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Abstract: PyChemFlow is a Python library for automated and 

reproducible data pre-processing. Based on open-source 

code, PyChemFlow has simple requirements that rely on 

pandas, scikit-learn and joblib. The library's backbone is built 

up of transformer objects, which are fully constructed during 

the PyChemFlow fitting process using training data and can 

be conveniently stored using joblib. 

The user can run the library with a one-line command after 

splitting data into train and validation sets or while working 

with additional data. This is especially useful when 

reproducibility is critical. PyChemFlow also offers the ability to 

persistently store metadata, in addition to providing 

customizable and configurable data manipulation steps.  

 

 

1 Introduction 

With ever rising computational resources, good quality data 
and developments in chemical informatics there is also a 
growing need for reproducibility, as already addressed by 
numerous researchers [1]–[3]. While there are currently 
available software (e.g. www.github.com) and data 
repositories (e.g. https://zenodo.org/) supporting reproducible 
research, there is still a lot of clutter since many researchers 
publish the same data set with their individual processing 
methods but also already pre-processed data. Therefore, 
one might find it difficult to reproduce the data transformation 
pipeline. In settings which are beyond conducting research, 
such as industrial application, one also wants to ensure a 
model generalizes well on unknown data, i.e., in the 
extrapolation regime or being out of applicability domain [4] 
sometimes referred to as out-of-distribution generalisation.  
Data can stem from different laboratories or be measured by 
different instruments. Hence one needs to ensure models 
and data transformation pipelines are reproducible and 
applicable regardless of the data source while being 
convenient to use. Furthermore, storing the same data in 
multiple locations can lead to unnecessary energy 
consumption. Worth mentioning are also websites like 
https://paperswithcode.com/ which support reproducibility by 
providing the code along with the published papers. 
Reproducibility by means of data processing or manipulation 
was previously discussed in the literature. A metanalysis by 
Kapoor and Narayanan [5] from 2022 shows that still many 
authors do not follow the conventions for the correct use of 
data pre-processing. The reproducibility crisis is well 
described in [6]. Among the topics of this study are the Pre-
processing of training and test set which is described as 
“using the entire dataset for any pre-processing steps such 
as imputation or over/under sampling” and Feature selection 
on training and test set, being “Feature selection on the 
entire dataset results in using information about which 
feature performs well on the test set”, which are the issues in 
the focus of this work. The driver for such incomplete 
research is easy-to-use machine learning (ML) algorithms  

without expertise in ML/chemometrics. Another work by 
Krstajić et al [7] presented the importance of processing data 
prior to validating and prior to cross-validation during model 
training in cheminformatics. Beyond the importance in 
supervised ML models, correct processing of data is also 
crucial in transfer learning [8]. There are several prior works 
presenting automated data pre-processing pipelines. 
Torniainen et al. created an open-source python module for 
pre-processing of near infrared spectroscopic data [9] which 
constitutes of multiple steps such as normalization, 
smoothing and filtering. Another Python based initiative was 
published by Bilal et al [10]. Their tool was developed for use 
in ML and includes the following automated components: 
data type detection, missing values imputation, qualitative 
data encoding features scaling, feature selection and 
extraction. However, no code was published alongside the 
paper. Incorrect data pre-processing, as discussed, can 
cause information leakage leading to inflated results and 
overly optimistic model generalization [11].  
The motivation for PyChemFlow is to create an open-source 
flexible automated data pre-processing pipeline to ensure 
reproducible machine learning model creation. Besides data 
manipulation, pipeline storing, or persistence is in the 
spotlight as well. Therefore, the code in the given repository 
given creates persistent pre-processing transformers, which 
can be stored and re-used. The following sections describe 
the pipeline, program code and how to use the library. 

2. Computational Methods 

Transformer object 
PyChemFlow is written in the programming language Python, 
while also utilizing the libraries joblib 
(https://joblib.readthedocs.io/en/latest/), pandas [12] 
(https://pandas.pydata.org/) and scikit-learn [13] 
(https://scikit-learn.org). PyChemFlow is forked from the 
repository published previously  with [14]. The pre-
processing steps are depicted in Scheme 1. 
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Scheme 1. A schematics representation of the transformer 
object  

The key steps in PyChemFlow development were: 1) 
creating a Pipeline object from scikit-learn which can ingest 
multiple processing steps which gives a layer of flexibility to 
it; 2) a custom transformer object based on the scikit-learn 
TransformerMixin class (https://scikit-
learn.org/stable/modules/generated/sklearn.base.Transforme
rMixin.html) which creates empty dictionary objects and 
inflates them with meta-information of the data during 
pipeline fitting based on 3) a custom pre-processing class.  
The Pipeline and TransformerMixin objects are key to 
creating persistent transformers for later use of PyChemFlow. 
Once PyChemFlow is fit on training data, the joblib library is 
used to save PyChemFlow object to persistent storage as 
a .joblib file which can easily be loaded and applied 
(transform) to another data set given the same variable 
names. 
 
Pre-processing procedure 
Data manipulation functions are packing the repositories’ 
CustomPreprocessor class. The class consists of a multitude 
of steps as depicted in Scheme 2 (in the first version of the 
procedura, the steps are not optional). 
 

 

Scheme 2. A schematics representation of the pre-processing 
class 

A total of 7 pre-processing steps are applied to the input data 
and we shortly describe each of these steps. A. Handling null 
values involves identifying and replacing missing or 
undefined data points in the dataset. This can be done by 
methods such as data imputation or deletion. B. Removing 
correlated features using the Spearman method involves 
calculating the correlation coefficient between features in a 
pairwise fashion and identifying features with a high 
correlation that can be removed to improve model 
performance. C. The declaration of feature types includes 
the identification of continuous and discrete features, as this 
information is important for proper data preprocessing and 
modeling. D. One-hot coding of discrete features involves 
creating a new binary representation for each discrete 
feature category. This allows models to better handle 
categorical data. E. Variance-based feature selection allows 
the identification and removal of features with low variance 
because they are unlikely to contain useful information for 
the model. F. Min-max scaling is a technique in which the 
values of a feature are scaled to a specific range, usually 
between 0 and 1. This ensures that all features are on the 
same scale which could prevent bias due to varying feature 
ranges.  

Missing Data Imputation 
In practice, missing data is a frequent occurrence because of 
manual data entry systems, incorrect measurements, 
equipment malfunctions, intentional omissions etc. A few 
missing values in some features (if the number of instances 
were reduced) can reduce the sample size, hence here an 
imputation step is done. 
 
Qualitative Data Encoding 
Many ML algorithms expect all input and output attributes to 
be numeric. This means if a dataset contains categorical 
data, first encode it in a numeric format before using an ML 
algorithm. Encoding is a mandatory pre-processing stage 
when working with qualitative data for ML models and there 
is a spectrum of methods for categorical data encoding. 
 
Feature Scaling 
It is common for real-world datasets to contain features that 
vary in units, size, and scale. As a result, feature scaling is 
required for ML models to comprehend these variables on 
the same scale. Some machine learning algorithms are 
sensitive to feature scaling while others are completely 
insensitive to it. Scaling data is required for machine learning 
methods such as logistic regression, linear regression and 
neural networks that use gradient descent as an optimization 
technique. 
 
Utilization of the library 
The GitHub repository has a readme.md file which 
presents/describes the main steps. The data set should be 
split into a training set and a validation/test set prior to 
preprocessing. The PyChemFlow pipeline must be imported 
from the core directory. 
 

import joblib 

import pandas as pd 

from core.transformer import preproc_pipe 

 
The preproc_pipe must then be applied via the fit_transform 
function to the train set loaded as a pandas DataFrame, 
which can be stored in persistent storage as a .joblib file. 
 

processed_train = preproc_pipe.fit(train) 

joblib.dump(preproc_pipe, “file.joblib”) 

 
The pipeline can then be reloaded and applied to the test or 
other data sets by using the transform function. 
 

preproc_pipe_load = joblib.load(“file.joblib”) 

processed_test = preproc_pipe_load.transform(test) 

 
In this example, the train and test are pandas data frames 
which were pre-split. 

3. Limitations and future work 

As with many pre-processing and data manipulation tools 
and libraries there is no one-fits-all and a user might run into 
need for further customization. The PyChemFlow codes in 
open source are well documented and can easily be further 
modified by those with a solid foundation in Python 
programming. However, the authors tried to cover the basic 
steps of data processing so that the library can be used as is. 
Future work of this library is an increased customization, 
addition of optional steps and flexibility by providing 
additional arguments into the functions and classes. The 
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authors see this library as a dynamic one which will be used 
and developed in the future. Even though the authors 
suggest using such libraries for increasing transparency and 
reproducibility, the usability of such will also on data 
distributions. 

Supporting information 

The open-source python code is available at the following 
repository https://github.com/mariolovric/pychemflow . 
The structure of the repository is described in the readme file  
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