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Abstract 

A new, modular platform for access to 1,2,3,9-tetrahydro-4H-carbazol-4-ones (H4-carbazolones) 

and 3,4-dihydrocyclopenta[b]indol-1(2H)-ones (H2-indolones) is disclosed from readily accessed 

2-arylcycloalkane-1,3-diones (6- and 5-membered). These precursors were prepared through a 

Cu-catalyzed arylation of 1,3-cyclohexanediones with aryl iodides or via a ring-expansion of aryl 

succinoin derivatives. Activation of a single carbonyl group in the diones, a highly regioselective 

reaction with unsymmetrical 2-arylcyclohexane-1,3-diones, and subsequent azidation gave 3-

azido-2-aryl-cycloalk-2-en-1-ones. The regioselectivity was computationally assessed. Finally, a 

Rh-catalyzed nitrene/nitrenoid insertion into the ortho-C–H bond of the aryl moiety, gave the H4-

carbazolones and H2-indolones, products that are of high synthetic value.  One carbazolone 

synthesized was elaborated to a key intermediate for the formal total synthesis of N-

decarbomethoxychanofruticosinate, (–)-aspidospermidine, (+)-kopsihainanine A. With 2-aryl-

1,3-cycloheptanedione, prepared from cyclohexanone and benzaldehyde, the azidation reaction 

was accomplished in a facile manner. However, the Rh-catalyzed reaction led to some unusual 

observations, with an azirine as a major product. DFT computations were performed in order to 

understand the differences in reactivities of the 5- and 6-membered b-azido enones in 

comparison to the 7-membered analogue. 

Introduction 
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The indole and dihydroindole moieties, privileged heterocycles, are present in a number of 

natural products and physiologically important compounds (examples in Figure 1). Because of 

the high importance of these scaffolds, methodological developments towards them are 

continually emerging.1,2 Cyclohexa, cyclopenta, cyclohepta-fused indoles, and dihydroindoles are 

prominent in a number of natural and synthetic products. Besides, indole-fused cycloalkanones 

are themselves compounds of interest and many serve as precursors to other compounds. 

 
Figure 1. Examples of compounds containing an indole or a dihydroindole core. 

It is therefore not surprising that over the years a number of methods have evolved to access 

H4-carbazolones and H2-indolones (see Table S1 in the Supporting Information). Classical 

approaches are Fischer indolization/oxidation3–5 or indolization with 1,3-cyclohexanediones,6,7 

and Friedel-Crafts acylations.8 Photochemical ring closure of b-N-aryl enaminones (with 100–400 

W UV lamps) with an oxidant or with NaOMe yielded H4-carbazolones,9–11 but these procedures 

were generally inefficient for H2-indolones. In applications of hypervalent iodine reagents, PIFA-

mediated cyclization of a-aryl enaminones yielded H4-carbazolones,12 and Koser’s reagent has 

been used to prepare H4-carbazolones and H2-indolones from b-N-aryl enaminones.13 However, 

AgSbF6 was a critical additive in the latter approach in order to access radical intermediates. In a 

single example, 3-((2-fluorophenyl)amino)cyclohex-2-en-1-one, was converted in a low yield to 

H4-carbazolone by reaction with LDA at 75 ºC.14 In other approaches, four H4-carbazolones were 

obtained by a two-step reaction of aryl hydroxyl amines with dimedone and 1,3-
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cyclohexandione,15 and ring expansion of N-tosylindole-substituted cyclobutanols with NBS 

yielded N-tosyl H4-carbazolones in modest yields.16,17 

 
Scheme 1. Rh- and one Ru-catalyzed approaches to H2-indolones and H4-carbazolones. 

Catalytic and stoichiometric metals have been used for cyclization of b-N-aryl enaminones. 

Methods include use of CuI/NaH in HMPA (105–170 oC),18 CuI/L-proline/KOH in DMSO at 90 oC,19 

catalytic and stoichiometric Pd(OAc)2,20,21 and Pd/Cu co-catalysts.22,23 Reductive-cyclization of 2-

(2-nitrophenyl)-1,3-cycloalkanediones is also a route to indole-fused cycloalkanones.24–28 A PdII-

catalyzed amino cyclization and addition to a nitrile in an alkyne-tethered malononitrile has been 

used to produce N-mesyl carbazolones bearing various substituents and a nitrile a-to the 

carbonyl moiety.29 
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In relation to this work, Rh and Ru catalysts have recently been investigated, but these only 

yield H4-carbazolones or their N-substituted derivatives (Scheme 1).30–35 Our currently described 

work stemmed from our desire to develop a simple, scalable, modular synthetic platform that 

can result in rapid diversification. Furthermore, we were interested in methodology with 

applicability to 5-, 6-, and possibly 7-membered systems. 

Results and Discussion 

Despite the various approaches to H4-carbazolones and H2-indolones, many involve harsh 

conditions and/or functional group incompatibility issues, and the Rh-catalyzed methods in 

Scheme 1 are specific to H4-carbazolones. Herein, we describe a modular and unified method to 

H4-carbazolones and H2-indolones, and our three-step approach is also shown in Scheme 1. 

 
Scheme 2. Synthetic routes to 2-arylcyclohexane- and 2-arylcyclopentane-1,3-diones, and their 

subsequent conversion to b-azido enones. 

In our approach, step 1 en route to H4-carbazolones, involved a CuI/L-proline-catalyzed 
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subsequent one-pot conversion of the ensuing 2-arylcyclohexane-1,3-diones (or the enols) 2–8 
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carbonyl group activation was performed with (benzotriazol-1-

yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and DBU in MeCN, at room 

temperature. We have extensively studied the use of BOP for the activation of amido carbonyl 

groups in nucleosides,38 and for the preparation of 4-azidocoumarins from 4-

hydroxycoumarins.36 Thus, activation of one carbonyl group in substrates 2–8 with BOP followed 

by azidation of the crude products with NaN3 in DMF, at room temperature, gave azides 12–15 

in generally good yields. 

 
Scheme 3. Panel A: a plausible mechanism for the activation of the 1,3-dione moiety and 

azidation. Panel B: selective activation of the less hindered carbonyl group. 

The carbonyl group activation by BOP was a mechanistic curiosity with important implications 

in the overall utility of this approach. Therefore, we first assessed a plausible mechanism via 
31P{1H} NMR (see Scheme 3A and Figure S1 in the Supporting Information). The spectrum of BOP 

in CD3CN (0.15 M) showed resonances for P+ at d = 43.7 ppm (s) and PF6
– at d = –144.5 ppm (sept). 

To this solution 1.0 eq. of substrate 5 was added and a spectrum was acquired, where no change 

was observed. Then, upon addition of 2.0 eq. of DBU, within 2 min two new resonances were 

observed at d = 32.5 ppm and d = 24.9 ppm. The former was more intense and was in the same 

range of other phosphonium ions we have observed.38,39 The latter was less intense and 

corresponded to HMPA. After ca. 70 min the two new resonances were of nearly equal intensity 

and over time the HMPA resonance increased while that for the new phosphonium ion 
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decreased. On the basis of these data, we propose the mechanism shown in Scheme 3 where 

polar intermediate IA is formed initially and is converted to the less polar benzotriazolyl derivative 

IB by reaction with BtO–. Both IA and IB are expected to react with azide ion. 

A second very important discovery was in relation to the regioselectivity in the carbonyl group 

activation. With precursors 7 and 8 that contain an unsymmetrically functionalized 

cyclohexanedione moiety, the carbonyl group remote from the substituted carbon atom 

underwent exclusive activation. In the reaction of dione/enol 8, a single azide regioisomer was 

obtained, and HMBC correlations were utilized for structure establishment. Key interactions 

between the carbonyl group and gem-dimethyl groups as well as the allylic methylene protons 

are shown in Scheme 3B (additional information was obtained by X-ray analysis, vide infra). 

This observation led us to evaluate the energy differences between isomeric intermediates IC 

and ID by DFT (Figure 2). The initial structures were generated in GaussView 5 and were optimized 

at the B3LYP/6-311 G++ (d,p) level using Gaussian 09. In MeCN, IC was lower in energy than ID by 

8.8 kcal/mol (the isomeric enolates only differ by 0.9 kcal/mol). Because an alternative approach 

is via enol sulfonates, reactions with ArSO2Cl are also anticipated to occur at the less sterically 

impeded carbonyl group. As with IC and ID, DFT analysis showed a similar trend with a smaller 

difference of 3.2 kcal/mol (in CH2Cl2) between the two tosylate isomers (Figure S2 in the 

Supporting Information). Thus, should a need arise, we postulate that sterically bulky ArSO2Cl will 

enable discrimination in the regiocontrolling activation step. 

 

  
 

  
Figure 2. DFT computed structures of two regioisomeric phosphonium ion intermediates that 

can be obtained by carbonyl group activation of a 2-arylcyclohexane-1,3-dione. 
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Diones/enols 17 and 18, precursors to H2-indolones, were obtained by reaction of dimethyl 

acetals of aryl aldehydes with bis-silylated succinoin derivative 16 (Scheme 2).40–42 Precursor 17 

was converted to the intermediate tosylate by reaction with p-TsCl/Et3N in CH2Cl2, at 0 oC. 

However, azidation with NaN3 in DMF at room temperature, returned azide 19 in only a 42% 

yield. Because azidation of 3-chloro-2-phenylindan-1-one has been reported to be exothermic,43 

the azidation reaction was conducted at 0 oC. This change gave a significantly elevated yield of 

azide 19. Application of a similar tosylation/azidation protocol to precursor 18 gave azide 20. 

Using azide 9, a variety of conditions were evaluated for cyclization to indole 21. These data 

are displayed in Table 1. Whereas good conversion was attained with catalytic RuCl3•3H2O in 

DME, the reaction was sensitive to temperature and solvent (entries 1–3). Product yield was 

greatly improved with Rh2(O2CC7H15)4 as catalyst, but this reaction was also sensitive to solvent 

(entries 4–7). Rh2(O2CCH3)4 and CuI proved to be quite inferior to Rh2(O2CC7H15)4 (entries 8 and 

9). Dirhodium(II) catalysts have been employed in the synthesis of carbazoles from biaryl azides,44 

indole-2-carboxylates from b-aryl-a-azidoacrylates,45 and pyrroles from ortho-azido stilbenes as 

well as ortho-azido-b-alkylstyrenes (2 examples).46 The examples herein involve conversions of 

b-azido enones to products that can be further functionalized (vide infra). 

Table 1. Conditions evaluated for the formation of indole 21.a 

 

Entry Conditions T oC, t h Yieldb 

1 2 mol% RuCl3•3H2O, DME 60, 4 60% 
2 2 mol% RuCl3•3H2O, DME 85, 1 48% 
3 2 mol% Rh2(O2CC7H15)4, 100 wt% 4 Å MS, PhMe 60, 1 77% 
4 10 mol% RuCl3•3H2O, 100 wt% 4 Å MS, PhMe 60, 18 44% 
5 5 mol% Rh2(O2CC7H15)4, 100 wt% 4 Å MS, PhMe 60, 1 84% 
6 5 mol% Rh2(O2CC7H15)4, 100 wt% 4 Å MS, MeCN 60, 1 51% 
7 5 mol% Rh2(O2CC7H15)4, 100 wt% 4 Å MS, TFE 60, 1 22% 
8 5 mol% Rh2(O2CCH3)4, 100 wt% 4 Å MS, PhMe 60, 5 49% 
9 10 mol% CuI, 100 wt% 4 Å MS, PhMe 60, 5 35% 

aReactions were conducted with 0.2 mmol of azide 9 in 2 mL of solvent. 
bYield is of isolated and purified product. 
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Using conditions in entry 5 of Table 1, precursors 9–20 were all smoothy converted to H4-

carbazolones and H2-indolones in generally high yields (Figure 4). HMBC and X-ray analyses 

allowed for additional insight into the highly regioselective carbonyl group activation discussed 

above. Key HMBC correlations between the carbonyl group in H4-carbazolone 27 to the methyl 

as well as non-benzylic methylene protons, and one indolyl carbon atom to the benzylic as well 

as non-benzylic methylene protons are shown in Figure 4. X-ray analysis of H4-carbazolone 27 

provided unequivocal confirmation of the regioselective carbonyl group activation leading to this 

product. A crystal structure of H2-indolone 28 was also obtained. 

 
Figure 3. H4-Carbazolones and H2-indolones that were prepared. 

 
  

26 27 28 

Figure 4. HMBC correlations observed in product 26, and crystal structures of products 27 and 

28 (thermal ellipsoids are shown at the 30% probability level). 
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here, in a 58% yield over three steps, was subjected to N-Boc protection (Scheme 4, 88%),51,56 A 

two-step acylation and conjugate addition, without purification of the intermediate, resulted in 

the precursor (±)-31 (54% over 2 steps, based upon recovered precursor 30). Decarboxylative-

allylation with PHOX ligand L gave product (+)-32 (81%) and the separable decarboxyl-protiated 

byproduct 33 (11%). 

 
Scheme 4. Synthesis of a key intermediate in the synthesis of indole natural products. 

N-Boc derivative (+)-32 is a precursor to (–)-methyl N-decarbomethoxychanofruticosinate 

(34) without altering the indole protecting group.54 On the other hand, a simple, high-yield 

interchange of the N-Boc group in compound (+)-32 to N-Bn50,51 yields a precursor to (–)-

aspidospermidine (35)52 and (+)-kopsihainanine A (36).52 Also, a precursor to mersicarpine, 
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Winterfeldt oxidative indole ring cleavage of N-Boc protected compound 30 (not shown).56 

We then proceeded to evaluate the overall methodology for the synthesis of 6,7,8,9-

tetrahydrocyclohepta[b]indol-10(5H)-one (H4-cycloheptaindolone). Starting from cyclohexanone 

(37), the mono benzylidene derivative was synthesized using PhCHO.57–59 This was then 

N
H

O

N

ONaH, THF
(Boc)2O

0 ºC to rt, 2 h

88%
Boc

1) THF, 2 M LDA
    Allyl chloroformate
    –78 ºC
2) THF/t-BuOH (10 : 1)
    t-BuONa, 0 ºC
    Acrylonitrile
    54% brsm over 
    2 steps

22 30

N

O

Boc
(±)-31

O

O

NC

Pd2(dba)3 (2.5 mol%)
Ligand L (5.0 mol%)

PhMe, 50 ºC

81%
(11% byproduct)

N

O

Boc
(+)-32

NC

N

O

Boc
33

CN

+

N

O

Ph2P

L

N
H

N

MeO2C

O 15 Steps
ref 54

(–)-34
N-Decarbomethoxy-
chanofruticosinate

(+)-32
8 Steps
ref 52

N
H

(–)-35
(–)-Aspidospermidine

N

H

N
H

(+)-36
(+)-Kopsihainanine A

N
O

HO

12 Steps
ref 52

https://doi.org/10.26434/chemrxiv-2023-klj7x-v2 ORCID: https://orcid.org/0000-0002-9555-027X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-klj7x-v2
https://orcid.org/0000-0002-9555-027X
https://creativecommons.org/licenses/by-nc-nd/4.0/


epoxidized with H2O2/NaOH,58 and the epoxide was subjected to a ring opening and 

rearrangement with BF3•Et2O to yield 2-phenylcycloheptane-1,3-dione (38).59,60 Conversion of 

compound 38 to the b-azido enone required experimentation. In the tosylation/azidation 

approach impurities were observed to form in the tosylation step and this worsened during the 

azidation. With the BOP/DBU-mediated activation, multiple byproducts made an appearance and 

the azidation was not attempted. However, use of (PhO)2PON3 (DPPA) and DBU gave good 

conversion to the b-azido enone 39. 

 

Scheme 5. Synthesis of 2-phenylcycloheptane-1,3-dione, conversion to the a-phenyl-b-

azidocycloheptenone, and reaction with Rh2(O2CC7H15)4. 

Exposure of a-phenyl-b-azidocycloheptenone 39 to Rh2(O2CC7H15)4 under the previously 

described conditions gave unexpected results. The minor product was the anticipated H4-

cycloheptaindolone 40 with NMR data comparable to those previously published8 (see Table S1 

for this comparison). In CDCl3, the major product clearly showed the presence of five aromatic 

protons [at 500 MHz: d 7.38 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.0 Hz, 1H)], 

indicating the absence of reaction at the aryl C–H bond. Also, this compound showed some 

solvent-dependent NMR shifts of the alkyl protons (see the Supporting Information). The 

observed HRMS values for this compound were 200.1068 ([M + H]+, calculated 200.1075) and 

222.0888 ([M + Na]+, calculated 222.0889). These collective data led to the conclusion that the 

major product in the reaction of the 7-membered precursor was azirine 41. It was difficult to 

obtain literature NMR data for comparisons and two cyclohexyl azirines were identified for this 

purpose. The chemical shifts of methylene protons alpha to the azirine ring proved to be 

diagnostic and these are shown in Table 2.  

O

37 38

1) PhCHO, KOH
    H2O, 110 ºC (53%)

2) 50% H2O2, MeOH
    1 M NaOH (44%)
3) BF3•Et2O, PhH, rt
     (64%)

O

O

O

HO

DPPA, DBU
MeCN, rt

39

O

60%

N3

Rh2(O2CC7H15)4
4 Å MS

PhMe, 60 ºC
40 7%

N
H

O

41 25%

O

N +
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To gain further confidence in the structural assignment of 41, the 1H NMR chemical shifts 

were computed using DFT at the B3LYP/6-311+G(2d,p)//M06-2X/6-31+G(d,p) level of theory 

(please see Table 19 in the Supporting Information). The aliphatic hydrogen atoms showed a 

mean absolute error (MAE) of 0.06, and the chemical shifts of the methylene protons alpha to 

the azirine showed absolute errors of 0.02 and 0.05 ppm. 

Table 2. Comparison of the chemical shifts of three azirines. 

Compound Proton chemical shifts 

 

In CDCl3 at –50 oC:61,62 

d = 3.30 and 3.47 ppm 

 

In CDCl3 at rt:61,62 

d = 3.15 and 3.36 ppm 

 

In CDCl3 at rt: 

d = 2.96 and 3.25 ppm 
In DMSO at rt: 
d = 3.10 and 3.25 ppm 

In order to understand the plausible origins of the reactivity differences between the 5- and 

6-membered b-azido enones (3 and 17) in comparison to the 7-membered analogue (38), natural 

bond orbital (NBO) analyzed charges on the olefinic carbon atoms were assessed by DFT 

computation using the B3LYP hybrid density functional with the 6-311++ G(d,p) basis set, in 

toluene solvent (please see Figure S3 in the Supporting Information). In this comparison, the NBO 

charges on the vinylic carbons atoms of the 5- and 6-membered enones were very comparable, 

but different from those of the 7-membered analogue. The b-carbon atoms of the 5- and 6-

membered systems were more electropositive than that of the 7-membered enone. Likewise, 

the a-carbon atoms were more electronegative in the 5- and 6-membered enones as compared 

to the 7-membered analogue. Notably, the carbonyl group was conjugated with the olefin in the 

5- and 6-membered enones, whereas it was out-of-plane in the 7-membered enone. 

Next, the nitrene intermediates (not the Rh nitrenoids) were assessed computationally from 

various starting conformations (please see Figure S4 in the Supporting Information). In this 

comparison, the nitrenes from the 5- and 6-membered b-azido enones (3 and 17) showed 

significant planarization of the atoms involved in the cyclization, with electronic delocalization. 

In fact, in the 6-membered case the cyclized product structure emerged from the minimization 

H
HN

O

Me H
HN

O

O

N H
H

41
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(geometry optimization) exercise. With the nitrene from the 7-membered b-azido enone (38), 

such a planarization and electronic delocalization was not observed. In a comparison of the NBO 

charges on the nitrogen atom and the vinyl carbons of the 5- and 7-membered nitrenes, these 

were quite different. From the DFT computed structures, the N to =Ca and the N to ortho-aryl 

carbon distances were compared in these two cases. In the 5-membered enone, the N to =Ca 

distance was 2.43 Å and the N to ortho-aryl carbon atom distance was 2.69 Å. In the 7-membered 

enone, the N to =Ca distance was a much shorter 1.59 Å, whereas the N to ortho-aryl carbon 

atom distance was 3.35 Å (please see Figure S5 in the Supporting Information). Such subtle 

features likely contribute to the preferential formation of the unstable aziridine 41 over the 

indole derivative 40 from the 7-membered b-azido enone. 

CONCLUSIONS 

In summary, we have developed a unified method for the synthesis of H4-carbazolones and 

H2-indolones from easily accessed 2-arylcycloalkane-1,3-diones. Carbonyl group activation and 

azidation, performed as a one-pot approach, and Rh2(O2CC7H15)4
 mediated annulation results in 

the desired products. With 4,4-dialkyl-2-arylcyclohexane-1,3-diones, the less-hindered carbonyl 

group undergoes exclusive activation and azidation, and the basis for this regioselectivity has 

been explored computationally. Because single regioisomers of substituted H4-carbazolones can 

be obtained, H4-carbazolones differentially functionalized at either the cyclohexyl unit, or the 

indole, or both can be readily accessed. This will be a diversification point for the synthesis of 

natural products and their analogues, as well as other important indole-based compounds. 

Interestingly, the chemistry diverges in the case of the b-azido enone obtained from 2-

phenylcycloheptane-1,3-dione, where the indole derivative was a minor product in the 

cyclization step and formation of an azirine predominated. DFT computations revealed 

substantial differences in the b-azido enones and nitrenes from the 5- and 6-membered ring 

systems as compared to the 7-membered one. These differences likely play out in the exclusive 

cyclization of the 5- and 6-membered b-azido enones to the indole derivatives, whereas the 7-

membered b-azido enone predominantly led to a labile azirine. Further iterations of the concepts 

disclosed herein are considerations in these laboratories. 
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