrahigh elec-
tron mobility up to 85 cm V- 1 s- 1.
Adv. Mater. 2017, 29, 1602410, DOI:
10.1002/adma.201602410.

Chai, G.; Zhang, J.; Pan, M.; Wang, Z.;
Yu, J.; Liang, J.; Yu, H.; Chen, Y.

Shang, A.; Liu, X., et al. Decipher-
ing the role of chalcogen-containing
heterocycles in  nonfullerene accep-

tors for organic solar cells. ACS En-
ergy Lett. 2020, 5, 3415-3425, DOI:
10.1021/acsenergylett.0c01688.

Yu, H.; Qi, Z.; Zhang, J.; Wang, Z.;
Sun, R.; Chang, Y.; Sun, H.; Zhou, W_;
Min, J.; Ade, H., et al. Tailoring
non-fullerene acceptors using selenium-
incorporated heterocycles for organic solar
cells with over 16% efficiency. J. Mater.
Chem. A. 2020, 8, 23756-23765, DOI:
10.1039/D0OTA06658C.

Zhu, E.; Fu, L.; Lu, Y.; Jiang, W,
Jee, M. H.; Liu, R.; Li, Z.; Che, G
Woo, H. Y.; Liu, C. NIR-Absorbing
electron acceptor based on a selenium-
heterocyclic core attaching to pheny-
lalkyl side chains for polymer solar cells

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

(18)

(19)

(21)

with 17.3% efficiency. ACS Appl. Mater.
Interfaces 2022, 14, 7082-7092, DOI:
10.1021/acsami.1c20813.

Cameron, J.; Kanibolotsky, A. L.; Sk-
abara, P. J. Lest we Forget-the Impor-
tance of Heteroatom Interactions in Het-
erocyclic Conjugated Systems, from Syn-
thetic Metals to Organic Semiconduc-
tors. Adv. Mater. 2023, 2302259, DOI:
10.1002/adma.202302259.

Horak, E.; Kassal, P.; Murkovi¢ Stein-
berg, I. Benzimidazole as a struc-
tural unit in fluorescent chemical
sensors:  the hidden properties of a
multifunctional  heterocyclic  scaffold.
Supramol. Chem. 2018, 30, 838-857,
DOI: 10.1080/10610278.2017.1403607.

Baumann, M.; Baxendale, I. R. An
overview of the synthetic routes to
the best selling drugs containing 6-

membered heterocycles.  Beilstein J.
Org. Chem. 2013, 9, 2265-2319, DOI:
10.3762/bjoc.9.265.

Taylor, A. P.; Robinson, R. P.; Fo-
bian, Y. M.; Blakemore, D. C;
Jones, L. H.; Fadeyi, O. Modern ad-
vances in heterocyclic chemistry in drug
discovery. Org. Biomol. Chem. 2016, 14,
6611-6637, DOI: 10.1039/C60B00936K.

Hachmann, J.;  Olivares-Amaya, R.;
Atahan-Evrenk, S.; Amador-Bedolla, C.;
Sanchez-Carrera, R. S.; Gold-Parker, A.;
Vogt, L.; Brockway, A. M.; Aspuru-
Guzik, A. The Harvard clean energy
project: large-scale computational screen-
ing and design of organic photovoltaics
on the world community grid. J. Phys.
Chem. Lett. 2011, 2, 2241-2251, DOI:
10.1021/3jz200866s.

Ramakrishnan, R.; Dral, P. O.; Rupp, M.;
Von Lilienfeld, O. A. Quantum chem-
istry structures and properties of 134 kilo
molecules. Sci. Data 2014, 1, 1-7, DOL:
10.1038/sdata.2014.22.

15

(22)

(25)

(26)

(28)

Kirklin, S.; Saal, J. E.; Meredig, B.;
Thompson, A.; Doak, J. W.; Aykol, M.;
Riihl, S.; Wolverton, C. The Open Quan-
tum Materials Database (OQMD): assess-
ing the accuracy of DFT formation ener-
gies. Npj Comput. Mater. 2015, 1, 1-15,
DOI: 10.1038/npjcompumats.2015.10.

Montoya, J. H.; Persson, K. A. A high-
throughput framework for determining
adsorption energies on solid surfaces.
Npj Comput. Mater. 2017, 3, 14, DOLI:
10.1038/s41524-017-0017-z.

Gallarati, S.; van Gerwen, P.; Laplaza, R.;
Vela, S.; Fabrizio, A.; Corminboeuf, C.
OSCAR: an extensive repository of chem-
ically and functionally diverse organocat-
alysts. Chem. Sci. 2022, 13, 13782-13794,
DOI: 10.1039/D2SC04251G.

Stuyver, T.; Jorner, K.; Coley, C. W.
Reaction profiles for quantum chemistry-
computed [3+ 2| cycloaddition reac-
tions. Sci. Data 2023, 10, 66, DOI:
10.1038/s41597-023-01977-8.

Schatschneider, B.; Monaco, S.; Liang, J.-
J.; Tkatchenko, A. High-throughput in-
vestigation of the geometry and elec-
tronic structures of gas-phase and crys-
talline polycyclic aromatic hydrocarbons.
J. Phys. Chem. C 2014, 118, 19964—
19974, DOI: 10.1021/jp5064462.

Bauschlicher, C.; Boersma, C.; Ricca, A.;
Mattioda, A.; Cami, J.; Peeters, E.
de Armas, F. S.; Saborido, G. P.; Hud-
gins, D.; Allamandola, L. The NASA
Ames polycyclic aromatic hydrocarbon in-
frared spectroscopic database: the com-
puted spectra. The Astrophysical Journal
Supplement Series 2010, 189, 341, DOI:
10.1088/0067-0049/189/2/341.

Allamandola, L. J.; Bauschlicher, C. W.;
Boersma, C.; Hudgins, D. M.; Mat-
tioda, A. L.; Ricca, A. The NASA Ames
PAH IR Spectroscopic Database. Astrobi-
ology Habitable Environment Database.

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

(31)

(32)

(33)

https://doi.org/10.48667/6pln-w007,
Accession date: Jun 21, 2023.

Yano, J.; Gaffney, K. J.; Gregoire, J.;
Hung, L.; Ourmazd, A.; Schrier, J.;
Sethian, J. A.; Toma, F. M. The case
for data science in experimental chem-
istry: examples and recommendations.
Nat. Rev. Chem. 2022, 6, 357-370, DOI:
10.1038/s41570-022-00382-w.

Ai, Q.; Bhat, V., Ryno, S. Mj;
Jarolimek, K.; Sornberger, P.; Smith, A.;
Haley, M. M.; Anthony, J. E.; Risko, C.
OCELOT: An infrastructure for data-
driven research to discover and de-
sign crystalline organic semiconductors. J.
Chem. Phys. 2021, 154, 174705, DOI:
10.1063/5.0048714.

Karton, A.; Chan, B. PAH335-A di-
verse database of highly accurate CCSD
(T) isomerization energies of 335 poly-
cyclic aromatic hydrocarbons. Chemical
Physics Letters 2023, 824, 140544, DOI:
10.1016/j.cplett.2023.140544.

Draxl, C.; Scheffler, M. NOMAD: The
FAIR concept for big data-driven materi-
als science. MRS Bull. 2018, /3, 676682,
DOI: 10.1557/mrs.2018.208.

Anthony, J. E. Functionalized acenes
and heteroacenes for organic electronics.
Chemical reviews 2006, 106, 5028-5048,
DOI: 10.1021/cr050966z.

Lin, Y.; Li, Y.; Zhan, X. Small molecule
semiconductors for high-efficiency organic
photovoltaics. Chem. Soc. Rev. 2012, 41,
4245-4272, DOI: 10.1039/C2CS15313K.

Sirringhaus, H. 25th anniversary arti-
cle: organic field-effect transistors: the
path beyond amorphous silicon. Advanced
materials 2014, 26, 1319-1335, DOI:
10.1002/adma.201304346.

Marques, G.; Leswing, K.; Robertson, T.;
Giesen, D.; Halls, M. D.; Goldberg, A.;
Marshall, K.; Staker, J.; Morisato, T.;

16

(37)

(38)

(39)

(40)

(41)

(42)

Maeshima, H., et al. De Novo de-
sign of molecules with low hole reor-
ganization energy based on a quarter-
million molecule DFT screen. J. Phys.
Chem. A 2021, 125, 7331-7343, DOLI:
10.1021/acs. jpca.1c04587.

Staker, J.; Marshall, K.; Leswing, K.;
Robertson, T.; Halls, M. D.; Goldberg, A.;
Morisato, T.; Maeshima, H.; Ando, T.;
Arai, H., et al. De Novo Design of
Molecules with Low Hole Reorganiza-
tion Energy Based on a Quarter-Million
Molecule DFT Screen: Part 2. J. Phys.
Chem. A 2022, 126, 5837-5852, DOI:
10.1021/acs. jpca.2c04221.

Wang, C.; Zhang, X.; Hu, W. Organic
photodiodes and phototransistors toward
infrared detection: materials, devices, and
applications. Chem. Soc. Rev. 2020, 49,
653-670, DOI: 10.1039/C9CS00431A.

Grimme, S.; Bannwarth, C.; Shushkov, P.
A robust and accurate tight-binding
quantum chemical method for struc-
tures, vibrational frequencies, and non-
covalent interactions of large molecular
systems parametrized for all spd-block
elements (Z= 1-86). J. Chem. Theory
Comput. 2017, 13, 1989-2009, DOI:
10.1021/acs. jctc.7b00118.

Yanai, T.; Tew, D. P.; Handy, N. C. A
new hybrid exchange—correlation func-
tional using the Coulomb-attenuating
method (CAM-B3LYP). Chem.
Phys. Lett. 2004, 393, 51-57, DOLIL:
10.1016/j.cplett.2004.06.011.

Grimme, S.; Antony, J.; Ehrlich, S
Krieg, H. A Consistent and Accurate
ab initio Parametrization of Density
Functional Dispersion Correction (DFT-
D) for the 94 Elements H-Pu. J.
Chem. Phys 2010, 132, 154104, DOT:
10.1063/1.3382344.

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect
of the Damping Function in Dispersion
Corrected Density Functional Theory. J

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.48667/6p1n-w007
https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

(43)

(44)

(46)

(47)

(49)

Comput Chem 2011, 32, 14561465, DOI:
10.1002/jcc.21759.

Johnson, E. R.; Becke, A. D. A post-
Hartree—Fock Model of Intermolecular In-
teractions. J. Chem. Phys 2005, 123,
024101, DOI: 10.1063/1.1949201.

Weigend, F.; Ahlrichs, R. Balanced basis
sets of split valence, triple zeta valence and
quadruple zeta valence quality for H to
Rn: Design and assessment of accuracy.
Phys. Chem. Chem. Phys. 2005, 7, 3297—
3305, DOI: 10.1039/B508541A.

Weigend, F. Accurate Coulomb-fitting
basis sets for H to Rn. Phys. Chem.
Chem. Phys. 2006, 8§, 1057-1065, DOI:
10.1039/B515623H.

Wahab, A.; Pfuderer, L.; Paenurk, E.;
Gershoni-Poranne, R. The COMPAS
Project: =~ A Computational Database
of  Polycyclic =~ Aromatic  Systems.
Phase 1: cata-Condensed Polyben-
zenoid Hydrocarbons. J.  Chem. Inf.
Model. 2022, 62, 3704-3713, DOL:
10.1021/acs. jcim.2c00503.

Fite, S.; Wahab, A.; Paenurk, E.;
Gross, Z.; Gershoni-Poranne, R. Text-
based representations with interpretable
machine learning reveal structure—
property relationships of polybenzenoid
hydrocarbons. J. Phys. Org. Chem 2023,
36, 4458, DOI: 10.1002/poc.4458.

Weiss, T.; Wahab, A.; Bronstein, A. M.;
Gershoni-Poranne, R.  Interpretable
Deep-Learning  Unveils  Structure &
Property Relationships in Polybenzenoid
Hydrocarbons. J. Org. Chem. DOL:
10.1021/acs. joc.2c02381.

Weiss, T.; Cosmo, L.; Yanes, E. M.
Chakraborty, S.; Bronstein, A. M.;
Gershoni-Poranne, R. Guided Diffusion
for Inverse Molecular Design. 2023,

Daylight Chemical Information Sys-
tems, I[. SMARTS-A Language for
Describing Molecular Patterns. 2007.

17

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Weininger, D. SMILES, a chemical lan-
guage and information system. 1. Intro-
duction to methodology and encoding
rules. J. Chem. Inf. Model. 1988, 28, 31—
36, DOI: 10.1021/ci00057a005.

Weininger, D, Weininger, A
Weininger, J. L. SMILES. 2. Algo-
rithm for generation of unique SMILES
notation. J. Chem. Inf. Model. 1989, 29,

97-101, DOI: 10.1021/c100062a008.

Heller, S.; McNaught, A.; Stein, S.;
Tchekhovskoi, D.; Pletnev, I. InChl-the
worldwide chemical structure identifier
standard. J. Cheminformatics 2013, 5, 1—
9, DOI: 10.1186/1758-2946-5-7.

Heller, S. R.; McNaught, A.; Pletnev, 1.;
Stein, S.; Tchekhovskoi, D. InChl, the
IUPAC international chemical identifier.
J. Cheminformatics 2015, 7, 1-34, DOLI:
10.1186/s13321-015-0068-4.

Landrum, G., et al. RDKit: A software
suite for cheminformatics, computational

chemistry, and predictive modeling. Greg
Landrum 2013, §.

Riniker, S.; Landrum, G. A. Better in-
formed distance geometry: using what we
know to improve conformation generation.
J. Chem. Inf. Model. 2015, 55, 2562—
2574, DOI: 10.1021/acs. jcim.5b00654.

Wang, S.; Witek, J.; Landrum, G. A
Riniker, S. Improving conformer genera-
tion for small rings and macrocycles based
on distance geometry and experimen-
tal torsional-angle preferences. J. Chem.
Inf. Model. 2020, 60, 2044-2058, DOI:
10.1021/acs. jcim.0c00025.

Rappé, A. K.; Casewit, C. J.; Col-
well, K.; Goddard III, W. A.; Skiff, W. M.
UFF, a full periodic table force field
for molecular mechanics and molecu-
lar dynamics simulations. J. Am. Chem.
Soc. 1992, 114, 10024-10035, DOI:
10.1021/3ja00051a040.

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

(59) Bannwarth, C.; Caldeweyher, E.;
Ehlert, S.; Hansen, A.; Pracht, P.; Seib-
ert, J.; Spicher, S.; Grimme, S. Extended
tight-binding quantum chemistry meth-
ods. WIREs Comput. Mol. Sci. 2021, 11,
e1493, DOI: 10.1002/wcms . 1493.

(60) Neese, F. The ORCA program system.
WIREs Comput. Mol. Sci. 2012, 2, 73—
78, DOI: 10.1002/wcms . 81.

(61) Neese, F. Software update: the ORCA
program system, version 4.0. WIREs
Comput. Mol. Sci. 2018, 8, 1327, DOLI:
10.1002/wcms . 1327.

(62) Komissarov, L.; Verstraelen, T. Improving
the silicon interactions of GFN-xTB. J.
Chem. Inf. Model. 2021, 61, 5931-5937,
DOI: 10.1021/acs. jcim.1c01170.

(63) Winget, P.; Clark, T. Enthalpies of
formation from B3LYP calculations. J.
Comp. Chem. 2004, 25, 725-733, DOI:
10.1002/jcc.10398.

(64) Grimme, S. Accurate calculation of
the heats of formation for large
main group compounds with spin-
component scaled MP2 methods. J. Phys.
Chem. A 2005, 109, 3067-3077, DOI:
10.1021/1p0500363.

(65) Das, S. K.; Chakraborty, S.; Ra-
makrishnan, R. Critical benchmarking
of popular composite thermochemistry
models and density functional approx-
imations on a probabilistically pruned
benchmark dataset of formation en-
thalpies. J. Chem. Phys. 2021, 154, DOI:
10.1063/5.0032713.

(66) Karton, A. A computational chemist’s
guide to accurate thermochemistry
for organic molecules. WIREs Com-
put. Mol. Sci. 2016, 6, 292-310, DOI:
10.1002/wcms . 1249.

18

https://doi.org/10.26434/chemrxiv-2023-sgh69 ORCID: https://orcid.org/0000-0002-2233-6854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2023-sgh69
https://orcid.org/0000-0002-2233-6854
https://creativecommons.org/licenses/by-nc/4.0/

