
1

PyChemFlow: an automated pre-processing pipeline in
Python for reproducible machine learning on chemical
data

Mario Lovrić *,1,2,3, Tomislav Duričić 4, Hussain Hussain 4, Bono Lučić 5, Roman Kern 4

1 Mario Lovrić, Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
2 Mario Lovrić, Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2b, HR-31000 Osijek, Croatia
3 Mario Lovrić, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
4 Tomislav Duričić, Hussain Hussain, Roman Kern, Know-Center, Sandgasse 36, AT-8010 Graz
5 Bono Lučić, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb
*Corresponding author: mario.lovric@ferit.hr

Abstract: PyChemFlow is a Python library for automated and

reproducible data pre-processing. Based on open-source

code, PyChemFlow has simple requirements that rely on

pandas, scikit-learn and joblib. The library's backbone is built

up of transformer objects, which are fully constructed during

the PyChemFlow fitting process using training data and can

be conveniently stored using joblib.

The user can run the library with a one-line command after

splitting data into train and validation sets or while working

with additional data. This is especially useful when

reproducibility is critical. PyChemFlow also offers the ability to

persistently store metadata, in addition to providing

customizable and configurable data manipulation steps.

1 Introduction

With ever rising computational resources, good quality data
and developments in chemical informatics there is also a
growing need for reproducibility, as already addressed by
numerous researchers [1]–[3]. While there are currently
available software (e.g. www.github.com) and data
repositories (e.g. https://zenodo.org/) supporting reproducible
research, there is still a lot of clutter since many researchers
publish the same data set with their individual processing
methods but also already pre-processed data. Therefore,
one might find it difficult to reproduce the data transformation
pipeline. In settings which are beyond conducting research,
such as industrial application, one also wants to ensure a
model generalizes well on unknown data, i.e., in the
extrapolation regime or being out of applicability domain [4]
sometimes referred to as out-of-distribution generalisation.
Data can stem from different laboratories or be measured by
different instruments. Hence one needs to ensure models
and data transformation pipelines are reproducible and
applicable regardless of the data source while being
convenient to use. Furthermore, storing the same data in
multiple locations can lead to unnecessary energy
consumption. Worth mentioning are also websites like
https://paperswithcode.com/ which support reproducibility by
providing the code along with the published papers.
Reproducibility by means of data processing or manipulation
was previously discussed in the literature. A metanalysis by
Kapoor and Narayanan [5] from 2022 shows that still many
authors do not follow the conventions for the correct use of
data pre-processing. The reproducibility crisis is well
described in [6]. Among the topics of this study are the Pre-
processing of training and test set which is described as
“using the entire dataset for any pre-processing steps such
as imputation or over/under sampling” and Feature selection
on training and test set, being “Feature selection on the
entire dataset results in using information about which
feature performs well on the test set”, which are the issues in
the focus of this work. The driver for such incomplete
research is easy-to-use machine learning (ML) algorithms

without expertise in ML/chemometrics. Another work by
Krstajić et al [7] presented the importance of processing data
prior to validating and prior to cross-validation during model
training in cheminformatics. Beyond the importance in
supervised ML models, correct processing of data is also
crucial in transfer learning [8]. There are several prior works
presenting automated data pre-processing pipelines.
Torniainen et al. created an open-source python module for
pre-processing of near infrared spectroscopic data [9] which
constitutes of multiple steps such as normalization,
smoothing and filtering. Another Python based initiative was
published by Bilal et al [10]. Their tool was developed for use
in ML and includes the following automated components:
data type detection, missing values imputation, qualitative
data encoding features scaling, feature selection and
extraction. However, no code was published alongside the
paper. Incorrect data pre-processing, as discussed, can
cause information leakage leading to inflated results and
overly optimistic model generalization [11].
The motivation for PyChemFlow is to create an open-source
flexible automated data pre-processing pipeline to ensure
reproducible machine learning model creation. Besides data
manipulation, pipeline storing, or persistence is in the
spotlight as well. Therefore, the code in the given repository
given creates persistent pre-processing transformers, which
can be stored and re-used. The following sections describe
the pipeline, program code and how to use the library.

2. Computational Methods

Transformer object
PyChemFlow is written in the programming language Python,
while also utilizing the libraries joblib
(https://joblib.readthedocs.io/en/latest/), pandas [12]
(https://pandas.pydata.org/) and scikit-learn [13]
(https://scikit-learn.org). PyChemFlow is forked from the
repository published previously with [14]. The pre-
processing steps are depicted in Scheme 1.

https://doi.org/10.26434/chemrxiv-2023-3zpw0 ORCID: https://orcid.org/0000-0002-3541-9624 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-3zpw0
https://orcid.org/0000-0002-3541-9624
https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Scheme 1. A schematics representation of the transformer
object

The key steps in PyChemFlow development were: 1)
creating a Pipeline object from scikit-learn which can ingest
multiple processing steps which gives a layer of flexibility to
it; 2) a custom transformer object based on the scikit-learn
TransformerMixin class (https://scikit-
learn.org/stable/modules/generated/sklearn.base.Transforme
rMixin.html) which creates empty dictionary objects and
inflates them with meta-information of the data during
pipeline fitting based on 3) a custom pre-processing class.
The Pipeline and TransformerMixin objects are key to
creating persistent transformers for later use of PyChemFlow.
Once PyChemFlow is fit on training data, the joblib library is
used to save PyChemFlow object to persistent storage as
a .joblib file which can easily be loaded and applied
(transform) to another data set given the same variable
names.

Pre-processing procedure
Data manipulation functions are packing the repositories’
CustomPreprocessor class. The class consists of a multitude
of steps as depicted in Scheme 2 (in the first version of the
procedura, the steps are not optional).

Scheme 2. A schematics representation of the pre-processing
class

A total of 7 pre-processing steps are applied to the input data
and we shortly describe each of these steps. A. Handling null
values involves identifying and replacing missing or
undefined data points in the dataset. This can be done by
methods such as data imputation or deletion. B. Removing
correlated features using the Spearman method involves
calculating the correlation coefficient between features in a
pairwise fashion and identifying features with a high
correlation that can be removed to improve model
performance. C. The declaration of feature types includes
the identification of continuous and discrete features, as this
information is important for proper data preprocessing and
modeling. D. One-hot coding of discrete features involves
creating a new binary representation for each discrete
feature category. This allows models to better handle
categorical data. E. Variance-based feature selection allows
the identification and removal of features with low variance
because they are unlikely to contain useful information for
the model. F. Min-max scaling is a technique in which the
values of a feature are scaled to a specific range, usually
between 0 and 1. This ensures that all features are on the
same scale which could prevent bias due to varying feature
ranges.

Missing Data Imputation
In practice, missing data is a frequent occurrence because of
manual data entry systems, incorrect measurements,
equipment malfunctions, intentional omissions etc. A few
missing values in some features (if the number of instances
were reduced) can reduce the sample size, hence here an
imputation step is done.

Qualitative Data Encoding
Many ML algorithms expect all input and output attributes to
be numeric. This means if a dataset contains categorical
data, first encode it in a numeric format before using an ML
algorithm. Encoding is a mandatory pre-processing stage
when working with qualitative data for ML models and there
is a spectrum of methods for categorical data encoding.

Feature Scaling
It is common for real-world datasets to contain features that
vary in units, size, and scale. As a result, feature scaling is
required for ML models to comprehend these variables on
the same scale. Some machine learning algorithms are
sensitive to feature scaling while others are completely
insensitive to it. Scaling data is required for machine learning
methods such as logistic regression, linear regression and
neural networks that use gradient descent as an optimization
technique.

Utilization of the library
The GitHub repository has a readme.md file which
presents/describes the main steps. The data set should be
split into a training set and a validation/test set prior to
preprocessing. The PyChemFlow pipeline must be imported
from the core directory.

import joblib

import pandas as pd

from core.transformer import preproc_pipe

The preproc_pipe must then be applied via the fit_transform
function to the train set loaded as a pandas DataFrame,
which can be stored in persistent storage as a .joblib file.

processed_train = preproc_pipe.fit(train)

joblib.dump(preproc_pipe, “file.joblib”)

The pipeline can then be reloaded and applied to the test or
other data sets by using the transform function.

preproc_pipe_load = joblib.load(“file.joblib”)

processed_test = preproc_pipe_load.transform(test)

In this example, the train and test are pandas data frames
which were pre-split.

3. Limitations and future work

As with many pre-processing and data manipulation tools
and libraries there is no one-fits-all and a user might run into
need for further customization. The PyChemFlow codes in
open source are well documented and can easily be further
modified by those with a solid foundation in Python
programming. However, the authors tried to cover the basic
steps of data processing so that the library can be used as is.
Future work of this library is an increased customization,
addition of optional steps and flexibility by providing
additional arguments into the functions and classes. The

https://doi.org/10.26434/chemrxiv-2023-3zpw0 ORCID: https://orcid.org/0000-0002-3541-9624 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-3zpw0
https://orcid.org/0000-0002-3541-9624
https://creativecommons.org/licenses/by-nc-nd/4.0/

3

authors see this library as a dynamic one which will be used
and developed in the future. Even though the authors
suggest using such libraries for increasing transparency and
reproducibility, the usability of such will also on data
distributions.

Supporting information

The open-source python code is available at the following
repository https://github.com/mariolovric/pychemflow .
The structure of the repository is described in the readme file

Funding and acknowledgements

M.L. is funded by the EU-Commission Grant Nr-101057497-
EDIAQI. The Know-Center is funded within the Austrian
COMET Program – Competence Centers for Excellent
Technologies – under the auspices of the Austrian Federal
Ministry of Transport, Innovation and Technology, the
Austrian Federal Ministry of Economy, Family and Youth and
by the State of Styria. COMET is managed by the Austrian
Research Promotion Agency FFG.

References

[1] P. Gramatica, “Principles of QSAR models validation:
Internal and external,” QSAR and Combinatorial
Science, vol. 26, no. 5, pp. 694–701, May 2007, doi:
10.1002/qsar.200610151.

[2] W. P. Walters, “Modeling, informatics, and the quest
for reproducibility,” Journal of Chemical Information
and Modeling, vol. 53, no. 7, pp. 1529–1530, Jul. 2013,
doi: 10.1021/CI400197W/ASSET/IMAGES/LARGE/CI-
2013-00197W_0002.JPEG.

[3] R. D. Clark, “A path to next-generation reproducibility
in cheminformatics,” Journal of Cheminformatics, vol.
11, no. 1, pp. 1–3, Oct. 2019, doi: 10.1186/S13321-
019-0385-0/METRICS.

[4] A. Tropsha, P. Gramatica, and V. K. Gombar, The
Importance of Being Earnest: Validation is the
Absolute Essential for Successful Application and
Interpretation of QSPR Models, vol. 22, no. 1. Wiley-
VCH Verlag, 2003, pp. 69–77. doi:
10.1002/qsar.200390007.

[5] S. Kapoor and A. Narayanan, “Leakage and the
Reproducibility Crisis in ML-based Science,” 2020.

[6] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are
we really making much progress? A worrying analysis
of recent neural recommendation approaches,”
RecSys 2019 - 13th ACM Conference on
Recommender Systems, pp. 101–109, Sep. 2019, doi:
10.1145/3298689.3347058.

[7] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S.
Thomas, “Cross-validation pitfalls when selecting and
assessing regression and classification models,”
Journal of Cheminformatics, vol. 6, no. 1, pp. 1–15,
Mar. 2014, doi: 10.1186/1758-2946-6-10/FIGURES/16.

[8] M. Lovrić et al., “Should We Embed in Chemistry? A
Comparison of Unsupervised Transfer Learning with
PCA, UMAP, and VAE on Molecular Fingerprints,”
Pharmaceuticals, vol. 14, no. 8, 2021, doi:
10.3390/ph14080758.

[9] J. Torniainen, I. O. Afara, M. Prakash, J. K. Sarin, L.
Stenroth, and J. Töyräs, “Open-source python module
for automated preprocessing of near infrared
spectroscopic data,” Analytica Chimica Acta, vol. 1108,
pp. 1–9, Apr. 2020, doi: 10.1016/J.ACA.2020.02.030.

[10] M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik,
and R. A. Kadir, “Auto-Prep: Efficient and Automated
Data Preprocessing Pipeline,” IEEE Access, vol. 10,
no. October, pp. 107764–107784, 2022, doi:
10.1109/ACCESS.2022.3198662.

[11] A. Elangovan, J. He, and K. Verspoor, “Memorization
vs. Generalization: Quantifying data leakage in NLP
performance evaluation,” EACL 2021 - 16th
Conference of the European Chapter of the
Association for Computational Linguistics,
Proceedings of the Conference, vol. 2, pp. 1325–1335,
2021, doi: 10.18653/v1/2021.eacl-main.113.

[12] W. Mckinney, “Data Structures for Statistical
Computing in Python,” in Proceedings of the 9th
Python in Science Conference, S. van der Walt and J.
Millman, Eds., 2010, pp. 51–56. [Online]. Available:
http://conference.scipy.org/proceedings/scipy2010/mc
kinney.html

[13] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python,” Journal of Machine Learning Research, vol.
12, pp. 2825–2830, 2011, doi: 10.1007/s13398-014-
0173-7.2.

[14] M. Lovrić et al., “Machine learning in prediction of
intrinsic aqueous solubility of drug‐like compounds:
Generalization, complexity, or predictive ability?,”
Journal of Chemometrics, vol. 35, no. 7–8, p. e3349,
Jul. 2021, doi: 10.1002/cem.3349.

https://doi.org/10.26434/chemrxiv-2023-3zpw0 ORCID: https://orcid.org/0000-0002-3541-9624 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-3zpw0
https://orcid.org/0000-0002-3541-9624
https://creativecommons.org/licenses/by-nc-nd/4.0/

