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Abstract 

Computer Aided Synthesis Planning (CASP) development of reaction routes requires 

understanding of complete reaction structures. However, most reactions in the current databases 

are missing reaction co-participants. Although reaction prediction and atom mapping tools can 

predict major reaction participants and trace atom rearrangements in reactions, they fail to 

identify the missing molecules to complete reactions. This is because these approaches are data-

driven models trained on the current reaction databases which comprise of incomplete 

reactions. In this work, a workflow was developed to tackle the reaction completion challenge. 

This includes a heuristic-based method to identify the balanced reactions from reaction 

databases and complete some imbalanced reactions by adding candidate molecules. A machine 

learning masked language model (MLM) was trained to learn from reaction SMILES sentences 

of these completed reactions. The model predicted missing molecules for the incomplete 

reactions; a workflow analogous to predicting missing words in sentences. The model is 

promising for prediction of small and middle size missing molecules in incomplete reaction 

records. The workflow combining both the heuristic and the machine learning methods 

completed more than half of the entire reaction space. 

Keywords: chemoinformatics; reaction informatics; organic synthesis; machine learning 

 

Introduction 

To enable evaluation of reaction routes with respect of a set of target parameters, such as overall 

yield, impurities, economy or greenness, knowledge of the complete reaction record is required. 

When all reaction participants (reactants, reagents and products) are known, the reaction 

completion is simply a problem of mass conservation, i.e. using linear algebra to balance the 

reaction with stoichiometric coefficients. However, this is not always the case for data records 
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that are currently accessible in Reaxys®,1, *  USPTO,2 or any other none-manually curated 

reactions databases. An example of Reaxys® reaction data record is shown in Figure 1. Three 

main aspects of the reaction data are often missing in records today:3 stoichiometric 

coefficients, reaction co-participants and integration of multiple reaction steps into a single 

reaction entry. 

 

Figure 1. An example reaction record (Reaxys® reaction ID: 27812599) summarised from 
multiple literature sources. The reaction record shows only major reactants and products, while 
the reaction co-participants are missing. The reaction participants, which do not contribute to 
the carbon flow, may be recorded as reagents. 
 
 

There are historical and habitual reasons for incompleteness of reaction data today. Firstly, 

chemists report reactions in journal articles and patents based on the self-defined scope of 

research, which does not typically have potential tasks of others in mind; side products are 

either not in scope of studies, or were not detected by the analytical techniques that were used. 

Secondly, although text-mining techniques could process chemical information from literature, 

including properties and structures of molecules, and reaction conditions, sometimes it is hard 

to identify reaction participants as they may appear in different sections of a publication. This 

aspect is being addressed by creating clear templates for presenting and storing reaction data, 

such as the Open Reaction Database project.4  For data to be useful for machine learning tasks 

 
* Copyright © 2022 Elsevier Limited except certain content provided by third par;es. Reaxys is a trademark 
of Elsevier Limited  
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and for automated tasks of process development, it is necessary for existing data to be re-

calibrated to include the missing reaction participants and reduce the noise in the datasets.  

 

In literature, several methods for reaction structure completion were published. Grzybowski et 

al. manually curated around 100,000 generalised reaction rules with complete understanding of 

reaction participants and stoichiometry.5 Their templates are now linked with commercial 

software SYNTHIATM and can guide retrosynthesis and analyse carbon efficiency based on 

mass conservation.6 However, human development of reaction rules is far from the aspiration 

of exploring a very large chemical space of feasible molecules and reactions. On the other hand, 

the automatically extracted templates7 are also not reliable for reaction completion, since most 

of these templates were generalised from open-source USPTO reaction dataset2 in which the 

reactions were not complete. A “golden dataset” with complete reactions could be an ultimate 

solution. However, such large-scale reaction dataset does not exist today.  

 

Atom mapping, which relies on rearrangement of atoms in chemical transformations, is 

promising to tackle this problem. Atom mapping describes the exact transformation and reveals 

the missing species on the product side. Jaworski et al. utilised graph-theoretical considerations 

and chose 20 chemical rules / heuristics to correct mapping of reactions.8 This method attempts 

to complete stoichiometry firstly by adding small molecules such as acetaldehyde, ammonia, 

and others to balance the reactions and, secondly, by fitting reactions into popular reaction 

templates and adding the missing parts. Only if such attempts fail, atom mapping is employed.  

 

The atom mapping tool RXNMapper developed by Schwaller et al. utilised NLP to infer 

reaction structures.9 A neural network (transformer) was trained on a set of mapped reactions 

and proved to be capable of completing the mapping tasks quicker and with confidence scores.9 
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Nugmanov et al.10 developed a rule-based reaction balancing method and this has been 

integrated into a reaction informatics software, namely, CGRtools.10 However, this could only 

add small molecules such as water, and the author claimed the balancing was imperfect. Thus, 

till now inferring complete reaction structure from incomplete reaction datasets remains a 

challenge. 

 

In this work, a workflow was proposed towards reaction completion of existing reaction data 

records. Given a reaction record, either from reaction SMILES, or other reaction 

representations, a proposed heuristic tool, ChemBalancer, first checks if the reaction is a 

complete reaction, or incomplete from the left hand side (LHS) or the right hand side (RHS) of 

the reaction equation. The ChemBalancer intends to add one (or sometimes more than one) 

specie into a side (or sometimes two sides) of reaction accordingly, with the aid of reaction 

atom mapping tool RXNMapper.9 If the ChemBalancer fails to complete the reaction record, 

the reaction SMILES string is considered as a language of chemistry and is passed into a fine-

tuned masked language model (MLM), a BERT transformer,11 originally designed to detect 

missing words in a sentence based on its context, to infer the most possible missing molecule 

in the reaction. Here, the MLM model, ChemMLM, was trained from a set of completed 

reactions detected by ChemBalancer, to predict the missing molecules in a reaction. This is 

followed by using ChemBalancer to further check if the updated reaction is completed. Every 

step of this pipeline intends to only add one most possible molecule to the incomplete reaction, 

and the specific sequential design of this pipeline was to learn only from available complete 

reactions and maximise the likelihood to propose correct molecules for incomplete reactions 

towards reaction structure completion. 
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Methods 

The heuristic step –  ChemBalancer 

ChemBalancer was partially adapted from Arun et al.’s balancing algorithm,12 which was 

originally proposed as a step to identify chemical impurities produced in reactions. The 

workflow of ChemBalancer is shown in Figure 2, and summarised below. 

 

 

Figure 2. A scheme of ChemBalancer workflow to detect if reaction records are originally 
complete, or could be completed with help species added to the RHS or candidate species added 
to the LHS, or the reactions are eventually incomplete with LHS or RHS species insufficient. 
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A reaction is defined as complete if atoms of each element and electron charges are balanced 

between LHS and RHS of a reaction equation. Hence, for a given reaction record, the first step 

for ChemBalancer is to determine the atom and the electron balances. By default, 

ChemBalancer ignores the counts of hydrogen atoms, since from perspective of solving linear 

algebra of reaction balancing, a valid reaction with mass conservation and all other atoms and 

electron charges balanced between LHS and RHS cannot give a degree of freedom for hydrogen 

imbalance. Hydrogen atoms should have been already balanced between LHS and RHS. If a 

reaction imbalance includes atom and electron counts, but the types (chemical elements) are 

identical, this reaction can be balanced with stoichiometry. A linear solver in ChemPy API13 

was used to determine stoichiometric coefficients. In some rare cases, large values of 

stoichiometric coefficients are added to reaction participants. Since the chance of having large 

numbers of molecules react together to trigger a reaction is low, an arbitrary value of six was 

set as an upper limit for stoichiometric coefficients. Here we must differentiate the small 

molecules synthesis from polymerisation reactions which could be represented by chemical 

equations with very large stoichiometric coefficients. 

 

If stoichiometry alone cannot solve reaction balance, ChemBalancer attempts to add possible 

missing molecules to complete the reaction of interest. To do this, ChemBalancer subtracts the 

counts of each atom and electrons at the LHS from the RHS.  

 

If this results in atom surplus on the LHS, one compatible small help specie is added to the 

RHS. A library of manually curated help species was tailored to include 32 molecules and ions, 

ranging from water to chlorobenzene. These molecules are the most frequently appearing side 

products in organic synthesis. The full list of help compounds is shown in Table 1. These help 

species are added sequentially to the RHS of a reaction and used to balance the reaction. The 
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reaction is defined as complete with help species if it is balanced with the addition of these 

species to the RHS. Otherwise, it is classified as a ‘RHS species insufficient’ reaction. 

 

Table 1. The library of help compounds. 
Categories Molecules 

Ion sodium ion, potassium ion, nitronium ion, sulphate ion 

Oxyacid phosphoric acid, sulfuric acid, nitric acid, chloric acid 

Alcohol methanol, ethanol, propanol, butanol 

Carboxylic acid acetic acid, propanoic acid, butanoic acid, methoxyacetic acid 

Aromatic compound methane, benzene, toluene, phenol, chlorobenzene 

Others water, hydrogen, oxygen, ammonia, nitrogen 

Hydrogen acid hydrogen chloride, hydrogen bromide, hydrogen iodide, hydrogen 

fluoride, phosphine, hydrogen sulfide 

 

If this step presents an atom surplus on the RHS, this means that at least one reactant is missing 

for the reaction. The most likely reactants that may complete reactions are listed as one of 

reagents or solvents in the reaction record. For example, in Reaxys®, reagents, i.e. reactants that 

do not contribute to carbon flow of the reaction) and solvents are listed as two attributes in 

reaction record, as shown in Figure 1. In USPTO, reactions are given with reaction SMILES 

strings in the format of “A.B>C.D>E.F”, in which “C” and “D” are reagents, whilst solvents 

are not provided. ChemBalancer picks a molecule from the candidate reagents and solvents to 

add to the LHS of the reaction. If the reaction has multiple candidate reagents and solvents, the 

atom mapping tool RXNMapper9 is implemented to map the atom rearrangement from the 

reactants to the products for each candidate reaction. RXNMapper can trace the reactant’ origin 

of each atom of the product. Given a reaction with RHS atom surplus this helps identify the 

percentage of product atoms that can be traced with their origins at the LHS, and this is 
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quantified by the atom mapping confidence score.9 The confidence scores for the candidate 

reactions are ranked to select the most optimal candidate molecule to update the LHS of the 

reaction. ChemBalancer treats the updated reaction as a new reaction record and tries to balance 

the updated reaction again with the same workflow. This corresponds to the arrow from the 

bottom-right box to the top box in Figure 2. 

 

Each loop of ChemBalancer aims to add one possible missing molecule to the reaction to 

complete it. However, in case when a candidate reagent or solvent is added to the LHS, the 

reaction reaches a new imbalance status. If it is passed into the workflow in a new balancing 

loop, this may potentially result in adding more than one molecule to both sides of the reaction. 

The reaction is eventually defined as ‘LHS insufficient’ reaction when there are no available 

reagents or solvents to be added to the LHS to balance it. 

 

If a reaction has atom surplus on the LHS for some atom types and atom surplus on the RHS 

for others, this means the reaction is missing both - at least one reactant and one product. With 

given candidate reagents and solvents, the reaction completion starting from adding species into 

the LHS becomes more certain and has higher priority than the RHS. Therefore, this case 

follows the same procedure as the reaction with atom surplus on the RHS. However, since atom 

surplus exists in both sides of the reaction, the possibility of adding only candidate reagents and 

solvents on the LHS to complete the reactions becomes very low. Therefore,  help species are 

also allowed to be added to the LHS as well, but with a lower priority than the candidate 

reagents and solvents, since they are prone to create false positive complete reactions. 

 

https://doi.org/10.26434/chemrxiv-2023-hrgfw ORCID: https://orcid.org/0000-0001-7621-0889 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-hrgfw
https://orcid.org/0000-0001-7621-0889
https://creativecommons.org/licenses/by/4.0/


   

10 
 

The machine learning step – ChemMLM 

Those reactions that were failed to be balanced by ChemBalancer were marked as incomplete 

reactions and passed to ChemMLM to infer the next most possible molecules in the LHS or the 

RHS of reaction record, based on conclusions with regards of LHS or RHS- insufficient species 

reached by ChemBalancer.  

 

Several assumptions were made in developing ChemMLM: 

1. All results passed from ChemBalancer were assumed to be correct. While the originally 

balanced reactions verified by ChemBalancer are usually correct, there remain false 

positives in the reactions completed by ChemBalancer itself. Also, since ChemMLM 

was trained on a set of completed reactions detected by ChemBalancer, all reactions in 

this set were assumed correctly completed by ChemBalancer. However, in reality, false 

positives are present in this set and they would result in propagated error in training and 

reduce ChemMLM accuracy. 

2. ChemMLM assumes only one molecule is missing in incomplete reactions. Adding 

more than one molecule would result in combinatorial increase of decision space, which 

is not guaranteed to lead to ground truth molecules but becomes computationally 

expensive. In this case, ChemMLM was trained to predict the most possible next 

molecule to be added to the reaction towards reaction completion. However, we noticed 

that sometimes ChemMLM predicts more than one molecule in SMILES format, using 

representation “A.B”. This is discussed in the following sections. 

 

The ChemMLM model structure 

MLM is an application of BERT transformer.11 Using BERT to learn from many linguistic 

patterns of complete sentences, MLM predicts missing words in a sentence inferred from its 
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context. For example, to fill the gap “In autumn, the ___ falls from the trees”, MLM restricts 

search to the most possible item falling from trees in autumn, which would be the word 

“leaves”. To train an MLM, a BERT transformer is fed with the same input sequence as the 

output, and the model optimises weights within its encoder layers in order to process this. To 

predict a missing word, tokens are randomly masked within the input sequence by replacing the 

missing word token with a special mask token symbol “<mask>”. Given the context of a 

sentence, the MLM learned from previous semantic examples would infer the possible missing 

word.14 

 

 

Figure 3. A diagramme of model structure of ChemMLM: (a) transformation of reaction 
SMILES strings into output logits by passing the tokeniser and RoBERTa model,15 using an 
example of reaction SMILES of paracetamol synthesis, acetylation of 4-aminophenol with 

Softmax

Output logit Probability
distribution

Argmax Token
ID

(a)

(b)
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acetic anhydride; and (b) transformation of output logits into token IDs by passing softmax and 
argmax functions. 

 

Figure 3 shows a proposed model structure for ChemMLM adapted from an MLM model.14 In 

Figure 3(a), reaction SMILES strings are processed into ChemMLM. A reaction SMILES is 

tokenised into multiple tokens and replaced by index IDs that have one-to-one correspondence 

with the tokens. The reaction SMILES tokenisation method is discussed in “ChemMLM 

tokeniser” Section of this paper. A mask function dynamically masks a section of reaction 

SMILES, where the mask method is discussed in the “Mask method” Section of this paper. 

 

The input ID tensor is processed by a BERT transformer model, where the RoBERTa15 variant 

of BERT is adopted. The theories and model architecture of RoBERTa are discussed in the 

“RoBERTa model” Section of this paper. RoBERTa outputs a set of vectors with the length of 

768, and each vector is transformed from a token by RoBERTa. The vectors are passed into a 

feed-forward neural network, which outputs the output logits. The output logit is the logit 

transformation applied to its original output, shown in Eq. 1. The output vector of each token 

remains the size equal to the vocal size, i.e. the total number of tokens, indicating the projection 

of each tokens into each output logit. 

 

The step to convert each set of output logits into an output token is shown Figure 3(b). From 

the output logits, a softmax transformation is applied to acquire probability distribution of a list 

of possible predicted tokens. This is followed by applying an argmax function to select the most 

possible index ID for the token. Concatenating the strings of tokens produces a predicted 

reaction SMILES, which reveals the masked tokens represented in the mask symbol “<mask>”. 

 

𝑙𝑜𝑔𝑖𝑡(𝑜𝑢𝑡𝑝𝑢𝑡) =
𝑜𝑢𝑡𝑝𝑢𝑡

1 − 𝑜𝑢𝑡𝑝𝑢𝑡 Eq. 1 
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The input tokens are compared with the predicted tokens through Kullback-Leibler (KL) 

divergence loss function, shown in Eq. 2, which pairwise measure the probability distribution 

of the true output encoding 𝑦!"#$ and computed one 𝑦%"$&. The loss is backpropagated to the 

encoder layers of RoBERTa, the feed-forward neural network layers, and the softmax function 

to update the weights. 

 

The ChemMLM tokeniser 

Ideally, in an MLM model, each word is converted into a single token, and prediction of a 

missing word is prediction of one token. However, this could not be the case for ChemMLM. 

With 160 million molecules present in the database, conversion of a single molecule into a 

token would result in a vocabulary size of 160 million, which was impossible to process in 

ChemMLM. 

 

A well-known regularised reaction SMILES tokenisation method has been proposed by 

Schwaller et al.16, to deliver the promising reaction prediction tool - Molecular Transformer. In 

this method, all atoms and regular used expressions in reaction SMILES are separated into 

tokens, such as “C”, “Br”, “@” and “)”. Although this regularised tokenisation was 

implemented in multiple related works, it was not used here. This approache discretises a  

molecule into multiple tokens, which makes it harder to learn from the semantic context of a 

molecule's SMILES string. 

 

A byte-pair encoding (BPE) tokenisation method17, 18 was used in this work. The BPE 

tokenisation counts the highest frequent consecutive string expressions of reaction SMILES to 

𝐾𝐿1𝑦%"$& , 𝑦!"#$3 = 𝑦!"#$ ∙ log
𝑦!"#$
𝑦%"$&

 

 

Eq. 2 
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replace with tokens. For example, in Figure 3(a), “Nc” and “ccc” are both high frequent 

expressions in reaction SMILES, and therefore, they were formed as single tokens. This 

tokenisation method disconnected molecules at various positions, which allowed the model to 

learn different molecular disconnection strategies, and this also steered the model to infer 

various types of missing molecules. 

 

High frequent expressions were usually present within the molecule representations of the 

reaction SMILES, i.e. the splitting molecule symbol “.” and the splitting reactant-product 

symbol “>>” do not exist in the tokens. However, in several cases, tokens were formed across 

the molecule representations, since the BPE tokenisation method recognises SMILES strings 

of “part of a molecule’s SMILES + . + part of another molecule’s SMILES” as high frequent 

expressions, such as “+].[” and “.[”. 

 

Four special symbols were added into the token vocabulary, which are “<bos>”, “<eos>”, 

“<mask>” and “<pad>”, meaning respectively, the start token of a reaction SMILES string, end 

token of a reaction SMILES string, the mask token and placeholder of void tokens. Using all 

Reaxys® and USPTO reactions as semantic input, the BPE method tokenised the reaction 

SMILES expression into 2,863 tokens including the four special tokens. 

 

RoBERTa model 

RoBERTa model15 builds on the BERT transformer,11 and modifies key hyperparameters of the 

BERT transformer. The choice of RoBERTa over the original BERT here was because of its use 

of BPE tokenisation approach, as discussed in the “ChemMLM tokeniser” Section, and 

dynamic mask method, as discussed in the “Mask method” Section. The other architecture of 

RoBERTa is close to BERT. 
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RoBERTa, or BERT only use the encoding half of the transformer, as the decoding half is not 

required to translate the input sequence into another language.11, 15 In Figure 3, the “BERT-

RoBERTa” unit includes the input embedding unit, positional encoding unit, multi-head 

attention units, and normalisation layer, followed by layers of feed-forward neural network. 

These units enable the ChemMLM to encode the semantic and syntactic information of the 

reaction SMILES in the embeddings. 

 

ChemMLM model training and prediction 

Data Source  

Since a “golden dataset” with a large range of complete reactions did not exist at the start of 

this work, all accessible complete reactions were valuable data sources, despite doubts about 

data quality of these complete reactions. The objective was to explore the limited complete 

reaction space, to broaden the boundary of the space to some originally incomplete reactions, 

while retaining errors and noise present in the space. Therefore, the complete reactions, i.e. the 

originally complete reactions detected by ChemBalancer and the originally incomplete 

reactions balanced by  ChemBalancer, were used to train the ChemMLM model. Reaxys® and 

USPTO reaction datasets were two accessible reaction data sources. Although the data size of 

the two dataset are in different magnitude - approximately 21 million versus one million, they 

both cover broad ranges of reaction types,19 which are both key data sources to learn from. 

 

To compare the model predictability from different data sources, ChemMLM models were 

trained from the complete reactions from (i) USPTO dataset and (ii) Reaxys® plus USPTO 

dataset (this is referred to as the combined dataset in the rest of this paper). Since the magnitude 
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of USPTO is not comparable with Reaxys, it was added into Reaxys® as a whole data source to 

train the second ChemMLM model. 

 

The data was split into training, validation and test data following the ratio of 9 : 0.5 : 0.5, to 

train, evaluate the potential model structure, and understand the model predictability 

respectively. Only a small portion of reactions were used for model validation and test, since 

the total number of reactions is large. 

 

Mask method  

A dynamic mask method randomly masked approximately 15% of the tokens in the input ID 

tensor. The number of masked tokens was rounded based on the number of tokens in the reaction 

SMILES. To avoid using the same masks for every epoch of training, the method randomly 

masked the reaction SMILESs iteratively in every epoch, to increase the exposure of every 

token as a mask. 

 

Model implementation  

The ChemMLM models were implemented with a Python API, namely Hugging Face,20 which 

is a platform to implement multiple NLP transformer variants. The training calculations of the 

ChemMLM models were powered by Google Colab's GPU cloud service.21 

 

The model structure details configured for the RoBERTa model are shown below. The 

dimensionality of the encoder layers is 768. The maximum token length that the model can be 

used with is 512, which covers all reaction SMILES token length (up to 333). In the encoder, 

the number of attention heads for each attention layer is 12, and the number of hidden layers is 

6. The activation function used in the model is Gaussian Error Linear Units (GELU) function.22 
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The dropout probability for all fully connected layers in the embeddings and encoder is 0.1, and 

the dropout ratio for the attention probabilities is 0.1. The epsilon used by the normalisation 

layers is 10-12. The configuration of such a model creates 83,504,416 parameters. 

 

After fine-tuning of ChemMLM training arguments based on the validation data results, the 

model arguments for the final ChemMLM models trained from USPTO data, and combined 

data are shown in Table 2, and “adam” optimiser was used to optimise the model parameters. 

 

Table 2. Аinal training arguments for two ChemMLM models, learned from USPTO data and 
combined data respectively. 
 
ChemMLM USPTO Combined 
Epoch 175 17 
Learning rate 10-4 1.5´10-4 
Gradient accumulation steps 1 1 
Batch size 16 32 

 
 
Model test method  

The trained ChemMLM models were assessed on the reaction test dataset. The model used KL 

divergence loss, determined in Eq. 2 between predicted tokens and the true masked tokens to 

backpropagate the model parameters and validate the models. However, this assessment could 

only conclude on the model predictability of a masked token, which is usually part of a 

molecule. The purpose for the model testing was to assess whether the model could infer an 

entire missing molecule, rather than a masked token. Moreover, since the model predicts the 

missing molecule for the incomplete reactions following the LHS and RHS species insufficient 

scenarios, as discussed in the “Missing molecule prediction” section, the ChemMLM models 

were tested, with respect to its LHS and RHS predictability. 
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With respect to model predictability testing at the RHS, in each complete reaction SMILES 

string in the test dataset, each product was hidden once alternatively with the missing molecule 

symbol “@@@”. For example, a reaction with format of “A.B.C>>D.E” would be duplicated 

into two reaction SMILESs, “A.B.C>>@@@.E” and “A.B.C>>D.@@@”. With respect to the 

LHS testing, in each reaction, each reactant was hidden once alternatively. The example 

reaction would be duplicated into three reaction SMILESs, “@@@.B.C>>D.E”, 

“A.@@@.C>>D.E” and “A.B.@@@>>D.E”. In this way, the number of reactions in the test 

dataset was also augmented, and the LHS ChemMLM and the RHS ChemMLM were used to 

predict the hidden molecules at each side respectively. 

 

Each “@@@” symbol was converted to the multiple of the mask symbol “<mask>” based on 

the number of tokens included in the hidden molecule. In this way, instead of dynamically 

randomisng 15% of the mask, the masks in the test dataset were tailored to mask an entire 

molecule sequentially at the designated side of the reaction. The ChemMLM model predicted 

the masked tokens and concatenated the tokens to predict SMILES of the hidden molecule. 

 

Any deviation in tokens between the predicted molecule and the ground truth would make 

prediction of the molecule semantically meaningless. Therefore, instead of comparing the KL 

divergence loss, as used in model training and validation, SMILESs of the predicted molecules 

and the ground truth molecules are compared directly to determine the correction rate of 

identical SMILES strings among the test dataset. For each ChemMLM model, two values were 

computed, i.e. the LHS and the RHS correction rates in the test dataset. 

 

The hidden molecule mask method was initially also considered as a regularised mask method 

to mask molecules during training instead of the dynamic mask approach. However, such a 
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mask method hides a molecule at a centralised segment (i.e. one single token) of the reaction 

SMILES. By no means could the mask method learn bond breaks and recombination from the 

reaction SMILES, and it was hard to pick the semantic context among the molecules. Therefore, 

a dynamic mask approach was implemented. 

 

Missing molecule prediction  

Based on the suggestion from ChemBalancer - a reaction is imbalanced with either LHS or 

RHS species insufficient. Assuming only one molecule is missing in the reaction SMILES, an 

extra missing molecule symbol “@@@” of a missing molecule is added to the corresponding 

side of the reaction SMILES. For the paracetamol synthesis discussed above, ChemBalancer 

suggested RHS species insufficient for the reaction, and therefore, “@@@” symbol was added 

to the end of the reaction SMILES RHS, split by splitting molecule symbol “.” from the original 

reaction SMILES, shown as 

“Nc1ccc(O)cc1.CC(=O)OC(C)=O>>CC(=O)Nc1ccc(O)cc1.@@@”. This example is shown 

in Figure 4. 
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Figure 4. An illustration of the workflow to predict the missing molecule for an incomplete 
reaction, illustrated with an example of a RHS species insufficient reaction, paracetamol 
synthesis. The reaction is completed with acetic acid molecule added to RHS of the reaction. 
 
 

The prediction of a known hidden molecule from a complete reaction is different from the 

prediction of a missing molecule from an incomplete reaction. While the number of tokens of 

the hidden molecule from the complete reaction is given, that of the missing molecule from an 

incomplete reaction remains unknown. A molecule in USPTO and Reaxys® reactions can have 

token lengths ranging from one to 333. The 333 scenarios are all enumerated, by converting the 

missing molecule symbol “@@@” in reaction SMILES into different numbers of mask 

symbols “<mask>”. For example, for the scenario of the missing molecule with two tokens, the 

paracetamol synthesis reaction SMILES is converted to 

“Nc1ccc(O)cc1.CC(=O)OC(C)=O>>CC(=O)Nc1ccc(O)cc1.<mask><mask>”.  

 

SMILES: Nc1ccc(O)cc1.CC(=O)OC(C)=O>>CC(=O)Nc1ccc(O)cc1

ChemBalancer suggestion: imbalanced with RHS insufficient

Nc1ccc(O)cc1.CC(=O)OC(C)=O>>CC(=O)Nc1ccc(O)cc1.@@@

<mask> ×1 to <mask> ×333

ChemMLM 333 SMILESs RDKit: Chem.MolFromSmiles

7 SMILES syntax valid molecules

Token size 1 3 4 5 9 11 12
SMILES O O=O Oc1ccccc1 CC(=O)O CC(=O)OC(=O)O CC(=O)O.C(=O)O CC(=O)Nc1ccc(O)cc1

Complete SMILES: Nc1ccc(O)cc1.CC(=O)OC(C)=O>>CC(=O)Nc1ccc(O)cc1.CC(=O)O

ChemBalancer suggestion: balanced with ‘CC(=O)O’
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ChemMLM was used to predict the masked tokens and concatenate them into a molecule. It is 

noticed that in some cases, more than one molecule was concatenated from the masked tokens, 

since the model can predict crossing-molecule token, which splits the concatenated reaction 

SMILES tokens into multiple molecules. 

 

From the 333 prediction enumerations, only one token length could potentially give the ground 

truth for the missing molecule, and the other 332 enumerations are semantically meaningless 

predictions, and even sometimes, the SMILES syntax of the predictions is incorrect. To 

determine the meaningful result, RDKit API23 was used to convert the 333 candidate molecular 

SMILES strings into molecule objects, and the syntax meaningless molecules would throw 

error and be removed from the candidate molecules. For example, for the paracetamol synthesis 

reaction, only 7 out of the 333 enumeration produce SMILES syntax valid molecules, which 

have the token lengths of 1, 3, 4, 5, 9, 11 and 12 respectively. Among these scenarios, the 11 

tokens concatenate into two molecules, with “.” presented in the SMILES string, as shown in 

Figure 4. 

 

These syntax valid molecule SMILESs replace the “@@@” in the reaction SMILES and are 

passed to ChemBalancer to determine if these candidate molecules include a chemically 

meaningful molecule that could either complete the reaction itself, or could balance the reaction 

with extra molecules proposed by ChemBalancer. If both scenarios fail, this means the reaction 

could not be completed with the current workflow, as shown in Figure 5. 
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Figure 5. An illustration of the entire workflow of the reaction completion algorithm, including 
ChemBalancer, and ChemMLM subunits, exemplified by a reaction scheme “A+B+C → D+E”. 
All complete reactions are shown in red dashed boxes. 
 
 
Reaction completion workflow  

The entire workflow of the reaction completion algorithm includes two sequential subunits, 

ChemBalancer and ChemMLM. The workflow is summarised in Figure 5. In the ChemBalancer 

subunit, the USPTO and Reaxys® reactions were passed to ChemBalancer to determine if each 

reaction, exemplified by a reaction scheme “A+B+C → D+E”, is originally complete, or could 

be balanced with ChemBalancer by adding a candidate reagent “R” or a help compound “H” 

into the reaction, or sometimes combinations of “R” and “H". The complete reactions, shown 

in the bottom red dashed box of Figure 5 were used to train the ChemMLM model. 

 

In the ChemMLM subunit, for the ChemBalancer-determined LHS insufficient reactions, the 

trained ChemMLM proposes multiple solutions for an extra reactant “P”. ChemBalancer then 

detects which proposed reaction “A+B+C+P → D+E” is balanced, or could be balanced by 

adding a reagent “R to the LHS or a help compound H1 to the RHS, or sometimes combinations 
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of R1 and H1. Similarly, for the RHS insufficient reactions, ChemMLM proposes multiple 

solutions for an extra product Q. ChemBalancer then detects which proposed reaction A+B+C 

→ D+E+Q is balanced, or could be balanced by adding a reagent Rr or a help compound Hr, or 

sometimes combinations of Rr and Hr. When multiple completion solutions are proposed for a 

given reaction, the atom mapping tool RXNMapper selects the most optimal solution based on 

the highest ranked confidence score on atom mapping. 

 

All complete reactions are shown inside the red dashed boxes in Figure 5. These reactions could 

potentially be used to train another round of the ChemMLM model for further broadening the 

complete reaction space. However, this was not conducted, since the workflow carries 

erroneous assumptions. These errors would be propagated into another round of training if these 

data were used to retrain the ChemMLM model, and further reduce the predictability. 

 

Results and Discussion 

The ChemBalancer completion results 

ChemBalancer attempted to complete the reaction structures from the available resources (the 

candidate reagents and solvents, and the help species) by a heuristic approach. All reaction 

records from Reaxys® and USPTO databases were passed to ChemBalancer, with their 

completion results shown in Table 3. In USPTO and Reaxys®, 17.6% and 44.1% of reaction 

records were complete with ChemBalancer respectively. These complete reactions include the 

originally complete reactions, reaction completed by adding candidate reagents to the LHS (or, 

reagents to the LHS and help species to the RHS), and reaction completed by adding help 

species to the RHS. Table 3 also shows the ratio of reactions failed to be completed by 

ChemBalancer, with species insufficient at the LHS or RHS of the reactions. The reactions have 

both atom surplus in the LHS and RHS of the reactions were classified into the LHS species 
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insufficient reactions, since the priority to add species to the LHS was higher than RHS. The 

majority of the incomplete reactions are RHS species insufficient. 

 

Table 3. Statistics for the reaction completion results by ChemBalancer for the reaction records 
in USPTO and Reaxys® databases. 
Reaction database USPTO Reaxys® 
Complete reaction 17.6% 44.1% 
    -- Originally complete reactions     3.3%     7.2% 
    -- Completed with reagents     0.5%     6.2% 
    -- Completed with help species     13.8%     30.7% 
LHS species insufficient 2.1% 13.4% 
RHS species insufficient 80.3% 42.5% 
Total complete reactions 171,637 7,043,030 

 
 

It is noticed that ChemBalancer has better performance on Reaxys® reactions over USPTO. A 

very high percentage of reactions in USPTO remains incomplete due to their RHS species 

insufficiency. This means that most reactions could not identify their side products from the 

library of help species. A larger set of help species was attempted to have more diverse solutions 

to complete the reactions. This list included 3,526 frequently appearing small species. However, 

from a set of LHS atom surplus reactions, enlarging the library of help species from 32 to 3,526 

frequently appeared molecules as reaction side products was also attempted. However, this 

could only improve the reaction completion rate by 0.3%, but significantly increased 

computational time for the enumeration. This suggests that current 32 help species are sufficient 

to comprise the help species library. This also indicates a case-specific heuristic method, or a 

predictive machine learning is preferred to predict the exact side products for the RHS 

insufficient reactions. It is also noticed that the ratio of reactions with RHS species insufficiency 

is much higher in the USPTO reactions. This might be because the USPTO reaction extraction 

algorithm24 incorrectly added reagents into the reaction SMILES as reactants. Using the atom 

mapping tool RXNMapper, it is noticed that the reactants from a great number of USPTO 

reactions have no atom mapped into the reaction products. With no contribution to the carbon 
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flow, these reactant molecules were supposed to be added into the reagent categories. Adding 

these into reactants would cause LHS atom surplus, and therefore result in RHS species 

insufficiency. The USPTO complete reaction ratio would be higher if these false labelled 

reactants could be removed. 

 

ChemBalancer eventually obtains 171,637 and 7,043,030 complete reactions respectively in 

USPTO and Reaxys® by removing the redundant reactions and reactions with molecules not 

sanitisable by RDKit. These reactions cover large reaction spaces for ChemMLM to learn from. 

Reaction examples for each completion and incompletion scenarios are shown in Figure 6. The 

ChemBalancer-added reagents and help species, shown in Figure 6(b-d) were evaluated from 

their atom rearrangement by the atom mapping tool RXNMapper,9 and also manually by human 

experts from their reaction mechanisms, to be correct predictions for these example reactions.  
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Figure 6. Examples of ChemBalancer reaction completion results: (a-d) complete reactions, (e) 
a LHS species insufficient reaction, and (f) a RHS insufficient reactions. The molecules added 
by ChemBalancer are shown in the red dashed boxes. All reactions are atom mapped by 
RXNMapper9 and labelled with atom mapping indices. 

 

The reaction given in Figure 6(d) shows an example of a reaction completion by adding a 

reagent methanol and a help specie water at the LHS and adding a help specie ammonia at the 

RHS. The original reaction record, i.e. the reaction participants outside the red dashed boxes, 

(a) Originally complete reaction

(c) Completed with the help specie hydrogen chloride

(b) Completed with the reagent acetonitrile

(d) Completed with the reagent methanol and the help species water and ammonia

(e) LHS species insufficient

(f) RHS species insufficient
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has atom surplus of nitrogen at the LHS and atom surplus of carbon and oxygen at the RHS. 

ChemBalancer prioritised to first solve the RHS atom surplus, by adding one of the candidate 

reagents and solvents to the LHS. RXNMapper suggested that among the candidates, adding 

methanol would give the highest mapping confidence score. Afterwards, by adding help species 

of water at the LHS and ammonia at the RHS, the updated reaction was balanced. Help species 

were only allowed to be added to the LHS when the reaction has atom surplus at both sides. 

This reaction follows the mechanism of Pinner reaction, i.e. under an acidic environment, an 

alcohol esterificates a nitrile with water to form an imino ester.25 

 

ChemBalancer balanced a large number of incomplete reactions by adding help species to the 

RHS of reactions. Although these help species were the most frequent species present as the 

side products of the reactions, by adding these help species as side products, these reactions 

were only completed in terms of material balance at the two sides of the reactions. However, 

the reaction mechanisms were not evaluated and, therefore, some help species completed 

reactions remain false positive. In contrast, the reagents or solvents balanced reactions were 

rare to be incorrect, since these candidate reagents and solvents are clues to complete the 

reactions given as reaction attributes. Examples of false positive reactions completed by 

ChemBalancer are shown in Figure 7(a). In this reaction, it is clear that the carbon-oxygen 

bonds (specifically with atom indices, the “C[:3]-O[:17]” and “C[:4]-O[:30]” bonds) of the 

reactant need to be disconnected by an reagent. However, ChemBalancer only proposes a false 

positive product propanoic acid to the reaction. 
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Figure 7. Examples of false positive complete reactions: (a) a false positive ChemBalancer 
completed reaction, (b) a false positive ChemMLM completed reaction, and (c) a false positive 
reaction with both ChemBalancer and ChemMLM added molecules. The added molecules are 
shown in the red dashed boxes. Atom mapping cannot be identified for the reactions in (b) and 
(c). 
 
 
The ChemMLM-completion results 

ChemMLM learned from the limited complete reactions and broadened the boundary of 

complete reaction space to some originally incomplete reactions, still retaining the errors and 

noise present in the available complete reactions. 

 

Model training results 

The ChemMLM models were trained from two data sources, the USPTO reactions and the 

combined reactions with Reaxys®. Several attempts to tune training arguments were conducted 

for the ChemMLM learned from USPTO itself, whilst only one set of training arguments was 

conducted on the larger combined reaction dataset, with the model configuration and the most 

(a) False positive with the help specie propanoic acid proposed by the ChemBalancer

(b) False positive with the side product cyclohexyl 2-methylprop-2-enoate proposed
by the ChemMLM

4 6

(c) False positive with the side product ammonia proposed by the ChemMLM and help
specie benzene proposed by the ChemBalancer

4 3 2 3 2
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optimal training arguments stated in Section “The ChemMLM model training and prediction”. 

As shown in Figure 8, using a large transformer model with approximately 83 million 

parameters to learn the large combined reaction dataset with 7 million reactions, the model took 

approximately 25 days to complete 17 epochs of training, with each colour in the training and 

validation loss curves corresponding to a single training day. The training and validation losses 

approach 0.121 and 0.118 eventually. As shown in the trend of training and validation loss 

curves, the losses have not converged yet, and the learning process could continue. However, it 

was interrupted since this long training process could not reach as good performance as the 

ChemMLM model trained from the smaller USPTO dataset in six days, which stopped at 0.050 

and 0.052 training and validation losses respectively after 125 epochs. This was stopped 

because the validation loss starts to be higher than the training loss. Potentially the combined 

dataset contains a higher level of semantic information, which could possibly train a better 

ChemMLM model. However, the ChemMLM model learned from the larger combined dataset 

was not fine-tuned since this was computationally too expensive. The larger learning rate and 

batch size, as shown in Table 2, were chosen for the model trained from the combined dataset 

for the purpose of faster training. 
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Figure 8. The training and validation KL divergence losses of the ChemMLM model learned 
from (a) USPTO reaction dataset only, and (b) combined reaction dataset. The figure only 
shows the most optimal model using the training argument set stated in Table 2. 
 
 
Model test results 
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The models were assessed from the test dataset of the two sources to determine the ratios of 

correct prediction of the exact hidden molecules, at both sides of reaction, as shown in Table 4. 

 

Table 4. The ratios of correct prediction of the exact hidden molecules with short, middle and 
long token lengths at the LHS and the RHS of the reactions in the test reaction dataset, for the 
ChemMLM models trained from two complete reaction data sources, USPTO and combined 
reaction datasets. 
Models Molecule length USPTO Combined 
LHS ChemMLM Short 100% 100% 

Middle 75.2% 65.7% 
Long 24.5% 1.8% 

RHS ChemMLM Short 99.8% 100% 
Middle 81.3% 62.4% 
Long 8.2% 4.9% 

 

From the test dataset, the model’ ability to predict short token length (token length=1), middle 

token length (1<token length≤10) and long token length (token length>10) hidden molecules 

were assessed, and the comparisons between exemplified predicted and ground truth hidden 

molecules at different lengths are shown in Table 5. The ChemMLM models could predict 

almost 100% the ground truth hidden molecules at the short token length, while remain very 

high correct rate at middle token lengths. However, the models were unable to predict long 

token length molecules, with predictions not only semantically incorrect, but also invalid in 

SMILES syntax. For example, the last predicted molecule example shown in Table 5 has more 

right parentheses than left. This is because with longer token lengths in the hidden molecules, 

it becomes harder for the ChemMLM model to pick up neighbour semantic context of the 

reaction SMILES strings, since the very neighbour tokens are also within the hidden molecule 

and uncertain. 

 

Table 5. A comparison between the exemplified ground truth hidden molecules and the 
molecules at different token lengths predicted by the ChemMLM models trained from USPTO 
complete reactions. 
Molecule length Prediction Ground truth 
Short Cl Cl 
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O O 
CO CO 
CCCCO CCCCO 

Middle [H][H] [H][H] 
CC(=O)O CC(=O)O 
NC(=0)c1ncc(Br)cc1N NC(=0)c1ncc(Br)cc1N 
O=C(CCl)Nc1 O=C(CCl)Nc1ccnnc1 

Long CC=C(O)C1C)C(C(C)c1ccccc1 CC1=C(c2ccccc2)OC(C)(C)C1=O 
0=C1CC1c2)2)c)c2c3ccccc3c2 
ccccc1 

O=c1cc(-c2ccccc2)c2ccc3ccccc3c 
2[nH]1 

CCCCCCc1cn(CCS(=O)(=O)cc 
(CCccccc2)nn1 

CCCCCCc1cn(CCS(=O)(=O)c2cc 
c(C)cc2)nn1 

CNC(=O)/C=C/[C1Cc1HCCCC 
CCCC)))))))))))(=))OCc1ccccc1 

CNC(=O)/C=C/[C@H](Cc1ccccc1 
)NC(=O)[C@H](CCCNC(=O)OCc 
1ccccc1)NC(C)C 

 

The longer token length molecules are longer than “a missing word” under the definition of the 

MLM. It fits better with another application of the BERT transformer model, the next sentence 

prediction,26, 27 which predicts the entire next sentence based on the previous context. This could 

be an area of exploration for future prediction of longer molecules. However, this has not been 

implemented in this paper, since the low model predictability of longer molecules would not 

significantly affect the ChemMLM’s ability to complete reactions. The missing molecules in an 

incomplete reaction are commonly the side reactants and side products, which are usually 

smaller molecules. 

 

Table 4 also shows the ChemMLM models do not show significant difference in prediction of 

hidden molecules between the LHS and RHS, in terms of their correction rate of short, middle 

and long token length molecules. This is because the models were trained using a dynamic mask 

method, which learned the semantics at two sides of the reactions simultaneously. However, the 

ChemMLM model trained from USPTO data shows better model performance in test data 

compared with the current ChemMLM model learned from the combined data. Perhaps a fine-

tuned ChemMLM model learned from the larger reaction dataset could increase correct 

prediction rate in the test dataset, but the ChemMLM learned from the USPTO reactions were 

https://doi.org/10.26434/chemrxiv-2023-hrgfw ORCID: https://orcid.org/0000-0001-7621-0889 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-hrgfw
https://orcid.org/0000-0001-7621-0889
https://creativecommons.org/licenses/by/4.0/


   

33 
 

sufficiently predictive to predict the short and middle length hidden molecules. This indicates 

that the USPTO reaction dataset is capable to provide comprehensive types of complete 

reactions for the ChemMLM model to learn from. The ChemMLM model in the rest of this 

paper is referred to the ChemMLM trained from the USPTO reaction only. 

 

Reaction completion results 

For the incomplete reactions, ChemMLM proposes missing molecules either at the LHS or RHS 

based on ChemBalancer suggestions of LHS or RHS species insufficiency, and the proposed 

solutions are further checked by ChemBalancer. The exemplified reactions completed in this 

workflow are shown in Figure 9. In these examples, (a) and (c) show examples of reaction 

completion with the molecules proposed by ChemMLM itself, whilst (b) and (d) show 

examples of reaction completion by the molecules proposed by ChemMLM. All the exemplified 

reactions were manually evaluated to be correct completions based on reaction mechanisms. 
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Figure 9. Examples of ChemMLM reaction completion results: (a) a RHS insufficient reaction 
completed by the RHS ChemMLM only, (b) a RHS insufficient reaction completed by the RHS 
ChemMLM plus ChemBalancer, (c) a LHS insufficient reaction completed by the LHS 
ChemMLM only, and (d) a LHS insufficient reaction completed by the LHS ChemMLM plus 
ChemBalancer. All reactions are atom mapped by RXNMapper9 and labelled with atom 
mapping indices. 
 
 
However, the reaction completion by ChemMLM still retains false positive reactions, with 

exemplified reactions shown in Figure 7(b) and (c). In Figure 7(b), the reactant is supposed to 

hydrolyse into two fragments, whilst the RHS ChemMLM predicts a chemically meaningless 

side product cyclohexyl 2-methylprop-2-enoate, and this updated reaction could be materially 

balanced with stoichiometric coefficients by ChemBalancer. Similarly, in Figure 7(c), an 

incorrect side product ammonia was proposed by the RHS ChemMLM. With the help species 

(a) Completed with the side product methanesulfonic acid proposed by the RHS
ChemBalancer

(b) Completed with the side product ethanol proposed by the RHS ChemMLM and
the help specie hydrogen chloride proposed by the ChemBalancer

(c) Completed with the reactant 2-(2,4-dichlorophenyl)ethan-1-amine proposed by
the LHS ChemMLM

(d) Completed with the reactant morpholine proposed by the LHS ChemMLM and
the help specie hydrogen bromide proposed by the ChemBalancer
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benzene proposed by  ChemBalancer, the updated reaction could be materially balanced with 

stoichiometric coefficients. These false positive complete reactions were caused only in very 

rare situations. This happens when some of the 333 enumerations to predict the missing 

molecules by ChemMLM were not semantically meaningful but their SMILES syntax was 

valid. This prediction remains valid only when the updated reactions were possible to be 

balanced by large values of stoichiometric coefficients in coincidence. 

 

For reaction completion, all incomplete reactions in USPTO dataset from the ChemBalancer 

subunit were passed to ChemMLM for missing molecule prediction, whilst only 1% from 

Reaxys® was randomly sampled and fed in ChemMLM. This is because the missing molecule 

prediction by ChemMLM was computationally expensive, which makes it harder to process the 

larger scale Reaxys® reactions data. Statistics for the reaction completion results are shown in 

Table 6, and this was concluded from all USPTO reactions and sampled Reaxys® reactions. 

From Table 6, it is seen that a higher percentage of incomplete reactions could be completed 

from the USPTO than the Reaxys® reactions. This is very likely because a higher percentage of 

reactions in Reaxys® were completed by ChemBalancer, as shown in Table 3, leaving higher 

difficulty for ChemMLM to predict missing molecules. Also, in general, the LHS species 

insufficient reactions were harder to be completed by this workflow compared with the RHS 

species insufficient reactions. 

 

Table 6. Statistics for the LHS and RHS species insufficient reactions completion results by 
ChemMLM for the reaction records in USPTO and Reaxys® databases. 
Reaction database USPTO Reaxys® 

Completed reactions from LHS insufficient reactions 24.1% 19.7% 

    – Completed by ChemMLM itself     8.2%     6.7% 

    – Completed by ChemMLM & ChemBalancer reagents     0.4%     4.9% 
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    – Completed by ChemMLM & ChemBalancer help species     15.5%     8.1% 

Completed reactions from RHS insufficient reactions 42.7% 33.4% 

    – Completed by ChemMLM itself     3.7%     11.9% 

    – Completed by ChemMLM & ChemBalancer reagents     0.5%     3.2% 

    – Completed by ChemMLM & ChemBalancer help species     38.5%     18.3% 

 

Summarised from Table 3 and Table 6, 3.3% and 7.2% of the total reactions from USPTO and 

Reaxys® are originally complete/balanced reactions, respectively. 17.6% and 44.1% of total 

reactions in USPTO and Reaxys® were completed respectively by the first method, 

ChemBalancer. Afterwards, 34.8% and 16.8% of reactions were completed with the missing 

molecule prediction by the second method, ChemMLM. In total, 52.4% of USPTO and 60.9% 

of Reaxys® were completed by the entire proposed method, from which the Reaxys® percentage 

is an estimated number, since only 1% of LHS and RHS species insufficient reactions were 

sampled and fed to the ChemMLM model. Moreover, a small portion of the completed reactions 

are false positive completions, and those reactions could not be differentiated currently unless 

they were manually removed from the completed reactions. 

 

Fragment method results 

This section discusses a potential future method to solve reaction completion. Using an atom 

mapping tool to understand the atom rearrangements from the reactants to the products, the 

unmapped fragments in the reactants could be detected. These fragments themselves could be 

potential missing products of the incomplete reactions, coming from the cleavage of the 

reactants, or could be recombined to form new product molecules. Figure 10(a) shows an 

example reaction completed by this method. Using the atom mapping tool RXNMapper,9 it is 

known that in the anion of the reactants, only the carbon atom, marked as “C[:1]”, is mapped 
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into the products. Therefore, it is very likely that the carbon-carbon bond connected to the 

carbon atom is broken to form another anion product shown in the red box in Figure 10(b). The 

complete reaction in Figure 10(b) has all atoms in reactants mapped into product by the 

RXNMapper.  

 

Figure 10. An example of a reaction completion by the proposed fragment method: (a) the 
original reaction recording, and (b) the complete reaction with the proposed product from 
unmapped fragment. 
 

However, currently this fragment method cannot be applied to all reaction records but 

demonstrated here as a potential future method. This is because firstly, there is no perfect atom 

mapping tool which always gives ground truth mapping results, from which the unmapped 

fragments are always uncertain. Secondly, the unmapped fragments could undergo further 

cleavage or recombination steps, which at this stage could only be manually examined. With 

further development of this method in the future, this could be a third-tier method if the reaction 

completion fails from ChemBalancer and ChemMLM predictions. 

 

Conclusions 

Current reaction data records from multiple reaction databases including USPTO and Reaxys® 

are missing important reaction participating species and stoichiometric coefficients. 

Completing reaction structures in reaction data would make it possible to understand the true 

molecular flow for the reaction routes in CASP tasks. Although multiple tools such as rule-

(a)

(b)
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based reaction templates, atom mapping software, etc have been developed to investigate 

molecular transformations in reactions, identifying the missing molecules in reactions remains 

a challenging task, since most of these data-driven tools were developed from the incomplete 

reaction datasets. The reaction completion challenge could not be fully solved unless a “golden 

dataset” with comprehensive complete reactions appears. With the limited complete reaction 

data sources, the objective in this work was to learn from these limited complete reactions and 

broaden the boundary of the complete reaction space to some originally incomplete reactions, 

towards the reaction structure completion of the current reaction records. 

 

To do this, a workflow including both heuristics and machine learning methods was proposed. 

From USPTO and Reaxys® reaction data, a heuristic-based balancing algorithm, namely, 

ChemBalancer was developed to investigate if a reaction is balanced based on atom equality of 

each element and electron balance at the two sides of the reaction. ChemBalancer also 

attempted to complete the imbalanced reactions by adding molecules from reagents, solvents 

and a list of most frequently appeared small molecules in reactions. The remaining incomplete 

reactions were classified as either LHS or RHS species insufficient reactions. ChemBalancer 

identified 3.3% and 7.2% originally complete/balanced reactions from USPTO and Reaxys® 

respectively, and further completed 14.3% and 36.9% of the total reactions by adding possible 

missing molecules to the reactions. 

 

A machine learning BERT transformer model, namely, ChemMLM was developed to learn from 

the semantic meaning of the reaction SMILES strings, from the complete reaction dataset 

identified from the last step. Using the masked language model scheme, analogous to missing 

words in sentences, ChemMLM was trained to predict the possible missing molecules for the 
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incomplete reactions. From the test dataset, it is proven that ChemMLM was confident to 

predict short and middle (token length<=10) length missing molecules. Given the classification 

of LHS or RHS species insufficient of the incomplete reactions, ChemMLM either predicted 

missing molecules to the LHS or RHS. ChemMLM further completed 34.8% and 16.8% 

reactions from the total USPTO and Reaxys® reaction dataset. The entire workflow completed 

52.4% and 60.9% of reactions from USPTO and Reaxys® in total, retaining with false positive 

complete reactions that could be only manually detected. 

 

For future works, to improve the prediction accuracy of longer length molecules, as a longer 

length molecule (token length>10) can have molecular SMILES strings analogous to a 

sentence, the next-sentence prediction scheme of the BERT transformer could potentially be 

used to predict these molecules. However, since most incomplete reactions are missing side 

reactants and products which are smaller molecules, this would not significantly increase the 

reaction completion rate. Moreover, to minimise the false positive rate in the completed 

reactions, a calibration step could be added. Atom mapping confidence score would be an 

important index to understand the atom rearrangement in reactions. However, since there is not 

a ground truth atom mapping method, this index could only be used as recommendation for 

false positive detection. A more promising atom mapping tool is required to calibrate the model 

completed reactions. Eventually, to ultimately achieving reaction structure completion, a 

“golden dataset” is called for. This requires a more accurate NLP text-mining tool to reduce the 

noise when mining reactions from literature, and manual curation of at least a few reactions 

from each reaction subcategory. 
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