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Abstract 

Identifying innovative drug-like small molecules is critically important in medicinal 

chemistry to address new targets and overcome limitations of classical molecular series. By 

deconstructing molecules into ring fragments (RFs, ring and ring-adjacent atoms) and acyclic 

fragments (AFs, only acyclic atoms), we find that molecules in public databases of drug-like 

compounds (ZINC, PubChem) and natural products (COCONUT) mostly consist of RFs and 

AFs up to 13 atoms, and that many RFs and AFs are enriched in bioactive compared to 

inactive molecules in ChEMBL. We then search the 28,246,012 RFs and 2,640,023 AFs in 

the generated database GDB-13s (99,394,177 molecules up to 13 atoms following simple 

functional group and ring strain criteria) for subsets resembling ChEMBL bioactive RFs and 

AFs. Many of these RFs and AFs are structurally simple, have favorable synthetic 

accessibility scores, and represent opportunities for synthetic chemistry to contribute to drug 

innovation in the context of fragment-based drug discovery.   
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Introduction 

Medicinal chemistry becomes an increasingly retrospective activity as known drug-like 

molecules and their biological activity accumulate in public databases such as PubChem1 

and ChEMBL.2 Nevertheless, discovering novel molecules remains critically important to 

address new target types and overcome limitations of classical molecular series in terms of 

physico-chemical properties, selectivity, toxicity and metabolism, as well as to secure 

intellectual property and the possibility of commercial development.3–6  

We have shown previously at the example of the generated databases (GDBs) that 

systematic enumeration of molecules from mathematical graphs using simple rules of 

chemical stability and synthetic feasibility opens up an extremely large chemical space,7–10 

which is potentially more diverse than that accessible by combining available building 

blocks through established reactions or by sampling generative models trained with known 

molecules.11–15 For instance, the GDBs feature molecules with many unprecedented 

molecular frameworks (graphs including rings and linker bonds).16,17 However, identifying 

GDB-molecules that are both significantly novel and relevant for medicinal chemistry is 

challenging.  

Here we propose an approach to this problem taking accumulated knowledge of 

bioactive compounds into account through an analysis of fragments. First, we assess the 

known chemical space by deconstructing molecules in the public databases ZINC (screening 

compounds),18 PubChem (published molecules),1 and COCONUT (natural products and NP-

like molecules)19 into ring fragments (RFs), obtained by removing all atoms not directly 

connected to a ring, and acyclic fragments (AFs), obtained by removing all ring atoms 

(Figure 1). This fragmentation is inspired by computational retrosynthetic analysis such as 

RECAP,20 rdScaffoldNetwork,21 DAIM,22 BRICS,23 CCQ,24 eMolFrag,25 molBLOCKS,26 or 
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Fragmenter.27 In the present context, our deconstruction into RFs and AFs is designed to 

simplify molecules and focus on structural types, for instance by converting all substituents 

of a ring to a single atom for RFs and isolating acyclic groups from their rings in AFs. 

Interestingly, most molecules in ZINC, PubChem and COCONUT break down into RFs and 

AFs of 13 atoms or less. 

 

Figure 1. Fragmentation of molecules into ring fragments (RFs) and acyclic fragments (AFs). General 

principle at the example of drug gefitinib. For RFs acyclic atoms are labeled in red.  

 

In the second part of our approach, we identify RFs and AFs which are strongly enriched in 

bioactive compared to inactive molecules in ChEMBL (target annotated compounds),2 and 

search for analogs of these fragments in RFs and AFs derived from the generated database 

GDB-13s. This database lists 99,394,177 small molecules up to 13 atoms exhaustively 

enumerated from mathematical graphs following simple rules of chemical stability and 

synthetic feasibility, and contains many unprecedented molecular frameworks (graphs 

including rings and linker bonds).16,17 Many of the bioactive-like RFs and AFs identified in 

GDB-13s are structurally relatively simple, have favourable synthetic accessibility score 

(SAscore),28 and therefore represent opportunities for synthetic chemistry to contribute to 

drug innovation in the context of fragment-based drug discovery.29,30  
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Results and Discussion 

Fragments analysis of known molecules and GDB-13s 

To assess the known chemical space, we extracted RFs and AFs from 885,905,524 

molecules in the ZINC database,18 100,852,694 molecules up to 50 non-hydrogen atoms in 

PubChem,1 and 401,624 natural products (NPs) and NP-like molecules in COCONUT.19 We 

also extracted RFs and AFs from the 99,394,177 molecules in GDB-13s,17 to be used as 

source of novelty later in the study.  

In all these databases, the number of molecules per RF and AF followed a typical 

power law distribution, with few RFs and AFs occurring in many molecules and a relatively 

large number of RFs and AFs occurring only once, referred to as singletons (Figure 2a-b, 

Table 1). The most frequent RFs and AFs in each database were rather small, featuring 

mono- and disubstituted benzene rings and azacycles for RFs in known molecules, 

cyclopropanes for RFs in GDB-13s, and single atom groups for AFs in all databases (Figure 

S1 and S2). In fact, although the size distribution of molecules, RFs and AFs in known 

molecules extended far beyond 13 atoms (Figure 2c-f), RFs and AFs up to 13 atoms were 

sufficient to cover most molecules, except for natural products in COCONUT which 

featured many molecules with RFs larger than 13 atoms (Table 1, entries 2-4). While 

fragments shared by the four databases were often structurally simple, those occurring in 

only one of the four databases analyzed (exclusive fragments, eRF and eAF) were generally 

more complex, as exemplified by the most frequent cases (Figure S3 and S4).   

Within the space covered by RFs and AFs up to 13 atoms, GDB-13s largely 

outnumbered the known molecules in terms of RFs, resulting in a high percentage of 

exclusive RFs (99.2% eRF≤13). Most AF≤13 in GDB-13s were also exclusive (92.7% 

eAF≤13), although the absolute number of AFs in GDB-13s was comparable to AFs in 
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ZINC and smaller than AFs in PubChem. In fact, PubChem, ZINC and COCONUT also 

contained many exclusive eRF≤13 and eAF≤13, reflecting that the enumeration of GDB-13s 

excluded strained rings (e.g. cubane, prismane) and certain functional groups (e.g. non-

aromatic olefins, isocyanide, anhydride, acetal, hemi-acetal, aminal, hemi-aminal, enol 

ether, peroxide, nitro, azide, thiol, thioether), and only considered C, N, O, S, and Cl as 

elements. Nevertheless, the above analysis showed that GDB-13s contained a very large 

number of both eRFs and eAFs and could therefore serve as a source of novel RFs and AFs 

to expand the space of known molecules.  

 

Table 1. Molecule and fragment count in different databases.  

No.  ZINC  PubChem  COCONUT  GDB-13s  

1 Cpds 885,905,524  100,852,694  401,624  99,394,177  

2 Cpds from RF≤13a) 743,430,899 83.9% 68,876,892 68.3% 132,432 33.0% 99,394,177 100% 

3 Cpds from AF≤13b) 818,548,834 92.4% 94,526,506 93.7% 357,976 89.1% 99,394,177 100% 

4 Cpds from ARF≤13c) 678,518,591 76.6% 62,998,179 62.5% 98,990 24.6% 99,394,177 100% 

5 RF  2,838,201  9,037,484  115,381  28,246,012  

6 eRFd)  2,165,176 76.3% 8,139,719 90.1% 45,448 39.4% 28,011,035 99.2% 

7 RF-Singletone) 1,115,630 39.3% 6,111,177 67.6% 78,920 68.4% 23,842,697 84.4% 

8 RF≤13f) 158,576 5.6% 1,746,923 19.3% 17,211 14.9% 28,246,012 100% 

9 eRF≤13g) 17,578 0.6% 1,333,179 14.8% 1,863 1.6% 28,011,035 99.2% 

10 RF≤13-Singletonh) 58,749 2.1% 1,048,461 11.6% 10,244 8.9% 23,842,697 84.4% 

11 AF  2,756,691  5,466,187  45,816  2,640,023  

12 eAFd) 2,319,553 84.1% 4,722,488 86.4% 18,608 40.6% 2,447,627 92.7% 

13 AF-Singletone) 688,408 25.0% 4,256,810 77.9% 34,243 74.7% 2,576,927 97.6% 

14 AF≤13f) 338,990 12.3% 2,225,960 40.7% 17,216 37.6% 2,640,023 100% 

15 eAF≤13g) 145,340 5.3% 1,805,294 33.0% 2,131 4.7% 2,447,627 92.7% 

16 AF≤13-Singletonh) 52,606 1.9% 1,535,039 28.1% 9,950 21.7% 2,576,927 97.6% 

a) Cpds from RF≤13 = molecules covered by RF up to HAC = 13. b) Cpds from AF≤13 = molecules covered 

by AF up to HAC = 13. c) Cpds from ARF≤13 = molecules covered by both RF and AF up to HAC = 13. d) 

eRF/eAF = exclusive RF/AF, absent from the other three databases. e) RF/AF-Singleton = RF/AF with only a 

single molecule example. f) RF≤13/AF≤13 = RF/AF up to HAC = 13. g) eRF≤13/eAR≤13 = exclusive 

RF13/AF13, absent from the other three databases. h) RF≤13-Singleton /AR≤13-Singleton = RF≤13/AF≤13 

with only a single molecule example. RF and AF subcategories are calculated relative to total RF and AF, 

respectively. 
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Figure 2. Frequency distribution of RFs (a) and AFs (b) in ZINC, PubChem, COCONUT, and GDB-13s. 

Count of compounds (Cpds), RFs, eRFs, AFs and eAFs in ZINC (c), PubChem (d), COCONUT (e), and GDB-

13s (f) as a function of HAC. The curves of RF and AF are depicted thicker to help visualize the distribution in 

the regions with high overlap. 
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Comparative analysis of RFs and AFs in ChEMBL active and inactive molecules 

Aiming to select novel fragments in GDB-13s by exploiting knowledge on bioactive 

compounds, we analyzed molecules from the ChEMBL database to test if different RFs and 

AFs were associated with active or inactive compounds.2 We selected the 2,136,218 

ChEMBL molecules with HAC ≤ 50, separated them into 560,230 actives (IC50 or EC50 ≤ 10 

µM, ChEMBLa) and 1,575,988 inactives (all others, ChEMBLi), and extracted the 

corresponding RFs and AFs. For each RF and AF, we computed its total occurrence as the 

number of ChEMBL molecules containing this RF or AF, its relative occurrence in active 

molecules (%active) and inactive molecules (%inactive), and an activity ratio Rbioact 

= %active/%inactive.  

A volcano scatter plot of the total occurrence of each RF or AF as function of Rbioact 

showed that RFs and AFs spanned a broad range of Rbioact values and total occurrences 

(Figure 4a-b). The situation was similar when analyzing only fragments up to 13 atoms 

(Figure 4c-d). From this analysis, we partitioned ChEMBL fragments according to their 

Rbioact values into active (Rbioact ≥ 4), inactive (Rbioact ≤ 0.25) or non-preferential fragments 

(intermediate values, Rbioact~1). While the most frequent fragments were small and non-

preferential, many fragments, including all singletons, occurred exclusively in either 

ChEMBLa or ChEMBLi subsets, and were accordingly assigned to either active (Rbioact ≥ 4) 

or inactive (Rbioact ≤ 0.25) subsets, respectively (Table 2). The top-10 most frequent active 

(Rbioact ≥ 4) and inactive (Rbioact ≤ 0.25) RFs and AFs in ChEMBL were all with the size 

range of GDB-13s. Four of these top-10 active RFs featured halogenated benzene rings, 

while four of the top-10 inactive RFs were saturated heterocycles (Figure S5). For AFs, 

fluorine prevailed in four of the top-10 active AFs, while sulfur occurred in four the top-10 

inactive AFs (Figure S6).     
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Figure 4. Volcano plots visualizing all active and inactive fragments extracted from ChEMBL. The logarithm 

value (base 2) of the ratio of the proportion of fragments in all active molecules and the proportions of 

fragments in all inactive molecules, namely log2(%Active/%Inactive), was plotted on the x-axis, and the total 

frequency (the sum of the occurrences of fragment in active molecules and in inactive molecules) was plotted on 

the y-axis. Colors of the data points indicating the HAC range of the fragments. Occurrences of fragments that 

only appeared in inactive compounds (%Active = 0) were displayed vertically in a straight line at the left end of 

the plot, while occurrences of fragments that only appeared in active compounds (%Inactive = 0) were displayed 

vertically in a straight line at the right end of the plot.  

 

Table 2. RFs/AFs analysis of ChEMBLa, and ChEMBLi.  

No.  ChEMBLa  ChEMBLi  Rbioact4  Rbioact~1  Rbioact≤0.25  

1 Cpds 543,971  1,575,988        

2 Cpds from RF≤13a) 215,243 39.6% 870,442 55.2%       

3 Cpds from AF≤13b) 523,674 96.3% 1,509,677 95.8%       

4 Cpds from ARF≤13c) 198,367 36.5% 813,618 51.6%       

5 RF  145,174  300,613  116,023  25,197  266,255  

6 eRFd)  106,862 73.6% 262,301 87.3% 106,862 92.1% 0 0% 262,301 98.5% 

7 RF-Singletone) 93,023 64.1% 193,248 64.3% 78,758 67.9% 0 0% 182,620 68.6% 

8 RF≤13f) 28,309 19.5% 55,143 18.3% 15,211 13.1% 10,883 43.2% 40,930 15.4% 

9 eRF≤13g) 11,881 8.2% 38,715 12.9% 11,881 10.2% 0 0% 38,715 14.5% 

10 RF≤13-Singletonh) 12,260 8.5% 23,463 7.8% 7,642 6.6% 0 0% 20,699 7.8% 

11 AF  26,482 4.7% 81,690 5.2% 16,567  8,605  71,125  

12 eAFd) 14,613 55.2% 69,817 85.5% 14,613 88.2% 0 0% 69,817 98.2% 

13 AF-Singletone) 15,773 59.6% 49,745 60.9% 11,252 67.9% 0 0% 46,974 66.0% 

14 AF≤13f) 16,137 60.9% 45,091 55.2% 7,875 47.5% 7,063 82.1% 36,498 51.3% 

15 eAF≤13g) 6,347 24.0% 35,301 43.2% 6,347 38.3% 0 0% 35,301 49.6% 

16 AF≤13-Singletonh) 8,008 30.2% 22,540 27.6% 4,638 28.0% 0 0% 20,689 29.1% 

a) Cpds from RF≤13 = molecules covered by RF up to HAC = 13. b) Cpds from AF≤13 = molecules covered 

by AF up to HAC = 13. c) Cpds from ARF≤13 = molecules covered by both RF and AF up to HAC = 13. d) 

eRF/eAF = exclusive RF/AF, absent from the other three databases. e) RF/AF-Singleton = RF/AF with only a 

single molecule example. f) RF≤13/AF≤13 = RF/AF up to HAC = 13. g) eRF≤13/eAR≤13 = exclusive 

RF13/AF13, absent from the other three databases. h) RF≤13-Singleton /AR≤13-Singleton = RF≤13/AF≤13 

with only a single molecule example. RF and AF subcategories are calculated relative to total RF and AF, 

respectively. 
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While many RFs and AFs occurred preferentially in either ChEMBL active or 

ChEMBL inactive molecules, these fragments did not differ strongly from each other or from 

RFs and AFs in known molecules (PubChem, ZINC and COCONUT) in terms of overall 

structural features. Indeed, the different datasets of known molecules had quite similar 

property profiles for RFs up to 13 atoms in terms of the number of rings, largest ring size, 

number of acyclic atoms and heteroatoms (Figure 5a-d). Similarly, AFs up to 13 atoms in 

these datasets had comparable property profiles concerning the number of quaternary centers, 

triple bonds, heteroatoms, and terminal atoms (Figure S7a-d).  

On the other hand, the property profiles of GDB-13s RFs and AFs were clearly 

different from those of known molecules. For instance, RFs from GDB-13s had a broader 

distribution in terms of number of rings and largest ring size, and fewer heteroatoms than the 

different RF datasets of known molecules. Furthermore, GDB-13s AFs stood out with a 

larger number of triple bonds and terminal atoms compared to AF datasets of known 

molecules. These differences probably explained the less favorable synthetic accessibility 

score (SAscore) of GDB-13s RFs and AFs (Figure 5e and S7e).28 Indeed, the SAscore is 

based on the presence of substructures frequently found in known molecules. Note that GDB-

13s RFs and AFs had relatively high natural product likeness scores (NPscore),31 comparable 

to those of COCONUT molecules (Figure 5f and S7f). The high NPscore of GDB-13s RFs 

and AFs probably reflects the high percentage of non-aromatic, stereochemically complex 

structures in GDB-13s since the NPscore assigns higher values for the presence of such 

structural features. 
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Figure 5. Frequency histograms of RFs from the various databases and subsets for (a) number of 

rings, (b) largest ring size, (c) number of acyclic atoms, (d) number of heteroatoms, (e) SAscore, and 

(f) NPscore. 
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Bioactivity guided selection of RFs and AFs in GDB-13s 

The analysis above suggested two possible approaches to select RFs and AFs from GDB-13s 

for drug design. First, the narrower structural parameter ranges covered by RFs and AFs 

from known molecules, active or inactive, which correlated with their more favorable 

SAscores compared to GDB-13s RFs and AFs, suggested to select GDB-13s fragments with 

limited structural complexity, which would certainly help in view of a possible synthesis. 

Following up on this idea, we selected a subset of GDB-13s RFs and AFs by constraining 

structural parameters closer to known molecules but considering only those exclusive to 

GDB-13s to ensure novelty. To our delight, this selection resulted in a sizable number of 

GDB-13s fragments. Indeed, we obtained 960,587 GDB-13s eRFs with up to two rings, ring 

size up to seven, up to three heteroatoms and three acyclic atoms, named RFset1. For the 

selection of AFs from GDB-13s, we obtained 462,439 GDB-13s eAFs without any 

quaternary center and up to one triple bond, up to four heteroatoms and up to four terminal 

atoms, named AFset1.  

In a second, narrower selection, we assumed that ChEMBL derived RFs and AFs in 

the Rbioact≥4 value range (defined as active fragments) reflected privileged structural types, 

while those in the Rbioact≤0.25 value range (defined as inactive fragments) marked 

undesirable structural types, in terms of possible bioactivities. To expand the scope of 

ChEMBL active fragments, we retrieved all GDB-13s RFs and AFs within a Jaccard 

distance dJ  ≤ 0.6 of any of the ChEMBL active fragments using the MAP4 fingerprint as 

similarity measure.32 In this manner, we obtained 97,664 RFs and 43,704 AFs, from which 

we removed 25,162 RF and 15,484 AF found within dJ  ≤ 0.6 of any inactive fragments, 

leaving 72,502 RFs, named RFset2, and 28,220 AFs, named AFset2,  as bioactive-like 

fragments from GDB-13s. In these sets, many fragments were also exclusive to GDB-13s, 

ensuring novelty (51,303 eRFs, 70.8% and 17,620 eAFs, 62.4%).  
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The property profiles of RFset1 and AFset1, which both resulted from constraining 

structural parameters, remained substantially different from those of known molecules 

because frequency peaked at the highest parameter value selected. This distribution reflects 

the combinatorial enumeration used to generate GDB-13s, which provides many more 

possible molecules at the largest values of structural parameters. Therefore, the SAscore 

remained less favorable and the NPscore relatively high in both sets. On the other hand, the 

property profiles of RFset2 and AFset2, selected by substructure similarity to ChEMBL 

bioactive fragments, were like those of known molecules, reflecting the structural similarity 

selection used to compose these sets (Figure 5a-d and S7a-d). RFset2 and AFset2 also 

displayed lower SAscore and NPscore values than the full sets of GDB-13s RFs and AFs, 

indicating that they were generally less complex and closer to RFs and AFs from known 

molecules (Figure 5e-f and S7e-f).  

To gain a detailed insight into the bioactivity selected subset of GDB-13s RFs and 

AFs, we computed interactive TMAPs (tree-maps)33 using the MinHashed fingerprint MAP4 

as similarity measure (Figure 6).32 These interactive TMAPs allow one to browse through 

the two databases and search for interesting RFs and AFs using various color-coded 

properties as guide. To illustrate the available options, we searched for novel analogs of the 

three most frequent active (Rbioact4) RFs in ChEMBL, one of which occurs in the kinase 

inhibitor drug gefitinib, revealing potentially interesting analogs (Figure 7). Further 

interesting GDB-13s eRFs are exemplified as analogs of triquinazine, an eRF from GDB-

13s previously used as scaffold for a Janus kinase inhibitor analog of the known drug 

tofacitinib.34 In principle, the same selection can also be made with GDB-13s analogs of 

AFs, as exemplified for the most frequent AFs in active (Rbioact4) AFs from ChEMBL 

(Figure S8). In this case however, the selection of interesting AFs is less obvious since the 

chemistry of AFs highly depends on their connection to RFs.  
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Figure 6. TMAP visualization of (a) 1,042,610 RFs from RFset1, RFset2 and ChEMBL (b) top-

10,000 RFs in ZINC, PubChem, COCONUT and GDB-13s (c) 533,153 AFs from AFset1, AFset2 

and ChEMBL (d) top-10,000 AFs in ZINC, PubChem, COCONUT and GDB-13s, color-coded by the 

source datasets, SAscore and different properties. An interactive version of the TMAPs is accessible 

at https://tm.gdb.tools/map4 (MAP4_fused_GDB-13s_RFset1_RFset2_and_ChEMBL; 

MAP4_4databases_top10k_RF; MAP4_fused_GDB-13s_AFset1_AFset2_and_ChEMBL; 

MAP4_4databases_top10k_AF). 
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Figure 7. Analogs of highly active ChEMBL RFs and triquinazine found in the subsets of GDB-13s (RFset1 

/ RFset2). Total occurrences of the ChEMBL RFs, or the distances between the analogs and the targets are 

indicated in parentheses. 

 

Conclusion 

The goal of this study was to focus attention on the most relevant part of the vast small molecule 

chemical space revealed by the enumeration of the GDB databases by considering the need for 

novelty combined with structural simplicity and a certain level of similarity to known bioactive 

molecules. The narrowing of the many millions GDB molecules to approximately one million RFs 

and half a million AFs represents an enormous reduction in the number of molecules to be 

considered but opens more than enough opportunities for novelty to be realized by chemical 
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synthesis, considering that the practical synthesis of novel building blocks is resource and time 

intensive. Focusing on novel yet simple structures is essential to follow the evidence of more than 

a century of medicinal chemistry showing that the most useful drug molecules do not need to be 

very complex.   

Methods 

Extracting RFs and AFs from molecules 

RFs and AFs were obtained from molecules by processing their SMILES35 using RDkit36 as 

follows (Figure 1). RFs: break all bonds between any two acyclic atoms and remove all acyclic 

atoms not directly attached to the rings. Acyclic atoms directly connected to more than one ring 

system are disconnected and reattached to each ring system separately. AFs: break all bonds 

between cyclic atoms and acyclic atoms and remove all cyclic atoms.   

TMAPs 

Tree-maps (TMAPs) were generated by specifying standard parameters,33 using the MAP4 

fingerprint (MinHashed atom-pair fingerprint up to a diameter of four bonds).32 MAP4 

fingerprints were computed with a dimension of 256.  

Data and Software Availability 

GDB-13 and GDB-13s are hosted on the open-access repository Zenodo and can be 

downloaded free of charge at https://doi.org/10.5281/zenodo.7041051. All the molecules are 

stored in dearomatized, canonized SMILES format and compressed as a GNU zip archive. 

The ZINC data used in this study is the February 2022 version (https://zinc.docking.org). 

The PubChem data with a version of October 2021, was first downloaded from the NCBI 

(The National Center for Biotechnology Information), NIH (National Institutes of Health) 

via an FTP server (https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full). Then 
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the compounds with HACs not greater than 50 were extracted to build the PubChem 

database. The COCONUT data adopted in this study is the February 2021 version 

(https://github.com/reymond-group/Coconut-TMAP-SVM). ChEMBL active and inactive 

data sets were extracted from ChEMBL31 

(https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest). The Molecule Breakdown 

Model is made freely available and under the MIT license. It is distributed in a GitHub 

repository upon publication of this manuscript: https://github.com/Ye-

Buehler/Molecule_Breakdown_Model. 

Associated Content 

Supporting Information 

The Supporting Information is available free of charge at https://xxx. 

Top-10 most populated RFs/AFs in GDB-13s, ZINC, PubChem and COCONUT; Top-20 

most frequent RFs shared by the different databases; Top-10 eRFs in the different databases; 

Top-10 most frequent RFs and AFs in the active and inactive ChEMBL subsets; Frequency 

histograms of AFs from the various databases and subsets for number of quaternary centers, 

number of triple bonds, number of heteroatoms, number of terminal atoms, SAscore, and 

NPscore; Analogs of highly active ChEMBL AFs found in GDB-13s AFset1/AFset2 (PDF). 
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Figure S1. Top-10 most populated RFs in various databases. RFs are displayed by order of 

appearance in the frequency-sorted list across the four databases. A color-code has been added to the 

numbering of RFs appearing several times to facilitate comparison across different databases. 
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Figure S2. Top-10 most populated AFs in in various databases. AFs are displayed by order of appearance in 

the frequency-sorted list across the four databases. 
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Figure S3. Top-20 most populated RFs shared by the different databases (GDB-13s, ZINC, PubChem, and 

COCONUT). 
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Figure S4. (a) Top-10 eRFs in GDB-13s and ZINC, occurrences of the obtained eRFs are indicated in 

parentheses. 
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Figure S4. (b) Top-10 eRFs in PubChem and COCONUT, occurrences of the obtained eRFs are 

indicated in parentheses. 
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Figure S5. Top-10 most frequent RFs in the active (Rbioact ≥ 4) and inactive (Rbioact ≤ 0.25) ChEMBL subsets 

annotated with total occurrences of the RF in ChEMBL. 
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Figure S6. Top-10 most frequent AFs in the active (Rbioact ≥ 4) and inactive (Rbioact ≤ 0.25) ChEMBL subsets 

annotated with total occurrences of each AF in ChEMBL. 
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Figure S7. Frequency histograms of AFs from the various databases and subsets for (a) number of 

quaternary centers, (b) number of triple bonds, (c) number of heteroatoms, (d) number of terminal 

atoms, (e) SAscore, and (f) NPscore. 
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Figure S8. Analogs of highly active ChEMBL AFs found in the subsets of GDB-13s (AFset1/AFset2). Total 

occurrences of the ChEMBL AFs, or the distances between the analogs and the targets are indicated in 

parentheses. 
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