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Abstract: The performance of multistate density functional theory (MSDFT) with nonorthogonal 

state interaction (NOSI) is assessed for 100 vertical excitation energies against the theoretical best 

estimates (TBE) extracted to the full configuration interaction accuracy on the database developed 

by Loos, P.F., at al. in 2018 (Loos2018). Two optimization techniques, namely block-localized 

excitation (BLE) and target state optimization (TSO), are examined along with two ways of 

estimating the transition density functional (TDF) for the correlation energy of the Hamiltonian 

matrix density functional. The results from the two optimization methods are similar. It was found 

that MSDFT-NOSI using the spin-multiplet degeneracy (SMD) constraint for the TDF of spin-

coupling interaction, along with the M06-2X functional, yields a root-mean-square error (RMSE) 

of 0.22 eV, better than CIS(D∞), CC2, and ADC(3) all of which have an RMSE of 0.28 eV, but 

somewhat less than STEOM-CCSD (RMSE of 0.14 eV) and CCSD (RMSE of 0.11 eV) wave 

function methods. Interestingly, MSDFT-NOSI performs noticeably better than TDDFT at an 

RMSE of 0.43 eV using the same functional and basis set on the Loos2018 database. In comparison 

with the ground state and the lowest triplet energies from KS-DFT calculations, it was found that 

the multistate DFT approach has little double counting of correlation. Importantly, there is no 

noticeable difference in the performance of MSDFT-NOSI on valence, Rydberg, singlet, triplet, 

and double-excitation states. Although the use of another hybrid functional PBE0 leads to a greater 

RMSE of 0.36 eV, the deviation is systematic with a linear regression slope of 0.994 against the 

results with M06-2X. The present benchmark reveals that density functional approximations 

developed for KS-DFT for the ground state with a non-interacting reference may be adopted in 

MSDFT calculations in which state interaction is key. 
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1. Introduction 

The Gaussian-n series of benchmarks of electronic structure calculations set a standard for 

modern model chemistry,1-4 which stimulated such investigations like bamboo shoots after a spring 

rain. Benchmark studies are both critical and valuable for evaluating the performance of a 

theoretical model and for designing new methods to further improve its accuracy.5, 6 Numerous 

investigations have been reported, including ground-state and excitation energies; however, it is 

the latter that is especially challenging because both static and dynamic correlation are often 

necessary to achieve adequate accuracy.5-12 In a series of recent studies of excitation energies of 

molecular systems using wave function theory (WFT), Loos and coworkers likened the effort as 

mountaineering through the ever-ascending peaks of theoretical models.13-17 These systematic 

approaches helped establish theoretical best estimates (TBE) of vertical transition energies that 

can be used to evaluate the performance of more efficient methods.5, 17  Benchmarking Kohn-

Sham density functional theory (KS-DFT)18 on relative ground-state energies and linear-response 

time-dependent DFT (TDDFT) on excitation energies has also been popular,19-25 but they are 

almost exclusively limited to examining density functional approximations. The systematic 

strategy of mountaineering excited states in WFT was not possible in KS-DFT based on the 

theorems of Hohenberg and Kohn (HK) for the ground state.26 To this end, Lu and Gao in 2021 

established the fundamental principles of DFT for all states,27 proving the existence of a 

Hamiltonian matrix density functional (HMDF) 𝓗𝓗[𝑫𝑫(𝒓𝒓)]  for any number of the lowest 𝑁𝑁 

eigenstates.28 The multistate density functional theory (MSDFT) offers opportunities to develop 

novel density functional approximations beyond the realm of traditional HKS-DFT and to treat 

both the ground state and excited states on an equal footing.29 By introducing a minimal active 

space (MAS) according to the theorem of Lu and Gao,30-32 we can retain the original benefits of 
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DFT with a balanced treatment of computational efficiency and accuracy in light of increased 

complexity of multiple states. In this article, we present the results from a nonorthogonal state 

interaction (NOSI) method in the framework of MSDFT.28, 33 The findings are compared with the 

TBE of WFT on a list of benchmark molecules that has been established previously.13  

A wide range of benchmark sets of excitation energies have been developed in the past (for 

a rather comprehensive list of studies, see references 12 and 25), of which the comprehensive study 

of twenty-eight small molecules by Thiel and coworkers in 2008 was the most representative.5 

Recently, Loos et al. created a set of accurate excitation energies for eighteen small molecules,13 

having considered several factors that balance accurate molecular geometries and basis sets with 

diffuse functions, treatment of electron correlation using coupled cluster theory (CC) and selected 

configuration interaction (sCI), and vertical excitation and fluorescence energies. The accuracy of 

the transition energies of this dataset is close to the full CI (FCI) quality by systematically 

increasing the order of the CC expansion and determinant selection in sCI, coupled with basis set 

extrapolation to the complete basis set limit. Aiming for different purposes, the authors created 

two sets of TBE of excitation energies by using extracted FCI (exFCI) with the aug-cc-pVTZ basis 

set and by including all electron contributions and basis set extrapolation.13 Of the two sets of TBE, 

the difference between frozen core approximation and full electron treatment of correlation is 

rather small, within 0.01-0.02 eV, while greater effects are mainly from basis sets. Nevertheless, 

the two sets of TBE are not very different, typically within 0.05 eV in excitation energies. Then, a 

list of 12 different methods in WFT were assessed against the TBE/aug-cc-pVTZ results, revealing 

that the best performance is found in CCSDT and CCSDTQ methods with a root-means-square 

error (RMSE) of 0.03 and 0.02 eV, respectively, and the CIS(D), ADC(2) and ADC(3) methods 

have somewhat larger deviations with average errors of about 0.3 eV.13 One particularly attractive 
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feature, in addition to a more systematic and accurate benchmark than prior studies, is to have a 

set of well-defined vertical transition energies from theory without the complication of extracting 

from experimental uncertainties. Consequently, this list of compounds is adopted to assess the 

performance of multistate DFT. 

Density functional theory based on the Hohenberg-Kohn-Sham method is an indispensable 

tool in modern computational chemistry for large systems. Nevertheless, it is a ground-state theory 

without a clear path for designing density functional approximations for the rest of the solutions 

of the Schrödinger equation.34 Although TDDFT can be used to determine excitation energies, 

giving excellent results for many molecules, it is based on response approaches fundamentally 

rooted in the ground of HKS-DFT and its shortcomings are well documented.25, 35 For electronic 

excited state, Theophilou showed that the subspace spanned by the lowest two states of a system 

is solely determined by the sum of their electron densities, called subspace density 𝜌𝜌𝑉𝑉(𝒓𝒓) =

[𝜌𝜌1(𝒓𝒓) + 𝜌𝜌2(𝒓𝒓)]/2, from which the sum of the eigenstate energies is also determined.36 However, 

Theophilou’s subspace theory does not directly give the energies and densities of the individual 

states, rendering the method to have little use in the literature. Re-formulation of the subspace 

theory with the introduction of weights over different states37, 38 still fundamentally cannot escape 

from the need for knowing the subspace energies of all lower orders to obtain the excitation energy 

of a given excited state, i.e., a gradual build-up approach. The origin of this problem lies in the 

choice of the fundamental variable required to determine each individual eigenstate 𝐸𝐸𝐼𝐼  (𝐼𝐼 =

1,⋯ ,𝑁𝑁).36, 39 It is the multistate matrix density 𝑫𝑫(𝒓𝒓) that is necessary and sufficient to resolve 

the individual eigenstates,39 whereas the subspace density 𝜌𝜌𝑉𝑉(𝒓𝒓) alone, although sufficient for 

the sum (or weighted sum) of N-states,36 contains insufficient information to distinguish individual 

states.39 The implication of this requirement is that state interaction is necessary in DFT to treat 
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excited states without relying on a response theory,40 a conceptual difference from the non-

interacting device in KS-DFT for one state.18 The good news, however, is that unlike WFT, a 

minimal active space (MAS) exists, keeping the spirit of computational efficiency, to exactly 

represent the fundamental variable 𝑫𝑫(𝒓𝒓).28, 39 

In the following, we first present the fundamental theory of MSDFT and the computational 

procedure of NOSI. Then, we illustrate the MSDFT-NOSI method against the best theoretical 

estimates from the work of Loos, et al.,13 making use of two popular density functional 

approximations developed for the KS-DFT, namely the Minnesota M06-2X and the hybrid PBE0 

models.41-44 We also compare the performance of TDDFT that works well for many compounds.25 

It is hoped that the present assessment, along with the previous evaluations of organic compounds 

and exciplex complexes against TDDFT,32, 45 of local valence and charge transfer excitations 

against EOM-CCSDT,30 and of core-level excitations of open-shell species46 shall stimulate 

further developments of multistate models in density functional theory and design of transition 

density functional approximations for excited states.  

2. Theory 

In this section, we first summarize the fundamentals of multistate density functional theory, 

followed by introduction of a minimal active space to represent the multistate matrix density and 

a correlation matrix functional. Then, we describe the computational method of nonorthogonal 

state interaction (NOSI) used in the present study. 

A. Multistate Density Functional Theory. MSDFT33, 40 is based on three fundamental 

theorems29 that establish (i) the existence of a Hamiltonian matrix density functional (HMDF) for 

the lowest N eigenstates, (ii) a variational principle for multistate optimization to yield exactly the 

energies and densities of all N states, and (iii) the representation of the N-dimensional matrix (N-
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matrix) density 𝑫𝑫(𝒓𝒓) by no more than 𝑁𝑁2 Slater determinants. For a molecular system described 

by the Hamiltonian 𝐻𝐻� = 𝐻𝐻�𝑜𝑜 + 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓), where 𝐻𝐻�𝑜𝑜  consists of kinetic and electronic repulsion 

operators and 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)  is the local external potential, 𝑫𝑫(𝒓𝒓)  is a matrix of electron densities 

{𝜌𝜌𝑖𝑖(𝒓𝒓) ≡ 𝜌𝜌𝑖𝑖𝑖𝑖(𝒓𝒓); 𝑖𝑖 = 1,⋯ ,𝑁𝑁} and transition densities {𝜌𝜌𝑖𝑖𝑖𝑖(𝒓𝒓); 𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 = 1,⋯ ,𝑁𝑁}.  

𝑫𝑫(𝒓𝒓) = �
𝜌𝜌1(𝒓𝒓) … 𝜌𝜌𝑁𝑁1(𝒓𝒓)
⋮ ⋱ ⋮

𝜌𝜌1𝑁𝑁(𝒓𝒓) … 𝜌𝜌𝑁𝑁(𝒓𝒓)
�        (1) 

These theorems are summarized below. 

 

i. In the subspace 𝕍𝕍 spanned by the lowest N eigenstates, 𝐻𝐻� is a matrix density functional 

(HMDF) of 𝑫𝑫(𝒓𝒓):  

𝓗𝓗[𝑫𝑫] = 𝓕𝓕[𝑫𝑫] + ∫ 𝑫𝑫(𝒓𝒓)𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)𝑑𝑑𝒓𝒓      (2) 

where 𝓕𝓕[𝑫𝑫] is the universal Hamiltonian matrix functional, independent of the external 

potential 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓). In short, theorem 1 establishes a one-to-one correspondence between 

𝑫𝑫 and 𝓗𝓗. 

ii. For any N-matrix trial density 𝑫𝑫′(𝒓𝒓), the multistate energy, defined as the trace of 

𝓗𝓗[𝑫𝑫′(𝒓𝒓)], 𝐸𝐸𝑀𝑀𝑀𝑀′ [𝑫𝑫′(𝒓𝒓)] = 𝑡𝑡𝑡𝑡{𝓗𝓗[𝑫𝑫′]}, is greater than or equal to the multistate energy 

𝐸𝐸𝑀𝑀𝑀𝑀[𝑫𝑫] of the subspace 𝕍𝕍:  

𝐸𝐸𝑀𝑀𝑀𝑀′ [𝑫𝑫′(𝒓𝒓)] ≥ 𝐸𝐸𝑀𝑀𝑀𝑀[𝑫𝑫(𝒓𝒓)]          (3) 

The equal sign is true if the trial density is a matrix density of the subspace 𝕍𝕍, i.e.,  

𝑫𝑫′(𝒓𝒓) = 𝑫𝑫(𝒓𝒓). Then, diagonalization of the Hamiltonian matrix 𝓗𝓗[𝑫𝑫] yields exactly all 

N eigenstate energies, including the ground state and the lowest 𝑁𝑁 − 1 excited states. 

iii. The multistate N-matrix density 𝑫𝑫(𝒓𝒓)  can be sufficiently represented by 𝑁𝑁2 

independent Slater determinant wave functions.39 
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In the special case where 𝑁𝑁 = 1, 𝓗𝓗[𝑫𝑫(𝒓𝒓)] is reduced to a scalar energy density functional 

of the ground-state density: E0 = 𝐸𝐸[𝜌𝜌0(𝒓𝒓)], giving rise to the Hohenberg and Kohn theorem for 

the ground state. Then, according to Theorem 3, 𝜌𝜌0(𝒓𝒓) can be represented exactly by one single 

Slater determinant as in KS-DFT. 

The three theorems proved the existence and the structure of density functional theory for 

all states of the Schrödinger equation. The exact form and expression of the universal matrix 

functional, just as that of the Hohenberg and Kohn theorem for the ground state, is unknown, nor 

do the theorems tell the precise way of selecting the specific determinants for density 

representation. MSDFT offers ways, beyond the scope of a non-interacting reference for the 

ground state, to develop different methods for constructing the HDMF and optimizing 𝑫𝑫(𝒓𝒓). In 

this work, we present one such computational procedure, akin to nonorthogonal configuration 

interaction (NOCI) in WFT. Yet, the present NOSI differs from NOCI because dynamic 

correlation is included in each determinant state optimization, a dynamic-then-static ansatz 

championed by Liu and coworkers.47, 48 In this regard, an analogy in WFT is to introduce dynamic 

correlation to basis states from multiconfigurational self-consistent-field (MCSCF) calculations, 

followed by multistate interaction, such as MS-CASPT2 and MRCI approaches. Significantly, 

NOSI is constructed in an N-dimensional subspace that is complete, yet, has an upper bound in the 

number of auxiliary states in the active space to exactly represent the densities of all N states. 

B. Minimal Active Space. The fundamental variable required to resolve the individual states 

of the subspace 𝕍𝕍 is the multistate N-matrix density 𝑫𝑫(𝒓𝒓).39 Therefore, representation of the N-

matrix density is of central importance in a density functional theory for multiple states. However, 

density representation is not unique. Consequently, different computational methods can be 

designed. According to Theorem 3 of Lu and Gao, 𝑫𝑫(𝒓𝒓) can be exactly represented by no more 
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than 𝑁𝑁2 Slater determinants.28, 39 In this case, molecular orbitals for different Slater determinants 

are generally nonorthogonal. Lu and Gao also showed that it is possible to employ a common set 

of orthogonal orbitals to exactly represent  𝑫𝑫(𝒓𝒓), and an SCF approach for an active space 

consisting of singly and doubly excited configurational states was introduced.39 In either scenario, 

it should be kept in mind that there is an upper bound in the number of configurations to exactly 

represent 𝑫𝑫(𝒓𝒓), and there is no need to use more determinants than necessary.39 Obviously, this 

concept is different from multiconfigurational methods in WFT.  

In this work, we use a minimal active space (MAS) representation, keeping the spirit of 

computational efficiency of DFT, for the excited states featured in the Loos2018 dataset. Although 

the N-matrix density 𝑫𝑫(𝒓𝒓) could be directly optimized using 𝑁𝑁2 Slater determinants, here, we 

take an alternative route by constructing a set of N auxiliary multistate wavefunctions {Φ𝐴𝐴;𝐴𝐴 =

1,⋯ ,𝑁𝑁}  for representing 𝑫𝑫(𝒓𝒓) . The auxiliary wave functions are expressed as a linear 

combination of Slater determinants in the MAS, 𝑉𝑉𝑀𝑀𝐴𝐴𝑀𝑀 = {Ξ𝜉𝜉; 𝜉𝜉 = 1,⋯ ,𝑀𝑀} with 𝑀𝑀~𝑁𝑁2.29-31 

                                         Φ𝐴𝐴 = �𝑐𝑐𝜉𝜉𝐴𝐴

𝑀𝑀

𝜉𝜉

Ξ𝜉𝜉                                                                                              (4) 

where Ξ𝜉𝜉  is the 𝜉𝜉𝑡𝑡ℎ Slater determinant, constructed from 𝑛𝑛𝑒𝑒  (the number of electrons) one-

body spin orbitals {𝜓𝜓𝑖𝑖𝑖𝑖
𝜉𝜉 }, and 𝑐𝑐𝜉𝜉𝐴𝐴 is a configuration coefficient for auxiliary state A. 

   Ξ𝜉𝜉(𝑡𝑡1,⋯ , 𝑡𝑡𝑛𝑛𝑒𝑒) = 1
�𝑛𝑛𝑒𝑒!

�̂�𝐴{𝜓𝜓1𝑖𝑖1
𝜉𝜉 (𝑡𝑡1)⋯  𝜓𝜓𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒

𝜉𝜉 �𝑡𝑡𝑛𝑛𝑒𝑒�}         (5) 

In general, the orbitals of the same determinant are orthonormal, < 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖
𝜉𝜉 |𝜓𝜓𝑖𝑖𝑖𝑖𝑗𝑗

𝜉𝜉 > = 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 , but 

they are nonorthogonal from different determinants. Of course, each molecular orbital is expressed 

as a linear combination of atomic basis orbitals. Consequently, the optimization of the multistate 
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N-matrix density 𝑫𝑫(𝒓𝒓)  is equivalently transformed to the optimization of orbital and 

configuration coefficients.  

The lowest N eigenstates of the Hamiltonian matrix functional in terms of the determinant 

basis configurations of the MAS (see below) are chosen as the auxiliary basis states of the subspace 

𝕍𝕍, noticing that the total number of degrees of freedom used to optimize 𝑫𝑫(𝒓𝒓), given either in the 

determinant basis or in the auxiliary wave function basis, remains unchanged. Then, each element 

of the multistate N-matrix density is obtained as follows. 

𝐷𝐷𝐴𝐴𝐴𝐴(𝑡𝑡) =< Φ𝐴𝐴(𝑡𝑡)|𝜌𝜌�|Φ𝐴𝐴(𝑡𝑡) >       (6) 

where 𝜌𝜌� is the density operator. 

C. Correlation Matrix Functional. Given the minimal active space 𝑉𝑉𝑀𝑀𝐴𝐴𝑀𝑀 that is used to 

exactly represent 𝑫𝑫(𝒓𝒓)  of the N-dimensional subspace 𝕍𝕍  via the auxiliary states {Φ𝐴𝐴;𝐴𝐴 =

1,⋯ ,𝑁𝑁}, the correlation matrix functional is defined as the difference between the universal matrix 

functional 𝓕𝓕[𝑫𝑫] and the multistate kinetic and Hartree-exchange terms from one-body orbitals: 

𝓔𝓔𝑐𝑐[𝑫𝑫(𝒓𝒓)] = 𝓕𝓕[𝑫𝑫(𝒓𝒓)] − (𝑻𝑻𝑚𝑚𝑚𝑚 + 𝑬𝑬𝐻𝐻𝑒𝑒)            (7) 

where the elements of the last two terms are determined using the auxiliary wave functions by 

< Φ𝐴𝐴�𝐻𝐻�𝑜𝑜�Φ𝐴𝐴 > =  (𝑻𝑻𝑚𝑚𝑚𝑚)𝐴𝐴𝐴𝐴 + (𝑬𝑬𝐻𝐻𝑒𝑒)𝐴𝐴𝐴𝐴         (8) 

The physical interpretation of the correlation matrix functional (eq 7) is that it represents the 

remaining correlation energy of the multistate energy of the subspace 𝕍𝕍 that is not explicitly 

included in the auxiliary wave functions (which is used to represent exactly 𝑫𝑫(𝒓𝒓)).28, 40 

 Computationally, it is more convenient to express the total Hamiltonian and correlation 

matrix functionals in terms of the determinant configurations in 𝑉𝑉𝑀𝑀𝐴𝐴𝑀𝑀 (via the coefficient matrix 

in eq 4). Then, the Hamiltonian matrix density functional is written as follows.  

  𝐻𝐻𝜉𝜉𝜉𝜉[𝑫𝑫] =  (𝑇𝑇𝑚𝑚𝑚𝑚)𝜉𝜉𝜉𝜉 + (𝐸𝐸𝐻𝐻𝑒𝑒)𝜉𝜉𝜉𝜉 + ∫ 𝑑𝑑𝒓𝒓𝐷𝐷𝜉𝜉𝜉𝜉(𝒓𝒓)𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) + (𝐸𝐸𝑐𝑐[𝑫𝑫])𝜉𝜉𝜉𝜉    (9) 
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where 𝜉𝜉 and 𝜂𝜂 are indices of the determinants in 𝑉𝑉𝑀𝑀𝐴𝐴𝑀𝑀, and the notation (𝐸𝐸𝑐𝑐[𝑫𝑫])𝜉𝜉𝜉𝜉 emphasizes 

that the matrix element (𝐸𝐸𝑐𝑐)𝜉𝜉𝜉𝜉 is generally dependent on the full matrix density function 𝑫𝑫(𝒓𝒓), 

rather than a term-by-term mapping (𝐸𝐸𝑐𝑐[𝐷𝐷𝜉𝜉𝜉𝜉])𝜉𝜉𝜉𝜉.29 Clearly, the first three terms of eq 9 can be 

directly obtained from the one-body orbitals of the nonorthogonal determinant states.49-51 Then, eq 

9 can be simplified as follows. 

  𝐻𝐻𝜉𝜉𝜉𝜉[𝑫𝑫] = < Ξ𝜉𝜉�𝐻𝐻��Ξ𝜉𝜉 > +(𝐸𝐸𝑐𝑐[𝑫𝑫])𝜉𝜉𝜉𝜉           (10) 

It is important to point out that since the diagonal matrix elements (𝐸𝐸𝑐𝑐)𝜉𝜉𝜉𝜉 are given in terms of 

determinant configurations, it suggests that these terms may be approximated by using the 

exchange-correlation functionals developed in the framework of KS-DFT.  

D. Nonorthogonal State Interaction. In this work, we adopt nonorthogonal state interaction 

(NOSI) in multistate density functional theory to determine the ground and excited state energies. 

The method consists of two computational steps.29  

First, we independently optimize the ground-state and excited-state determinants, Ξ𝜉𝜉 (𝜉𝜉 =

1,⋯ ,𝑀𝑀). Note that the number of determinants M in the MAS is not always precisely restricted 

to 𝑁𝑁2, depending on the inclusion of all spin complement determinants and the adiabatic states of 

interest. An important task in this step is to keep a given non-aufbau occupation unchanged in the 

optimization process, and we have developed two approaches to accomplish this goal.52-54 In the 

block-localized excitation (BLE) method,52 we use a ground-state orbital projection to retain the 

order of orbitals in the non-aufbau configuration, �𝑻𝑻0
†𝑭𝑭𝑻𝑻0�𝑻𝑻 = �𝑻𝑻0

†𝑺𝑺𝑻𝑻0�𝑻𝑻𝝐𝝐BLE, where 𝑻𝑻0 and 

𝑻𝑻 are the orbital coefficients of the ground-state and the non-aufbau state. Thus, in each SCF 

iteration, the orbitals are expressed in the same order in terms of the MO basis of the ground state. 

Alternatively, in the target state optimization (TSO) approach,53, 54 we first place the un-occupied 

molecular orbitals of the ground state below the orbital(s) of the excited electron(s) into an 
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auxiliary block, and then, the optimization of the non-aufbau configuration is carried out in the 

basis without the MOs in the auxiliary space, effectively becoming an SCF procedure for an 

orbital-constrained optimization. The difference between the BLE and TSO methods is that BLE 

is a fully variational ΔSCF procedure, but TSO is a constrained approach lacking the degrees of 

freedom of the auxiliary space. As a result, the energy from the TSO optimization is slightly higher 

than that from the BLE method. The advantage, however, is that TSO is essentially a ground-state 

optimization procedure without the possibility of collapsing to lower energy states. For the present 

case, we found that both methods are highly robust without collapsing to lower states.  

In step 2 of NOSI, we obtain the energies and wave functions (densities) (eq 4) of the 

individual adiabatic states by minimizing the multistate energy 𝐸𝐸𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡{𝓗𝓗[𝑫𝑫]}  through a 

single diagonalization of the HMDF:33  

       𝐸𝐸𝐼𝐼[𝑫𝑫] = �𝑐𝑐𝜉𝜉𝐼𝐼
2

𝑀𝑀

𝜉𝜉

𝐻𝐻𝜉𝜉𝜉𝜉 +  
1
2
��𝑐𝑐𝜉𝜉𝐼𝐼

𝑀𝑀

𝜉𝜉

𝑀𝑀

𝜉𝜉

𝑐𝑐𝜉𝜉𝐼𝐼𝐻𝐻𝜉𝜉𝜉𝜉                                                                       (11) 

Clearly, the key is to determine the matrix elements of the HMDF 𝓗𝓗[𝑫𝑫]. As above, the 

diagonal terms are simply the KS-DFT energies evaluated in the optimization process of the Slater 

determinants in 𝑉𝑉𝑀𝑀𝐴𝐴𝑀𝑀 ,52-54 keeping in mind that the corresponding KS-determinants are non-

aufbau occupation constrained. 

ℋ𝜉𝜉𝜉𝜉 = 𝐸𝐸𝜉𝜉
𝐾𝐾𝑀𝑀[𝜌𝜌𝜉𝜉(𝒓𝒓)]                (12) 

For the off-diagonal elements (eq 10), the correlation energy (ℰ𝑐𝑐)𝜉𝜉𝜉𝜉 is called transition density 

functional (TDF),40 which does not exist in HKS-DFT. Thus, further approximation is needed. 

Interestingly, in special situations such as spin coupling interactions between spin-mixed 

determinants that yield a pair of singlet and triplet (𝑀𝑀𝑚𝑚 = 0) states, (ℰ𝑐𝑐)𝜉𝜉𝜉𝜉  can be obtained 

rigorously by enforcing the energy degeneracy among the high and low 𝑀𝑀𝑚𝑚 projections of the 
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triplet states.46, 55-57 Since the energy for the 𝑀𝑀𝑚𝑚 = 1 triplet state of a molecule can be determined 

exactly (in principle) by HKS-DFT with one determinant, the TDF energy between two spin-mixed 

determinants Ξ𝜉𝜉
↑↓  and Ξ𝜉𝜉↓↑  to yield the same energy for the 𝑀𝑀𝑚𝑚 = 0  triplet state is uniquely 

determined by the TDF energy  

 (ℰ𝑐𝑐)𝜉𝜉𝜉𝜉
𝑚𝑚𝑠𝑠 = 𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀�𝜌𝜌𝜉𝜉𝑇𝑇

↑↑ (𝒓𝒓)� − 𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀�𝜌𝜌𝜉𝜉𝜉𝜉
↑↓ (𝒓𝒓)�           (13) 

where 𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀�𝜌𝜌𝜉𝜉𝑇𝑇
↑↑ (𝒓𝒓)� is the “Kohn-Sham” correlation energy with the electron density 𝜌𝜌𝜉𝜉𝑇𝑇

↑↑ (𝒓𝒓) of 

the spin-up triplet state Ξ𝜉𝜉𝑇𝑇
↑↑ = |𝜓𝜓1𝛼𝛼

𝜉𝜉 𝜓𝜓1𝛽𝛽
𝜉𝜉 ⋯𝜓𝜓

�12𝑛𝑛𝑒𝑒−1�𝛽𝛽
𝜉𝜉 𝜓𝜓𝑖𝑖𝛼𝛼

𝜉𝜉 𝜓𝜓𝑖𝑖𝛼𝛼
𝜉𝜉 > , and 𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀�𝜌𝜌𝜉𝜉𝜉𝜉

↑↓(𝒓𝒓)�  is the KS 

correlation energy using 𝜌𝜌𝜉𝜉𝜉𝜉
↑↓(𝒓𝒓)  (equivalently with 𝜌𝜌𝜉𝜉𝜉𝜉↓↑ ) corresponding to the spin-mixed 

determinant state Ξ𝜉𝜉𝜉𝜉
↑↓ = |𝜓𝜓1𝛼𝛼

𝜉𝜉 𝜓𝜓1𝛽𝛽
𝜉𝜉 ⋯𝜓𝜓

�12𝑛𝑛𝑒𝑒−1�𝛽𝛽
𝜉𝜉 𝜓𝜓𝑖𝑖𝛼𝛼

𝜉𝜉 𝜓𝜓𝑖𝑖𝛽𝛽
𝜉𝜉 > (Ξ𝜉𝜉𝜉𝜉↓↑ = |𝜓𝜓1𝛼𝛼

𝜉𝜉 𝜓𝜓1𝛽𝛽
𝜉𝜉 ⋯𝜓𝜓

�12𝑛𝑛𝑒𝑒−1�𝛽𝛽
𝜉𝜉 𝜓𝜓𝑖𝑖𝛽𝛽

𝜉𝜉 𝜓𝜓𝑖𝑖𝛼𝛼
𝜉𝜉 >

 ). The superscript sp in eq 13 indicates spin-pairing interactions. The subscript 𝜉𝜉𝑇𝑇 in 𝜌𝜌𝜉𝜉𝑇𝑇
↑↑ (𝒓𝒓) is 

used to indicate that the determinant Ξ𝜉𝜉𝑇𝑇
↑↑  refers to the triplet state with respect to the two spin 

complement determinants Ξ𝜉𝜉𝜉𝜉
↑↓  and Ξ𝜉𝜉𝜉𝜉↓↑ .  

For all other situations, we use the overlap-weighted average correlation energy of the two 

interacting states to approximate their TDF:33 

 (ℰ𝑐𝑐)𝐴𝐴𝐴𝐴 = 1
2
𝑆𝑆𝐴𝐴𝐴𝐴{𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀[𝜌𝜌𝐴𝐴(𝒓𝒓)] + 𝐸𝐸𝑒𝑒𝑐𝑐𝐾𝐾𝑀𝑀[𝜌𝜌𝐴𝐴(𝒓𝒓)]}         (14) 

We emphasize again that each basis state represented by a single Slater determinant is variationally 

optimized in MSDFT-NOSI.58 Thus, the vast toolchest of approximate density functionals 

developed for single-determinant KS-DFT can be employed in multistate calculations. 

3. Computational Details 

The geometries for eighteen small molecules in the Loos2018 dataset are taken from the 

original study,13, which were optimized using CC3/aug-cc-pVTZ. In this dataset, a range of one to 
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six singlet or triplet excited states was determined for each molecule, producing two sets of 

theoretical best estimates: (a) TBE(FC)/AVTZ corresponding to a frozen-core FCI extrapolation 

with the aug-cc-pVTZ basis, and (b) corr-TBE that is basis-set corrected at the CC3(full) level of 

theory. The TBE(FC)/AVTZ, simply TBE, is used as the reference in the present study.  

To benchmark the MSDFT-NOSI method, we employ two popular density functional 

approximations for KS-DFT to determine the energies of the diagonal matrix elements of the 

HMDF, including the Minnesota M06-2X41 and the PBE0 model,42-44 along with the aug-cc-pVTZ 

basis set.59 In a few cases, some excited configurations encountered difficulties to achieve 

convergence using the BLE method, and a different basis set was used. In particular, for H2S and 

cyclopropane, the cc-pVQZ basis was used, and aug-cc-pVDZ for CH3CH=O, CH2=C=O and 

HCONH2.59 We did not further investigate and optimize the SCF procedure since the relative 

energies for other configurations are of similar quality in comparison with the aug-cc-pVTZ results. 

Thus, we do not anticipate the quality of the overall performance will be affected. We also carried 

out optimizations for the non-aufbau configurations using the TSO method for constructing the 

active space, and compared the performance of the two optimization techniques for generating 

basis states in NOSI calculations. 

Configurational states for each molecule in the MAS consist of only singly excited 

configurations for a standard set of active orbitals comprising two highest occupied and two lowest 

unoccupied Kohn-Sham molecular orbitals (HOMO-1, HOMO, LUMO and LUMO+1), i.e., 

S[4e,4o]. One exception is the molecule nitrosomethane (CH3-NO), for which the second singlet 

excited state (1A′) is a double-excitation state corresponding to the (𝑛𝑛,𝑛𝑛 → 𝜋𝜋∗,𝜋𝜋∗) transition.13 

Thus, the corresponding double excited configuration is also included in the MAS. For some 

molecules, it turns out that the number of electrons and orbitals in this starting point can be adjusted; 
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for example, only two electrons for ethylene, ketene and diazomethane are sufficient in the active 

space for the excited states included in the Loos2018 benchmark, whereas up to six electrons are 

included for molecules with degenerate or nearly degenerate orbitals. A list of the determinant 

configurations used for each molecule is given in Table 1, but not necessarily all configurations 

are required. The use of only singly excited configurations in the MAS is consistent with the 

findings of Loos et al., who concluded that except the nitrosomethane 1𝐴𝐴′ state, all excited states 

in their dataset show more than 80% (generally more than 90%) single-transition character from 

CC3 analysis.13 Importantly, the use of a MAS for each species keeps the spirit of computational 

efficiency of DFT.  

 

Table 1. The number of electrons and maximum number of determinant configurations in the 
minimal active space for each molecule.a 

Molecule 𝑁𝑁𝑒𝑒 𝑀𝑀𝑚𝑚𝑚𝑚𝑒𝑒 configurations 
H2O 4 9 KS, S[4e, 4o] 
H3N 6 15 KS, S[4e, 4o], (H-2) →L, H→L+2,L+3 
H2S 4 9 KS, S[4e, 4o] 
HCl 4 9 KS, S[4e, 4o] 
HC≡CH 4 9 KS, S[4e, 4o] 
CH2=CH2 2 9 KS, S[2e, 5o] 
Cyclo-propene 6 7 KS, S[6e, 4o] 
CH2=O 4 17 KS, S[4e, 6o] 
CH3CH=O 4 9 KS, S[4e, 4o] 
CH2=C=O 2 9 KS, S[2e, 5o] 
HCONH2 6 13 KS, S[4e, 5o] 
CH2=S 4 9 KS, S[4e, 4o] 
CH2=NH 4 9 KS, S[4e, 4o] 
CH3-N=O 6 14 KS, S[4e, 5o], (H-2) →L, H→L/double 
CH2=N=N 2 9 KS, S[2e, 5o] 
H2N-CH=NH2

+ 4 9 KS, S[4e, 4o] 
CO 6 25 KS, S[6e, 7o] 
N2 6 25 KS, S[6e, 7o] 

a. H-2 is the HOMO-2 orbital, and L and L+n are the LUMO and LUMO+n orbital. 
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The MSDFT-NOSI calculations were performed using the Qbics program developed in our 

laboratories60 and a separate program for energy decomposition analysis interfaced with the 

GAMESS-US program for electronic integrals.61 In NOSI calculations, we used a fine grid 

consisting of 96 radial shells and 302 angular points. For comparison, we have also determined 

the excitation energies using TDDFT/M06-2X/aug-cc-pVTZ with Gaussian16.62 

4. Results and Discussion 

A. Ground-State Energies. We begin with our discussion on the computed energies for the 

ground state and the lowest triplet state of each molecule. Listed in Table 2 are the total energies 

obtained from NOSI calculations and its difference relative to that calculated using KS-DFT. 

Nonorthogonal state interaction is a multistate DFT method, in which the Kohn-Sham determinant 

state is a member of the MAS. KS-DFT itself employs a non-interacting reference system, 

expressed by a single Slater determinant to represent the ground-state density; in principle, all 

electron correlation is included. However, a multistate DFT method includes state interaction 

amongst the configurational states in the MAS, which introduces explicitly some static correlation. 

Double counting of electron correlation has been a concern in multiconfigurational DFT (MC-

DFT) methods in which KS-correlation energy is added to the energy from a correlated WFT.40, 

63-65  

The theory of MSDFT is rigorous without double counting correlation28 and the 

approximation of NOSI differs from all other MC-DFT models in that the total electron density 

from a MCSCF wave function is not directly used in KS-DFT correlation energy evaluation.33, 40 

Rather, the MSDFT correlation functional for a given state is an implicit functional of the 

multistate density (eq 11), and the correlation functional developed for KS-DFT is used solely to 
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approximate the correlation energy of a single-determinant state (diagonal terms), an element of 

the Hamiltonian matrix density functional 𝓗𝓗[𝑫𝑫]. For spin-pairing interactions, the off-diagonal 

terms of 𝓗𝓗[𝑫𝑫], i.e., the TDF energies, are determined consistently with the all spin-up triplet state, 

|1,1 >, for which, unlike the |1,0 > multiplet, a one determinant treatment is sufficient.55 If one 

considers HKS-DFT to be an exact theory for the lowest energy state of a given spin manifold,66 

the singlet state resulting from spin coupling of two mixed-spin states is uniquely determined, 

consistent with the triplet-state energy, by virtue of spin-multiplet energy degeneracy, (|1,1 >) =

𝐸𝐸(|1,0 >).46, 56, 57 Consequently, we find that the difference in the ground-state energy between 

MSDFT and KS-DFT is quite small, keeping in mind that the KS-DFT state is included in the 

active space in NOSI calculations. The overall root-mean-square difference (RMSD) for all singlet 

states (except the triplet state of N2, see below) is 0.00059 a.u. (0.017 eV). Of all structures, only 

formaldehyde (CH2=O) and ammonia (NH3) exhibit noticeable multiconfiguration contribution in 

the singlet states. Nevertheless, the NOSI ground states for formaldehyde and ammonia are 

overwhelmingly composed of the KS-configuration, respectively having 99.7% and 99.6% in 

configuration weight.67 Without these two states, the RMSD is reduced to 0.00030 a.u. (0.008 eV) 

relative to single-determinant, KS-DFT energies. For the triplet states, the same trend is observed 

and only hydrogen sulfide (H2S) shows some multiconfigurational contributions over the KS-DFT 

energy (Table 1). The triplet state of dinitrogen was excluded in the statistics because the lowest 

triplet state is the multiconfigurational  𝜋𝜋 → 𝜋𝜋∗ transition, in accord with the TBE from WFT,13 

but the 𝑛𝑛 → 𝜋𝜋∗ state has the lowest energy from a single-determinant optimization using KS-DFT.  

The data in Table 2 show that double counting of static correlation embedded in 

multiconfiguration interaction in MSDFT-NOSI is minimal as tested over the molecules in the 

Loos2018 dataset using the M06-2X functional for the diagonal elements of the HMDF. 
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Furthermore, the multistate energies for both singlet and triplet states have the same RMSD of 

0.016 eV from the corresponding KS-DFT results. Importantly, state interaction in MSDFT 

ensures that all adiabatic states are orthogonal in contrast to state-specific optimization. 

 

Table 2. Computed total energies (a.u.) for the singlet and triplet ground states and difference from 

Kohn-Sham density functional theory.a 

 

Molecule  

𝑆𝑆0 𝑇𝑇1 

MSDFT Δ𝐸𝐸𝐾𝐾𝑀𝑀 MSDFT Δ𝐸𝐸𝐾𝐾𝑀𝑀 

H2O -76.43070 -0.00048 -76.15937 0.00000 

H2Sb -399.39358 -0.00019 -399.18412 -0.00239 

NH3 -56.55466 -0.00148 -56.31586 -0.00001 

HCl -460.80965 0.00000 -460.53647 0.00000 

HC≡CH -77.32602 0.00000 -77.11100 0.00000 

H2C=CH2  -78.57326 0.00000 -78.40807 0.00000 

Cyclopropaneb  -116.61033 0.00000 -116.45067 0.00000 

H2C=O -114.50102 -0.00169 -114.37185 0.00000 

CH3CH=Oc -153.78187 -0.00063 -153.63980 -0.00006 

CH2=C=Oc -152.56190 0.00000 -152.42677 0.00000 

HCONH2
c -169.85401 -0.00052 -169.65987 -0.00003 

H2C=S -437.45851 0.00000 -437.39160 0.00000 

CH2=NH -94.62199 -0.00012 -94.45830 -0.00001 

CH3-N=O -169.79038 -0.00054 -169.75579 -0.00009 

H2C=N2 -148.73554 -0.00044 -148.63877 0.00020 

streptocyanine -150.37478 0.00000 -150.17170 0.00000 

CO -113. 32105 -0. 00000 -113.09571 0.00000 

N2 -109.53515 -0.00002 -109.25536 -.015026 

a. The Minnesota M06-2X density functional is used in MSDFT-NOSI and Kohn-Sham DFT 
calculations. Energy differences between MSDFT and KS-DFT are given as Δ𝐸𝐸𝐾𝐾𝑀𝑀 = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 −
𝐸𝐸𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇. The aug-cc-pVTZ basis function is used.  b. The cc-pVQZ basis set is used.  c. The 
aug-cc-pVDZ basis set is used. 
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B. Performance of NOSI with the M06-2X Functional.  We next examine the performance 

of MSDFT using nonorthogonal state interaction with a standard meta-GGA density functional 

approximation developed for the ground state KS-DFT, in particular, the Minnesota M06-2X 

functional.41 The excitation energies from MSDFT-NOSI calculations are compared against the 

Loos2018 dataset in Figure 1, in which three computational procedures are examined, differing in 

state optimization and TDF approximation. We first optimize the determinant configurations in 

the MAS for each molecule using either the BLE52 or the TSO method.53, 54 Then, we enforce the 

spin multiplet-energy degeneracy of the triplet state |1,1 > (identically |1,−1 >) with that of 

the multiconfigurational |1,0 >  state resulting from spin-coupling interaction.46, 56 This 

constraint uniquely determines the TDF value (eq 13), even in the absence of an explicit functional 

expression for TDF between spin-pairing interactions, and it is denoted as spin-multiplet 

degeneracy (SMD). Along with the two optimization methods, we have the MSD-BLE and MSD-

TSO computational models.  

Alternatively, we also examine the performance of MSDFT-NOSI in which the SMD 

condition is not enforced. Thus, we employ the expression in eq 14, featuring an overlap-scaled 

average (OSA) correlation-energy of two interacting states, to approximate the TDF for all off-

diagonal terms of 𝓗𝓗[𝑫𝑫]. Equation 14 was initially proposed as an ad-hoc approximation without 

rigorous justification,33 but we now know that it is the leading term of an expression for the TDF 

in order to satisfy the matrix functional transformation property of the HMDF28, 29 when the KS-

DFT correlation energy for each configuration is used in the diagonal term.40 In this work, OSA is 

evaluated on the states optimized using the BLE method, and this procedure is termed as OSA-

BLE.  
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Comparison between results obtained using the SMD-BLE and SMD-TSO approaches 

gives an indication of the effect of orbital-occupation constraint in the TSO method on the overall 

adiabatic excitation energy. On the other hand, comparison between results from the SMD-BLE 

and OSA-BLE highlights the significance of meeting certain physical conditions in constructing 

explicit transition density functionals in the future.  

 

 

Figure 1. Excitation energies of both singlet and triplet states from multistate density functional 
theory (MSDFT) with nonorthogonal state interaction (NOSI) against the theoretical best estimates 
of the Loos2018 dataset. The block-localized excitation (BLE) and target state optimization (TSO) 
methods are used to determine the basis-state configurations along with the spin multiplet-energy 
degeneracy (SMD) and the overlap-scaled average (OSA) correlation approximation for 
constructing the Hamiltonian matrix density functional. 
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Depicted in Figure 1 are 100 excitation energies for the eighteen compounds from the 

Loos2018 dataset13 against values computed using MSDFT-NOSI with the M06-2X density 

functional, excluding a few high-energy states that are not sufficiently represented by the present 

MAS (Table 1). The overall agreement between MSDFT results and the Loose2018 benchmark is 

good for the SMD method either with the BLE or with the TSO optimization techniques. The root-

mean-square errors (RMSE) are 0.22 and 0.24 eV, respectively, for the SMD-BLE and SMD-TSO 

model. The corresponding mean signed errors (MSE) and mean absolute errors (MAE) are -0.02 

and -0.01 eV, and 0.17 and 0.18 eV for the two methods. Consequently, one finds that there is little 

systematic error in both models. On the other hand, the computed excitation energies using the 

OSA-BLE approach show somewhat greater fluctuations; RMSE, MSE and MAE are, respectively, 

0.48, -0.07 and 0.31 eV. Therefore, there is a clear advantage to restricting the TDF correlation 

energy between two spin-pair configurations to match the energy of the multiconfigurational 

|1,0 > state to the corresponding |1,1 > triplet state. It may be argued that an additional KS-

DFT calculation is needed for the all spin-up triplet state in the SMD model, but the extra cost is 

practically negligible.  

Loos et al. evaluated a list of 12 popular computational methods.13 Couple-cluster with 

triple excitations including CCSDT, CCSDTQ and CC3 have the best performance with an RMSE 

of 0.04 eV or less, whereas the popular ADC(2) and ADC(3) as well as CC2 exhibit larger 

deviations at about 0.28 eV. However, several cases including doubly excited state and states 

involving strong state mixing were excluded in the statistics in that analysis.13 MSDFT-NOSI, 

coupled with a popular density functional approximation (M06-2X) developed for KS-DFT, can 

yield results lying between the most accurate CC series that include triples and those cost-efficient, 

second-order wave function theories. Similar to the findings in the 2018 investigation of wave 
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function methods,13 we also found no notable difference in accuracy for MSDFT-NOSI between 

singlet and triplet excitations. For WFT, the low-cost models, CIS(D), CIS(D∞), ADC(2) and CC2, 

have greater average errors (MAE) in Rydberg states by as much as 0.15 eV than valence excited 

states. In the present analysis, a total of 57 valence excited states and 43 Rydberg states are 

included. It turns out that NOSI(SMD) performs slightly better for the Rydberg states (MAE: 0.15 

eV; RMSE: 0.19 eV) than valence excitations (MAE: 0.18 eV; RMSE: 0.24 eV). This trend mirrors 

that of the ADC(3) method (MAE of 0.17 eV and 0.28 eV, respectively) found in the Loos2018 

study.13 The main source of errors in valence excitation in the present NOSI method comes from 

𝜋𝜋 → 𝜋𝜋∗  transitions. We noticed previously that the errors in the two simplest unsaturated 

hydrocarbons can be significantly reduced if an alkyl substitution is added; a detailed investigation 

is beyond the scope of this work. Thus, in practice, the errors on low-energy valence excitations 

can be significantly smaller than the benchmark comparison. 

In Table 3, we list the computed excitation energies using MSDFT-NOSI along with those 

from the reference TBE and the CC3 method in the Loos2018 dataset13 and TDDFT values with 

the M06-2X functional. The computed oscillator strengths along with those from the Loos 

benchmark are also listed, but no further comments will be made. Below, we briefly examine the 

performance of NOSI on different classes of molecules. Here, we focus on results obtained using 

the M06-2X functional and the SMD approach for estimating TDF contributions. 
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Table 3: Computed Excitation Energies (eV) and Oscillator Strengths using Multistate Density Functional Theory Along With the 
Theoretical Best Estimates (TBE) and CC3 from the Loos2018 Database, and TDDFT Values.a 

Molecule State 
Loos2018 M06-2X PBE0 Oscillator Strength 

TBE CC3 SMD-
BLE 

SMD-
TSO 

OSA-
BLE TDDFT SMD-

BLE 
SMD-
TSO 

Loos2018 

H2O 

1B1 (n → 3s) 7.62 7.60 7.53 7.49 7.70 7.46 7.38 0.033 0.054 
1A2 (n → 3p) 9.41 9.38 9.30 9.36 9.33 8.93 8.82 0.000  
1A1 (n → 3s) 9.99 9.97 9.76 9.80 10.00 9.64 9.78 0.148 0.100 
3B1 (n → 3s) 7.25 7.23 7.38 7.11 7.22 7.37 7.02 0.033  
3A2 (n → 3p) 9.24 9.22 9.08 9.20 9.06 9.14 8.45   
3A1 (n → 3s) 9.54 9.52 9.51 9.52 9.27 9.38 9.26   

NH3 

1A2 (n → 3s) 6.59 6.57 6.47 6.47 6.67 6.41 6.43 0.095 0.086 
1E (n → 3p) 8.16 8.15 8.16 8.18 8.17 7.68 7.81 0.006 0.006 
1A1 (n → 3p) 9.33 9.32 9.24 9.20 9.48 9.04 8.93 0.006 0.003 
3A2 (n → 3s) 6.31 6.29 6.50 6.50 6.30 6.46 6.16   

H2Sb 

1A2 (n → 4p) 6.18 6.19 6.09 6.31 6.19 5.88 5.68 0.000  
1B1 (n → 4s) 6.24 6.24 6.66 6.44 6.79 5.99 6.13 0.060 0.063 
3A2 (n → 4p) 5.81 5.82 5.70 6.00 5.59 5.84 5.43   
3B1 (n → 4s) 5.88 5.88 6.20 6.20 6.16 6.04 5.68   

HCl 1Π (CT) 7.84 7.84 7.83 7.87 7.97 7.56 7.51 0.006 0.056 

HC≡CH 

1Σ−u (π → π*) 7.10 7.09 7.46 7.24 6.92 6.00 7.32 0.596  
1∆u (π → π*) 7.44 7.42 7.87 7.82 8.05 7.07 7.72 0.632  
3Σ+u (π → π*) 5.53 5.50 5.85 5.66 4.73 5.34 5.48   
3∆u (π → π*) 6.40 6.40 6.37 6.66 6.39 6.37 6.21   

 1Au (F; 𝜋𝜋 → π*) 3.64 3.64 2.98 2.90 2.97 2.29 2.77 0.017  
 1A2 (F; 𝜋𝜋 → π*) 3.85 3.84 3.94 3.15 3.25 4.11 3.83 0.000  

CH2=CH2 

1B3u (π → 3s) 7.39 7.35 6.96 6.96 7.14 6.94 7.07 0.110 0.078 
1B1u (π → π*) 7.93 7.91 7.54 7.53 7.80 7.47 7.42 0.720 0.346 
1B1g (π → 3p) 8.08 8.03 7.88 7.81 7.91 8.00 7.70 0.000  
3B1u (π → π*) 4.54 4.53 4.49 4.48 3.22 4.50 4.25   
3B3u (π→ 3s) 7.23 7.24 7.15 7.14 6.97 6.76 6.87   
3B1g (π→ 3p) 7.98 7.98 7.84 7.76 7.81 7.25 7.59   
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Cyclopropeneb 

1B1 (σ → π*) 6.68 6.68 6.66 6.56 6.73 6.37 6.25 0.009 0.001 
1B2 (π → π*) 6.79 6.73 6.85 6.74 7.87 6.55 6.51 0.367 0.071 
3B2 (π → π*) 4.38 4.34 4.34 4.30 3.32 4.34 3.97   
3B1 (σ → π*) 6.45 6.43 6.33 6.24 6.26 6.27 6.03   

CH2=O  

1A2 (n → π*) 3.98 3.97 3.84 3.95 3.94 3.68 3.82 0.000  
1B2 (n → 3s) 7.23 7.18 7.11 7.31 7.20 7.17 7.01 0.036 0.021 
1A1 (π → π*) 9.43 9.48 9.68 9.71 11.10 9.39 9.68 0.637 0.135 
1B2 (n → 3p) 8.13 8.07 8.12 8.18 8.24 7.97 8.17 0.030 0.037 
1A1 (n → 3 p) 8.23 8.18 8.21 8.30 8.30 8.05 8.17 0.068 0.052 
3A2 (n → π*) 3.58 3.57 3.51 3.49 3.42 3.47 3.52   
3A1 (π → π*) 6.06 6.05 6.00 5.96 4.52 5.50 6.09   
3B2 (n → 3s) 7.06 7.03 7.26 7.24 7.16 6.82 6.85   
3B2 (n → 3p) 7.94 7.92 8.16 8.14 8.04 7.55 8.02   
3A1 (n → 3p) 8.10 8.08 8.24 8.30 8.14 7.64 8.07   

 1A″ (F; n → π*) 2.80 2.84 2.55 2.73 2.61 2.64 2.29 0.001  

CH3CH=Oc 
1A” (n → π*) 4.31 4.31 4.18 4.33 4.27 3.97 3.85 0.000 0.000 
3A” (n → π*) 3.97 3.95 3.87 3.84 3.77 3.85 3.59 0.000  

CH2=C=Oc 

 

1A2 (π → π*) 3.86 3.88 3.85 3.85 3.90 3.69 3.52 0.000  
1B1 (π → 3s) 6.01 5.96 6.00 6.11 6.15 5.87 5.96 0.061 0.035 
1A2 (π → 3p) 7.18 7.16 7.27 6.90 7.29 6.85 6.96 0.711  
3A2 (π → π*) 3.77 3.78 3.68 3.65 3.62 3.65 3.46   
3B1 (π → 3s) 5.79 5.76 6.03 6.10 5.87 5.73 5.75   
3A2 (π → 3p) 7.12 7.12 7.25 6.56 7.24 6.74 6.92   
1A″ (F; π →π*) 1.00 1.00 0.87 0.88 0.91 0.79 0.64 0.001  

HCONH2c 

 

1A” (n → π*) 5.65 5.66 5.51 5.53 5.59 5.43 5.22 0.002 0.000 
1A’ (n → 3s) 6.77 6.74 6.52 7.30 6.72 6.77 6.12 0.093 0.001 
1A’ (π → π*)  7.63 7.62 6.92 8.16 7.01 7.01 6.73 0.023 0.251 
1A’ (n/π→ 3p)  7.38 7.40 7.42 7.77 7.49 7.52 7.47 0.131 0.111 
3A” (n → π*) 5.38 5.38 5.28 5.25 5.21 4.94 5.02   
3A’ (π → π*) 5.81 5.82 5.80 5.79 5.27 5.80 5.43   

CH2=S  

1A2 (n → π*) 2.22 2.23 2.04 2.03 2.13 2.01 1.77 0.000  
1B2 (n → 4s) 5.96 5.91 5.91 5.91 6.00 5.75 5.78 0.026  
1A1 (π → π*) 6.38 6.48 6.31 6.45 7.58 6.20 6.06 0.751 0.178 
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3A2 (n → π*) 1.94 1.94 1.82 1.79 1.74 1.83 1.60   
3A1 (π → π*) 3.43 3.38 3.28 3.13 2.00 3.17 3.09   
3B2 (n → 4s) 5.72 5.72 5.81 5.88 5.72 5.56 5.48   
1A2 (F; n →π*) 1.95 1.97 1.74 1.74 1.81 1.81 1.51 0.000  

CH2=NH  
1A” (n → π*) 5.23 5.20 4.99 5.09 5.11 4.89 4.69 0.008 0.003 
3A” (n → π*) 4.65 4.61 4.45 4.45 4.33 4.46 4.19   

CH3-N=O  

1A” (n → π*) 1.96 1.96 1.98 2.06 2.03 1.31 1.56 0.001 0.000 
1A’ (n, n→ π*,π*) 4.72 5.76 4.85 4.72 4.85 6.42 4.86 0.000 0.000 
1A’ (n → 3s/3p) 6.40 6.31 6.61 6.61 6.69 6.32 6.26 0.005 0.006 
3A” (n → π*) 1.16 1.14 1.01 1.00 0.95 0.93 0.85   
3A’ (π → π*) 5.60 5.51 5.42 6.19 5.98 4.79 5.15   
1A″ (F; n → π*) 1.67 1.69 1.60 1.71 1.66 0.92 1.18 0.001  

CH2-N2 

1A2 (π → π*) 3.14 3.07 2.93 3.07 2.93 2.73 2.67 0.000  
1B1 (π → 3s) 5.54 5.45 5.48 5.42 5.60 5.25 5.46 0.263 0.002 
1A1 (π → π*) 5.9 5.84 5.79 5.77 6.63 5.79 5.91 0.086 0.210 
3A2 (π → π*) 2.79 2.83 2.63 2.72 2.63 2.62 2.49   
3A1 (π → π*) 4.05 4.03 4.57 3.97 3.23 3.58 3.73   
3B1 (π → 3s) 5.35 5.31 5.55 5.25 5.42 5.28 5.29   
3A1 (π →π*/3p) 6.82 6.80 7.04 6.97 6.59 6.18 6.30   

 3A″ (F; π →π*) 0.71 0.68 0.60 0.60 0.50 0.44 0.71 0.000  

Streptocyanine 
1B2 (π → π*) 7.13 7.13 7.21 7.21 7.67 7.49 6.68 0.620 0.347 
3B2 (π → π*) 5.52 5.48 5.53 5.53 5.07 5.53 5.13 0.000  

CO  

1Π (V; n → π *) 8.49 8.49 8.01 8.10 8.50 8.14 7.84 0.170 0.084 
1Σ− (V; π → π*) 9.92 9.99 10.31 9.42 9.66 9.03 10.11 0.000  
1∆ (V; π → π*) 10.06 10.12 10.65 9.93 9.97 10.09 10.42 0.000  
1Σ+ (R) 10.95 10.94 10.90 11.22 11.05 10.78 10.89 0.000 0.003 
1Σ+ (R) 11.52 11.49 11.51 11.48 11.65 11.16 11.30 0.000 0.200 
1Π (R) 11.72 11.69 11.76 11.74 11.74 11.25 11.40 0.161 0.053 
3Π (V; n → π*) 6.28 6.30 6.15 6.20 5.64 6.13 5.89   
3Σ+ (V; π → π*) 8.45 8.45 8.85 8.38 8.96 7.94 8.07   
3∆ (V; π → π*) 9.27 9.30 9.01 9.21 9.66 8.64 8.77   
3Σ− (V; π→ π*)  9.80 9.82 9.37 9.81 7.40 10.06 9.17 0.000  
3Σ− (R) 10.47 10.45 10.66 10.54 10.41 10.73 10.37   
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N2 1Πg (V; n → π *) 9.34 9.34 9.32 9.35 9.58 9.00 8.76 0.000  
 1Σ− (V; π → π*) 9.88 9.88 10.09 10.11 9.35 8.38 10.07 0.000  
 1∆ (V; π → π*) 10.29 10.29 10.69 10.71 9.95 9.93 10.68 0.000 0.000 
 1Σg+ (R) 12.98 13.01 12.95 12.92 13.19 12.84 12.7 0.000  
 1Πu (R) 13.03 13.22 13.43 13.72 13.6 12.96 13.09 0.096 0.229 
 1Σu+ (R) 13.09 13.12 13.54 13.55 13.66 13.07 13.51 0.144 0.296 
 1Πu (R; ) 13.46 13.49 14.6 13.79 14.63 13.25 14.3 0.097 0.000 
 3Σu+ (V; π → π*) 7.70 7.68 7.61 7.62 6.22 8.05 7.24   
 3Πg (V; n → π*) 8.01 8.04 8.02 8.01 7.77 8.03 7.64   
 3∆u (V; π → π*) 8.87 8.87 8.64 8.64 8.35 8.51 8.25   
 3Σu− (V; π→ π*)  9.66 9.68 8.90 8.90 9.38 8.55 8.80   

a. aug-cc-pVTZ basis set used in all calculations, except noted. Loos2018: Loos, P. F., et al. 2018, reference 13. CC3: third-order 
response coupled cluster. TDDFT: time-dependent density functional theory. SMD: spin-multiplet degeneracy. OSA: overlap-scaled 
average. BLE: block-localized excitation. TSO: target state optimization.   b. cc-pVQZ basis set.   c. aug-cc-pVDZ basis set.       
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Four small hydrogenic compounds (H2O, H3N, H2S and HCl) comprising 15 excited states 

are included in the benchmark set. The agreement between NOSI results and the TBE values is 

excellent, with the largest errors for the n→4s singlet (0.42 eV) and triplet (0.32 eV) states of H2S, 

without which the MAE is 0.10 eV for the hydrogenic molecules using either BLE and TSO 

optimizations. Undoubtedly, larger basis sets are needed to better describe higher-energy Rydberg 

states. 

There are three unsaturated hydrocarbon compounds in the Loos2018 dataset, including 

acetylene, ethylene and cyclopropene. The overall MAEs are 0.21 and 0.27 eV for the SMD-BLE 

and SMD-TSO model, respectively, including 16 excited states and two transition energies at the 

excited state geometry. The two smallest alkyne and alkene compounds turn out to be most difficult 

for NOSI with relatively large errors in valence excitations greater than the average performance 

for the entire dataset. This is unfortunate in benchmark studies since the performance of NOSI on 

substitute alkenes and alkynes can be better.  

Four carbonyl compounds with 26 excited states are included in the test set (formaldehyde, 

acetaldehyde, ketene, and formamide). Of these compounds, greater errors are found in formamide, 

especially on the high-lying 𝜋𝜋 → 𝜋𝜋∗ transition with an error as large as −0.71 eV in SMD-BLE 

and +0.53 eV in SMD-TSO. Nevertheless, the overall performance of NOSI/SMD-BLE is 

generally reasonable with an MAE of 0.12 eV on the SMD-BLE energies and 0.17 eV on SMD-

TSO results, excluding the 𝜋𝜋 → 𝜋𝜋∗ state of formamide. The characteristic 𝑛𝑛 → 𝜋𝜋∗ transitions of 

formaldehyde, acetaldehyde and formamide are underestimated by 0.13 eV relative to the 

corresponding TBE, but the result for ketene is within 0.01 eV. 

The excitation energies determined for the isoelectronic diatomic molecules CO and N2 

feature a variety of transitions, including 𝑛𝑛 → 𝜋𝜋∗, 𝜋𝜋 → 𝜋𝜋∗ and Rydberg states, of which several 
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states involve state interactions. The average error for the 18 transition energies shown in Table 3 

is 0.21 eV for both SMD-BLE and SMD-TSO methods, greater than the overall statistical average 

of all compounds. Here, a number of Rydberg states and 𝜋𝜋 → 𝜋𝜋∗ transitions have similar energies 

which become sensitive to the range of configurations in the active space (Table 1). The difficulty 

also highlights the limitations of the present nonorthogonal state interaction method, which is 

effective for systems with a limited number of low-lying states. As the energy difference between 

different excited states gets smaller, it becomes difficult to optimize individual configurational 

states with a given non-aufbau occupation. Therefore, an alternative approach such as the 

multiconfiguration self-consist-field with singles and doubles (SDSCF) method described 

previously may be desired for high-energy excitations where state separation becomes small.39 

The remaining compounds in the benchmark set are five species containing somewhat 

exotic functional groups; they are CH2=NH, CH2=N2, CH3-NO, CH2=S, and H2N-CH=NH2
+ 

(streptocyanine). Several excited states of diazomethane have errors above average with the largest 

(0.52 eV) for the 3𝐴𝐴1 𝜋𝜋 → 𝜋𝜋∗ transition. Three other states having errors greater than 0.2 eV are 

the 𝑛𝑛 → 𝜋𝜋∗  transition of CH2=NH, the 𝑛𝑛 → 3𝑠𝑠/3𝑝𝑝  Rydberg state of CH3-NO, and the 

fluorescent transition of CH2=S. The mean-absolute error in the 25 excitation energies of the five 

compounds is 0.15 eV employing the SMD-BLE method. The same performance is found in the 

SMD-TSO approach. 

C. Comparison with TDDFT and PBE0 Functional. To shed light on the performance of 

MSDFT, we also include the results of NOSI using the hybrid PBE0 density functional 

approximation and data from linear-response time-dependent density functional theory. The SMD-

BLE model is used in NOSI/PBE0 calculations. Except for cases involving double excitation, 

strong state mixing and significant charge-transfer contribution, the results from TDDFT should 
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be quite good for the small organic molecules in the Loos2018 dataset. Comparison of MSDFT 

and TDDFT against a common set of best theoretical estimates on excitation energies (Figure 3) 

can provide a direct assessment of the scope and accuracy of MSDFT relative to a well-established 

and widely used method,25 whereas the comparison between MSDFT results obtained by using 

different density functional approximations (Figure 3) reminds us of the importance to develop 

novel density functional approximations suitable for both the ground state and excited states. 

 

Table 4. Mean Signed Errors (MSE), Mean Absolute Errors (MAE), Root-Mean-Square Errors 

(RMSE), and Maximum Deviations of Computed Excitation Energies (in eV) Obtained by Using 

the MSDFT-NOSI and TDDFT Methods Against Theoretical Best Estimates of the Loos2018 

Benchmark.a 

Method No. of 
states 

MSE MAE RMSE Max(+) Max(-) 

ADC(3) 106 -0.15 0.23 0.28 -0.79 0.39 

CC2 106 0.03 0.22 0.28 -0.71 0.63 

CC3 106 -0.01 0.03 0.04 -0.09 0.19 

CCSD 106 0.05 0.08 0.11 -0.17 0.40 

CCSDT 104 -0.01 0.03 0.03 -0.10 0.11 

SMD-BLE 100 -0.02 0.17 0.22 -0.71 0.59 

SMD-TSO 100 -0.01 0.18 0.24 -0.74 0.69 

OSA-BLE 100 -0.07 0.31 0.48 -1.54 1.61 

SMD/PBE0 100 -0.26 0.31 0.36 -0.91 0.42 

TDDFT 100 -0.24 0.31 0.42 -1.50 1.70 

a. Data on wave function theories (ADC, CC2, CC3, CCSD and CCSDT) taken from ref. 13. 
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Figure 2. Comparison of excitation energies (eV) determined using multistate multistate density 
functional theory (MSDFT) with nonorthogonal state interaction (NOSI) and time-dependent 
density functional theory (TDDFT) against a set of best theoretical estimates of the Loos2018 
dataset. The M06-2X functional is used both in MSDFT and in TDDFT calculations. 
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Figure 3. Comparison of excitation energies (eV) determined using multistate multistate density 
functional theory (MSDFT) with nonorthogonal state interaction (NOSI). The M06-2X and PBE0 
density functionals are used.  
  

By inspection of Figures 2 and 3, one immediately notices that both TDDFT/M06-2X and 

NOSI/PBE0 systematically underestimate the excitation energies against the TBE data. Indeed, 

the MSE is -0.24 eV for TDDFT/M06-2X and -0.26 eV on the NOSI/PBE0 results. This is 

markedly different from a MSE of -0.02 eV in the NOSI/M06-2X results. The systematic trends 

are also revealed in the MAE and RMSE for the two sets of data, which are, respectively, 0.31 eV 

and 0.42 eV for TDDFT, and 0.31 eV and 0.36 eV for NOSI/PBE0. One special outlier in TDDFT 

results is the (𝑛𝑛,𝑛𝑛 → 𝜋𝜋∗,𝜋𝜋∗) double-excitation state of nitrosomethane (Figure 2), which has a a 

value of 6.42 eV from TDDFT/M06-2X, but the theoretical best estimate is 4.72 eV. The similarity 

in magnitude between MSE and MAE for both TDDFT/M06-2x and NOSI/PBE0 methods further 
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confirms the visual depiction in Figures 2 and 3. Overall, we can draw two conclusions: (a) NOSI 

with SMD-BLE (and SMD-TSO) outperforms TDDFT substantially using the same density 

functional approximation (M06-2X) on the Loos2018 dataset, and (b) the accuracy of NOSI 

calculations is dependent on the particular density functional approximation used. In the latter case, 

the use of PBE0 functional for the diagonal terms of 𝓗𝓗[𝑫𝑫] leads to a greater average error (0.31 

eV) than that by using M06-2X (0.17 eV). 

 

5. Conclusions 

In this work, we examine the performance of multistate density functional theory with 

nonorthogonal state interaction (MSDFT-NOSI) for excitation energy calculations beyond the 

traditional TDDFT and HKS-DFT for the ground state. MSDFT-NOSI is based on the theorems 

of Lu and Gao,28 who established the existence of a Hamiltonian matrix density functional of state 

and transition densities. Importantly, the matrix density for the lowest 𝑁𝑁 states of a molecular 

system can be represented by no more than 𝑁𝑁2 Slater determinants, defining an upper bound in 

the number of configuration states and the possibility of constructing a minimal active space (MAS) 

for a given number of adiabatic states of interest. Two optimization methods are used to determine 

the basis configuration states, namely the block-localized excitation (BLE) and the target state 

optimization (TSO) techniques. Furthermore, we employ two ways of approximating the transition 

density functional (TDF) for the correlation energy of the off-diagonal terms of the HMDF. 

MSDFT-NOSI is assessed for 100 excitation energies in the 2018 dataset by Loos et al. (Loos2018) 

taken from a series of high-quality theoretical best estimates on a wide range of compounds.13-17 

We made the following main findings. 
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1. MSDFT-NOSI is generally more accurate than TDDFT using the Minnesota M06-2X 

functional on the Loos2018 dataset. Both the BLE and TSO optimization techniques yield 

similar results with RMSE of 0.22 eV and 0.24 eV, respectively, compared to an RMSE of 

0.43 eV for TDDFT. 

2. In comparison of the total energies for the ground state from the multistate MSDFT-NOSI 

and the single-determinant KS-DFT calculations, we found that there is little double counting 

of correlation in the multistate approach. The mean signed difference (MSD) and root-mean-

square difference (RMSD) between the multistate and non-interacting reference approaches 

are -0.00025 and 0.00059 a.u. (less than 0.016 eV), respectively. Thus, it is encouraging to 

make use of the vast toolset developed for KS-DFT, and to develop novel matrix density 

functionals to study the ground state and excited states. 

3. There are no systematic errors in the computed excitation energies using MSDFT-NOSI with 

M06-2X functional. The mean signed errors (MSE) are -0.02 eV and -0.01 eV using the BLE 

and TSO optimization method. 

4. The performance of MSDFT-NOSI on excited-state calculations depends on the specific 

functional used as that of TDDFT. Of the two functionals examined, PBE0 shows a greater 

average error with an RMSE of 0.36 eV compared to that of 0.22 eV for M06-2X. However, 

the error is systematic with a linear regression slope of 0.994 and an intercept of 0.28 on an 

𝑅𝑅2 = 0.998. 

5. Of the Loos2018 excited-state database, MSDFT-NOSI/M06-2X has an RMSE of 0.22 eV, 

which is better than ADC(3) and CC2 (both 0.28 eV), but greater than CCSD (0.11 eV) and 

CC3 (0.04 eV). It also performs better than the best functionals in TDDFT/TDA benchmarks 

by Head-Gordon and coworkers (RMSEs of 0.25-0.3 eV) on a different, larger set of targets. 
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6. All things considered; we recommend MSDFT-NOSI/M06-2X for excited state calculations 

with the SMD estimates for TDF between spin coupled configurations. 

Hohenberg-Kohn-Sham density functional theory for the ground state has revolutionized 

modern model chemistry, balancing accuracy and efficiency, whereas TDDFT offers excellent 

excitation energies for many systems. However, the latter also suffers from numerous well-known 

shortcomings, including the double-excitation state of nitrosomethane in the Loos2018 dataset. 

MSDFT is a rigorous density functional theory for all states. We found that the density functional 

approximations developed for HKS-DFT can be adopted to MSDFT-NOSI calculations of excited 

states, exhibiting a performance better than that of TDDFT using the same functional 

approximation on a carefully constructed high-quality database. The present benchmark study 

further sheds light on the possibility to develop explicit and accurate matrix density functionals 

both for the ground state and for excited states without relying on time-dependent approaches. 
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