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Abstract 

To support in-line quality control of raw milk, we propose a fiber-optic spatially-resolved 

spectroscopy (SRS) setup. This setup allows to vary the interaction of long-wave near-infrared 

(LW-NIR) light with the milk by submerging a separate optical illumination and detection fiber 

into the sample and altering their relative distance to optimize measurements for specific milk 

component(s). We evaluated this approach for predicting milk fat, protein, and lactose content 

and determined the optimal illumination-to-detection distances for each milk component. The 

region between 1.1 to 1.8 mm was optimal for lactose, and between 2.2 and 3.8 mm for fat and 

protein. These distance ranges resulted in a root-mean-square error of prediction (RMSEP) of less 

than 0.10% weight/weight (wt/wt) for milk fat, and lower than 0.13% (wt/wt) for protein and 

lactose. Integration of these distances into a fiber-optic SRS reflectance probe would allow to 
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simultaneously determine the fat, protein, and lactose content of raw milk in-line with high 

accuracy. 
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1 Introduction 

The demand for high-quality dairy products is rising at a global scale (OECD, 2022). Hence, there 

is an increasing need for higher and more efficient production capacity (Thornton, 2010) and for 

the capability to monitor and differentiate the quality of these high-value foodstuffs (Walstra et 

al., 2005). To ensure high-quality dairy products and optimize the processing chain, milk 

composition is a crucial indicator that should be regularly evaluated at every stage, from on-farm 

production to manufacturing and end-product storage. Regular milk composition monitoring can 

ensure the quality of dairy products, which is essential for public health, safety and consumer 

assurance (Gunasekaran, 1996; Kong et al., 2019; Paiva, 2013). In addition, changes over time in 

milk fat, protein and lactose of individual cows can be linked to their nutritional and metabolic 

status, as well as to their udder health (Mäntysaari et al., 2019). Therefore, monitoring the 

produced milk is an efficient way to also evaluate the performance and welfare of dairy cows in 

addition to ensuring and optimizing dairy quality (McParland et al., 2014).  

The implementation of in-line measurements is necessary when considering the increasing 

automation of the dairy sector and the food industry (Rodenburg, 2017). Non-destructive sensors 

integrated into a milk pipeline can enable high-frequency and autonomous composition 

monitoring, which can have measurable positive impacts on dairy quality control and processing 

efficiency, animal health and welfare, and dairy production economics (Kunes et al., 2021). In-line 

milk quality analysis can further benefit dairy processing systems by enabling milk sorting 

infrastructures to classify milk into different batches at the point of production (Augustin et al., 
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2013), based on required quality properties. This technology can also facilitate the creation of 

new dairy products and the optimization of the production process for existing ones. 

Non-destructive milk quality control technologies have been applied in the dairy sector to 

characterize the composition and morphology of dairy products (Ellis et al., 2012; Gowen et al., 

2007; Karoui and de Baerdemaeker, 2007; Marcone et al., 2013). Amongst these technologies, 

near-infrared (NIR) spectroscopy has been proven to be an advantageous analytical method in 

the food production and processing industry due to the minimal sample preparation and labor 

requirements, and the absence of chemical consumables needed for operation (Shenk et al., 

2007). Various researchers (Kawamura et al., 2007; Kawasaki et al., 2008; Melfsen et al., 2012; 

Saranwong and Kawano, 2008; Tsenkova et al., 1999) have already examined the application of 

NIR spectroscopy for on-site monitoring of milk quality. In previous works (Aernouts et al., 2011; 

Diaz-Olivares et al., 2020), the authors highlighted the advantage of the long-wave NIR (LW-NIR) 

range (1000 to 1700 nm) in reflectance and transmittance spectroscopic analysis of raw milk. 

Specifically, on-site LW-NIR analyses showed an outstanding performance for raw milk 

composition prediction, with a coefficient of determination (R²) greater than 0.95 for fat and 

protein and 0.69 for lactose, with root-mean-squared errors (RMSE) below 0.08% weight/weight 

(wt/wt) for all three components (Diaz-Olivares et al., 2020).  

However, conventional transmittance and diffuse reflectance LW-NIR spectroscopy have not 

been widely implemented in dairy production or processing lines due to the turbid nature of raw 

milk. In this turbid media, varying physical structures such as fat globules and casein micelles 

strongly scatter light, while water molecules strongly absorb LW-NIR radiation, making the 

quantification of milk components challenging (Bogomolov and Melenteva, 2013). Furthermore, 
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the sample thickness in LW-NIR transmittance measurements is limited to 2 mm (Aernouts et al., 

2011; Tsenkova et al., 1999). In contrast, in-line measurement of diffuse reflectance is more 

straightforward, but the acquired signals are dominated by LW-NIR light that has been 

superficially scattered by the numerous fat globules and casein micelles in the milk. As a result, it 

provides limited information on the absorption by chemical compounds, particularly of the non-

scattering components dissolved in the milk serum (Aernouts et al., 2015a, 2011). 

In spatially-resolved spectroscopy (SRS), light that has interacted with the sample is collected at 

different distances from the illumination point (Torricelli et al., 2013). By increasing the physical 

distance between illumination and detection, the captured light will have interacted more and 

with deeper layers of the sample. However, this longer illumination-to-detection distance also 

reduces the intensity of the measured signal significantly, which may jeopardize the signal-to-

noise ratio (SNR). To find a balance between signal intensity and information content, it is 

necessary to optimize the optical configuration for a specific application (van Beers et al., 2015). 

SRS can also separate the information on light scattering and absorption related to the 

composition and physical structure of samples by combining spectroscopic measurements 

collected at various illumination-to-detection distances (Wetzel and LeVine, 2000). Several 

research groups have investigated the potential of this technique for food quality control (Huang 

et al., 2018; Ma et al., 2022; Nguyen Do Trong et al., 2014a, 2014b; Vanoli et al., 2020). 

When applied to solid samples, SRS typically utilizes a contactless optical configuration using 

lasers for illumination and cameras for detection (Aernouts et al., 2015b). SRS on liquids is usually 

performed with optical fibers that make direct contact with or are submerged into the sample 

(Crofcheck et al., 2002; Foschum et al., 2011; Watté et al., 2016). Fiber-optic SRS can be 

https://doi.org/10.26434/chemrxiv-2023-kswct ORCID: https://orcid.org/0000-0001-6178-0088 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-kswct
https://orcid.org/0000-0001-6178-0088
https://creativecommons.org/licenses/by-nc-nd/4.0/


implemented in a reflectance probe design with different optical fibers serving as illumination 

and detection points. Multiple detection fibers can be distributed linearly on a flat surface and 

located parallel and at different distances from a single, unique illumination fiber (Bendoula et 

al., 2019). An SRS reflectance probe configuration would be straightforward to install in a milk 

pipeline and could support effective in-line milk analysis. As the path length of light traveling 

through the milk sample increases with distance, its interaction with the milk serum also 

intensifies. This could be beneficial for predicting lactose content, which is heavily diluted and 

dissolved in the milk serum (Aernouts et al., 2015a, 2011).  

Previous studies have focused on applying SRS to milk quality analysis in the visible (400 – 780 

nm) and short-wave NIR (780 – 1010 nm) range (Bogomolov et al., 2017; Crofcheck et al., 2002). 

In this wavelength range, milk components have lower absorption coefficients, resulting in the 

absorption of only a small fraction of the incident light. This leaves a substantial amount of the 

interacted light available for detection and simplifies the process of making accurate SRS 

measurements. However, the low absorption coefficients of the milk components within this 

range of wavelengths lead to SRS spectra dominated by light scattering effects and contain only 

minimal information about the chemical compounds of the sample. As a result, SRS for milk 

quality analysis within this range is limited to the quantification and characterization of milk 

components that scatter light. For instance, Crofcheck et al. (2002) studied milk fat globule size 

distribution effects on visible and short-wave NIR SRS spectra, while Bogomolov et al. (2017) 

combined those spectra to predict the milk fat and protein content with good accuracy (RMSE ≤ 

0.09% wt/wt).  
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Nonetheless, to successfully detect milk components that mainly absorb light at higher 

wavelengths, such as lactose, the LW-NIR range must be considered (Aernouts et al., 2015a, 

2011). Watté et al. (2016) explored LW-NIR SRS to quantify the bulk optical properties of milk 

based on a simulation study. They concluded that the most informative illumination-to-detection 

distances for bulk optical properties determination were 1.1 to 2.5 mm, and recommended the 

use of an additional detection fiber at a further distance to differentiate between scattering 

effects and absorption.  

To the best of our knowledge, no studies have been reported on the application and evaluation 

of SRS for milk quality analysis in the LW-NIR range. It is hypothesized that the illumination-to-

detection distance resulting in the best predictions may vary for the three milk components. A 

deeper analysis of the observations is expected to provide valuable insights into how optical food 

sensors can be improved concerning the characteristics of the sample and the quality attributes 

of interest. Therefore, this study aimed to (1) develop a system that can collect high-quality LW-

NIR SRS spectra of turbid liquids at different illumination-to-detection distances; (2) measure LW-

NIR SRS spectra of raw milk samples with a wide variety in chemical composition; (3) develop and 

evaluate models to predict milk fat, protein and lactose from the spectra acquired at single 

illumination-to-detection distances; (4) study the effect of the illumination-to-detection distances 

on their prediction performance; and (5) provide recommendations for the design of a fiber-optic 

LW-NIR SRS reflectance probe to increase its technology readiness level (TRL) from laboratory 

validation to eventually an autonomous in-line milk quality analysis application (Mankins, 1995).  
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2 Materials and methods 

2.1 Spatially resolved spectroscopy setup 

The experimental setup used for the SRS measurements on raw milk is schematically illustrated 

in Figure 1. 

 

Figure 1: Conceptual depiction of the experimental fiber-optic SRS setup. Bold black arrows 

indicate control flow, while dashed black arrows signify the flow of light. A detailed view of the 

measurement process in the beaker is presented at the bottom-right corner. 

The light source (a) of the setup consists of a 100-Watt halogen lightbulb (64341 HLX-Z/C, Osram 

Licht AG, Munich, Germany) housed in an aluminum cube (LC6W, Thorlabs) and powered by a 
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constant direct current driver (HLG-185-12-AB, Mean Well Enterprises, Taipei, Taiwan). The light 

emitted by the lightbulb is collected and collimated towards an optical fiber (Fiber I).  

The illumination (Fiber I) and detection (Fiber D) fibers are low-OH fibers with a 600 µm core 

diameter and NA of 0.22 (091119, RoMack Inc., Virginia, USA). The sample-side terminations of 

Fibers I and D are protected by factory-installed stainless steel ferrules with an outer diameter of 

1.1 mm and a length of 50 mm. The fiber tips are polished and in direct contact with the sample. 

The milk sample is presented in a polypropylene beaker (b) with a 75 mm height and a 50 mm 

diameter (446081, VITLAB GmbH, Grossostheim, Germany). The ends of Fibers I and D that are 

not in contact with the sample have SMA terminations (SM1SMA, Thorlabs) for connecting them 

respectively to the light source and to a cooled diode array NIR spectrometer (c) that measures 

from 970 to 1690 nm with a 2.81 nm pixel resolution (1.7-256 Plane Grating Spectrometer, Carl 

Zeiss, Jena, Germany). 

Fiber I is held in a calibrated fixed position, while Fiber D is mounted on a movable platform (d) 

controlled by a 25 mm motorized X-translation stage (MTS25/M-Z8, Thorlabs) to move Fiber D in 

the scan direction. Fiber I and Fiber D were positioned at the same height. To ensure good contact 

between the fibers and the sample, as well as to minimize the presence of air bubbles at the 

surface of the fiber tips, both fibers were inserted into the milk sample with their tips at least 25 

mm below the surface of the sample and 40 mm away from the bottom of the beaker. Fiber I was 

positioned at the center of the beaker in the horizontal plane, while Fiber D was positioned a 

minimum of 20 mm away from the wall of the beaker at all times. Preliminary tests on milk 

samples with a very high (5.46%) and a very low fat content (2.46%) confirmed that the interaction 
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of the detected light with the beaker wall, bottom, and sample surface is negligible in this 

configuration. 

A magnetic stirrer (e) is located under the beaker to mix the milk sample at a nominal rotation of 

250 RPM (MIXdrive 1 eco, 2Mag AG, Munich, Germany), to prevent changes in the morphology 

of the sample while measurements are performed. Additionally, a two-channel peristaltic pump 

(ISMATEC MS-2/12, Cole-Parmer GmbH, Wertheim, Germany) pumps air into the sample at a flow 

rate of 0.032 ml/min on the side of the beaker to assist in mixing (f). All the elements of the 

experimental setup are contained in a compact and temperature-controlled (PowerCool, Laird, 

Liberec, Czech Republic) housing (g) regulated to 36±0.5°C. 

For each milk sample introduced into the beaker, the NIR spectrometer recorded a LW-NIR 

spectrum from 970 to 1690 nm at 30 different distances between Fiber I and Fiber D. In its spatial 

resolution, the illumination-to-detection distance ranged from 1.1 mm to 4 mm between the 

centers of fibers I and D, with a scan step size of 0.1 mm. Each measurement was acquired with 

an integration time of 260 ms. To increase the SNR, 50 repeated measurements were taken and 

averaged for each of the 30 illumination-to-detection distances per sample. The translation stage 

and the NIR spectrometer were controlled by a dedicated computer (h) with dedicated acquisition 

software in LabView 2020 (National Instruments, Austin, USA). 

2.2 Acquisition and laboratory analysis of milk samples 

The raw milk samples for this experiment were collected with a VMS™ Classic (DeLaval, Tumba, 

Sweden) automatic milking system (AMS) at the experimental dairy farm ‘Hooibeekhoeve’ in the 

province of Antwerp (Geel, Belgium). The AMS was equipped with a Herd Navigator™ sampler 
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(HNS Supra+, DeLaval) collecting and mixing a representative milk sample (±300 mL) of every 

single milking (ICAR, 2017a). For each milking, this sampler was configured so that a 

representative fraction (±30 mL) of the sample was collected in a plastic cup for laboratory 

analysis. The remainder of the milk sample (at least 200 ml) was collected in a glass container for 

SRS measurements. The container was submerged in a water bath (Circulator DC10, Haake GmbH, 

Karlsruhe, Germany) at a nominal temperature of 36°C. No more than 15 minutes elapsed 

between the end of the milking process and the analysis by the SRS experimental setup. As the 

milk sample was thoroughly mixed before splitting it, the samples taken for laboratory analysis 

are representative of those taken for the SRS analyses. 

On average, 17 milk samples were extracted and analyzed per day, and measurements were 

performed during 13 working days spread over a period of 3 weeks. The milk samples taken for 

laboratory analyses were preserved with bronopol (0.3 mg/mL) at 4°C and analyzed at the Milk 

Control Center (MCC Vlaanderen, Lier, Belgium) within 3 days after sample collection. In this 

experiment, the laboratory analysis (fat, protein, and lactose) of each sample was performed 

according to ISO 9622 (ISO, 2013). These laboratory analyses have an accuracy of < 1.0% 

coefficient of variation (CV) for fat and < 0.9% CV for protein and lactose. 

Thirty-five samples were excluded from the further analysis due to unsuccessful laboratory 

analyses, either because insufficient milk was available for laboratory analysis or due to 

contamination with flies. The final dataset consisted of 186 raw milk samples for which both SRS 

data and laboratory analyses were available. 
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2.3 Spatially resolved spectroscopy measurements 

Once a milk sample for SRS measurement was collected, it was taken to the SRS experimental 

setup and introduced into the beaker. The acquisition of SRS spectra at the 30 consecutive 

illumination-to-detection distances was fully automated and took approximately 420 seconds per 

milk sample. For each of the 186 individual milk samples measured with the SRS setup, 30 

different spectra were captured, corresponding to the 30 different illumination-to-detection 

distances. For each spectrum measured, 256 different spectral data points were obtained in the 

wavelength range from 970 to 1690 nm. This results in a two-dimensional array of 30 (distances) 

by 256 (wavelengths) for each of the 186 milk samples. When considering these SRS data as a 

function of an increasing illumination-to-detection distance, the obtained profiles follow an 

exponential-like decrease and are further referred to as ‘SRS profiles’. 

At the end of the sample measurement, the system autonomously returned to the initial position 

to allow for the manual cleaning of the sample beaker and fibers, followed by the removal of the 

beaker and thereafter measurement of the dark and white reference spectra. After cleaning, the 

sample beaker was removed from the measurement position and manually substituted by a dark 

reference to quantify the stray light and background noise of the spectrometer. To accomplish 

this, a 1% Acktar Black (Acktar, Hohenaspe, Germany) coated plate was mounted in a 30 mm 

diameter optical tube (SM30L30, Thorlabs) and positioned 1 mm below the tip of the detection 

fiber, covering it and blocking stray light. After performing the dark reference measurement, a 

white reflectance standard (Spectralon SRS-99, Labsphere, North Sutton, USA) was placed 1 mm 

below the fibers to quantify the possible drift of the system. These reference measurements were 
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acquired at the closest illumination-to-detection distance (1.1 mm center-to-center) with the 

same integration time (260 ms) and number of averaged measurements (50) as the sample 

measurements. 

The raw spectral data of the samples and the white and dark reference measurements have 

integer values ranging from 0 to 65,656 digital counts (DC) originating from the 16-bit analog-to-

digital converter of the NIR spectrometer. These raw data were loaded and processed in R version 

4.2.1. (R Core Team, 2022). The initial step of data processing involved subtracting the obtained 

dark reference spectra from the corresponding sample and white reference spectra to correct for 

stray light in the SRS system and background noise in the NIR spectrometer channels. 

2.4 Dynamic range correction 

As the distance between the illumination and detection fibers increases with each scan step 

during the SRS measurement process, the intensity of the light captured by the detection fiber 

(Fiber D) follows an exponential-like decrease (Crofcheck et al., 2002). This signal loss is attributed 

to the geometrical dispersion of light with distance in the medium and the combined action of 

scattering and absorbance by the different milk components, with fat being a primary contributor 

(Postelmans et al., 2020). This translates into a suboptimal use of the dynamic range of the 

spectrometer, which decreases the SNR, for larger illumination-to-detection distances. 

Therefore, the evaluation of how accurately the milk composition could be predicted from the 

spectra collected at each individual illumination-to-detection distance would be biased if no 

correction would be applied for this suboptimal use of the dynamic range for larger distances. It 

is hypothesized that by performing a dynamic range correction, the milk composition prediction 
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performance based on the spectra collected at the different distances will be less conditioned by 

the loss of signal as distance increases with each scan step. To test this, two different scenarios 

were evaluated: in the non-corrected scenario, the exponential decrease of the signal associated 

with the illumination-to-detection distance was not compensated; in the corrected scenario, as 

described later, a correction is performed to equalize the dynamic range and associated SNR of 

the spectrometer for all illumination-to-detection distances. Given the inability to increase the 

SNR of the pre-existing SRS data, the SNR for shorter illumination-to-detection distances is 

reduced to match the SNR at longer distances. 

To perform the dynamic range correction, the overall maximum SRS profile was first identified. 

This is because the maximum signal intensity is the main constraint when optimizing the 

illumination intensity or the spectrometer response (e.g. gain, integration time) to avoid 

saturation of the spectrometer detector. To obtain this maximum overall SRS profile, the 

maximum value over all 186 samples and all 256 wavelengths together was calculated for each of 

the 30 illumination-to-detection distances individually (Figure 2.a). Next, the maximum value at 

the largest illumination-to-detection distance was divided by the maximum values of all individual 

distances to obtain a one-dimensional array of length 30, the dynamic range correction factor 

(Figure 2.b). This correction factor has values between 0 and 1, being 1 for the largest 

illumination-to-detection distance. The sample SRS data were corrected for the dynamic range 

scale of the largest distance by multiplying the SRS profiles with the correction factor and 

accordingly rounding the spectral intensity values (in DC) to the nearest integer. 
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2.5 Normalization of the sample spectra 

The average white reference spectrum and the average dark reference spectrum for each 

measurement day were calculated and used to correct and normalize the sample SRS spectra for 

that day. Specifically, the dark-subtracted sample spectra were divided by the average dark-

subtracted white reference spectrum of that day. This normalization technique corrected for drift 

in the light source intensity and spectrometer sensitivity over the different measurement days 

(Andersen et al., 2013) without introducing excessive noise from the manual manipulations and 

the spectrometer. This normalization procedure was applied to both the original sample spectra 

and the corrected spectra. 

2.6 Development and validation of the prediction models 

The prediction models were developed and validated using a customized chemometrics toolbox 

for R (Aernouts et al., 2020). The procedure to develop and validate the prediction models was 

the same for the non-corrected and corrected scenario. 

By applying the Duplex algorithm (Snee, 1977) on the laboratory analysis data (fat, protein and 

lactose) of the 186 samples, this dataset with its corresponding SRS spectra was split into 

representative calibration and test sets with respectively two-thirds and one-third of the samples. 

The Duplex algorithm utilized the Mahalanobis distance in the three-dimensional space of the 

laboratory analyses to emulate correlations, descriptive statistics, and the entire variability of the 

dataset, without considering measurement time discrimination. 
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To remove spectral regions that have an excessively reduced SNR, the wavelengths where the 

signal intensity of the dark-corrected raw sample spectra was lower than 50 DC for the lowest 

intensity sample at the shortest distance were excluded, for all samples and all distances. As a 

result, the outermost regions of the spectral range (1680-1690 nm) were removed due to the 

lower sensitivity of the spectrometer at these wavelengths. Additionally, the spectral region from 

1360 to 1500 nm was discarded due to weak SRS signals, caused by the high absorption of water 

molecules. 

The resulting spectra were preprocessed to reduce non-linearity and scattering effects with 

techniques that provided the best performance in previous studies involving the same milk 

components, spectral wavelength range and resolution (Diaz-Olivares et al., 2020). Standard 

normal variates (SNV) weighting was applied, followed by a first-order Savitzky-Golay derivative 

involving a second-order polynomial filter with a spectral window length of 15 wavelengths (±40 

nm) for fat and protein. For lactose, a second-order Savitzky-Golay derivative with the same 

window length was applied. Mean centering was performed on the preprocessed spectra and the 

milk components right before building the partial least squares regression (PLSR) models on the 

spectra of the calibration set. Individual PLSR models were constructed for each milk component 

and each individual illumination-to-detection distance, for both non-corrected and corrected 

spectra, with up to 20 latent variables. 

A 10-fold cross-validation with random groups was repeated 100 times for the samples in the 

calibration set to study the effect of the model complexity (number of latent variables) on the 

model performance for each PLSR model in terms of the root-mean-squared error of cross-

validation (RMSECV). The selection of the number of latent variables prioritized achieving the best 
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results (lowest RMSECV) for both the original data as well as those corrected for the dynamic 

range over the entire illumination-to-detection distance. 

Milk composition predictions were obtained by applying the PLSR models on the SRS spectra of 

the samples in the test set and the respective residuals were derived. To evaluate which distances 

give the best performance for milk composition prediction, the best illumination-to-detection 

distance was selected as the one with the lowest root-mean-square error of prediction (RMSEP) 

for samples in the test set. The best distance was selected for each combination of milk 

components, number of latent variables in the selected range and correction scenario. Next, one-

sided paired T-tests (α = 0.05) were applied to the squared residuals of the test samples to 

evaluate whether the best distance has significantly lower residuals compared to the other 29 

distances (Cederkvist et al., 2005). The same procedure was also applied to the cross-validation 

residuals to compare the best illumination-to-detection distance (lowest RMSECV) with the other 

29 distances. The results of the latter were reported in the supplementary materials.  
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3 Results and discussion 

3.1 Long-wave near-infrared spatially resolved reflectance spectra 

In Figure 2.a, the collected SRS data at the different wavelengths are plotted as a function of the 

illumination-to-detection distance. These SRS profiles show an exponential-like decrease of the 

signal with increasing distance. This clearly illustrates that the longer illumination-to-detection 

distances make less efficient use of the dynamic range (0 to 65,656 DC) of the spectrometer 

compared to the shorter distances. The maximum signals are obtained at around 1050 nm, where 

the detector sensitivity is high and the light absorption by the samples is relatively low. The overall 

maximum SRS profile is represented by a black line in Figure 2.a, while the derived dynamic range 

correction factor is shown in Figure 2.b. This correction factor increases from approximately 0.1 

for the shortest illumination-to-detection distance (1.1 mm) to 1 for the largest distance (4 mm). 
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Figure 2. (2.a) Depiction of the SRS profiles demonstrating the decreasing signal intensity in 

digital counts (DC) as the illumination-to-detection distance (in mm) increases, for the milk sample 

with the highest fat content (5.46%). The line colors of the SRS profile vary in function of the 

spectral wavelength, with only every eighth wavelength shown to avoid overcrowding the figure. 

The overall maximum SRS profile is shown as a thicker black line; (2.b) Dynamic range correction 

factor applied to compensate for the poorer use of the dynamic range of the spectrometer as the 

illumination-to-detection distance increases. 

In Figure 3, the SRS spectra of all 186 milk samples are presented for three different equidistant 

measuring points (1.1, 2.5 and 4 mm), for both non-corrected (3.a.1, 3.a.2 and 3.a.3) and 

corrected (3.c.1, 3.c.2 and 3.c.3) spectra.  

For all scenarios, the SRS signal decreases around 970, 1200 and 1450 nm, indicating absorbance 

by covalent O-H bonds of water. The highest absorbance of light can be observed between 1360 

to 1500 nm, causing a low SNR. This range was thus removed when developing the PLSR models. 
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Figure 3. Illustration of the SRS spectra collected after removing dark reference (solid orange-to-

blue gradient lines) for all 186 milk samples at three different equidistant illumination-to-detection 

distances: 1.1, 2.5 and 4 mm. Orange represents higher fat content, while blue indicates lower fat 
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content. The non-corrected SRS spectra for the three distances are depicted in Figures 3.a.1, 3.a.2 

and 3.a.3, while Figures 3.c.1, 3.c.2 and 3.c.3 illustrate the dynamic range corrected SRS spectra. 

In these six subfigures, the overall maximum signal intensity is indicated with a horizontal black 

dashed line. The Pearson correlation coefficients between the SRS spectra and the milk components 

are depicted for the non-corrected scenario (Figures 3.b.1, 3.b.2 and 3.b.3) and the corrected 

scenario (Figures 3.d.1, 3.d.2 and 3.d.3). These coefficients represent the linear correlation between 

the SRS spectra at specific illumination-to-detection distances for all the milk samples and their fat 

(orange dashed line), protein (magenta dot-dashed line), and lactose (blue dotted line) 

concentration, for the entire spectral range measured. 

Figures 3.a.1, 3.a.2 and 3.a.3 clearly illustrate that the overall maximum signal level decreases 

with the increasing illumination-to-detection distance. After applying the dynamic range 

correction, the overall maximum signal level is the same for every distance (Figures 3.c.1, 3.c.2 

and 3.c.3). All data in Figures 3.a.1, 3.a.2, 3.a.3, 3.c.1, 3.c.2 and 3.c.3 are integers. As a result, all 

distances in Figures 3.c.1, 3.c.2 and 3.c.3 make use of the same dynamic range, albeit with a higher 

variability observed at shorter distances (Figure 3.c.1). No significant difference is observed when 

comparing the correlations between signal and composition for the corrected and non-corrected 

scenarios. This could have been expected as the scaling step of the dynamic range correction is a 

linear operation, while the rounding operation has nearly no effect on the correlations. 

The orange-to-blue color gradient represents the variability in fat content and its influence on the 

acquired spectra. In general, an increased fat content results in stronger light scattering due to 

the higher number of fat particles. At short distances, there is an overall increase of light scattered 
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into the detection fiber with increasing fat content of the milk sample over nearly the entire 

wavelength range (Figures 3.a.1 and 3.c.1), in line with the observation reported by Crofcheck et 

al. (2002). This translates into a positive correlation between the fat content and the SRS signal 

intensity at short distances which is quasi-constant (𝑟 > 0.5, except for the water absorption 

band between 1360 and 1500 nm) over the entire wavelength range (Figures 3.b.1 and 3.d.1). 

Conditioned to the influence of fat particles, a weak positive correlation can be observed between 

the protein content and the signal intensity for short distances (𝑟 > 0.35, except between 1360 

and 1500 nm). This relationship can be mainly attributed to the typical genetic correlation 

between the protein and fat content of milk originating from individual cows (Soyeurt et al., 

2007). A weak negative correlation (𝑟 < 0.25, except between 1360 and 1500 nm) was found 

between milk lactose content and the SRS spectra. The correlation coefficients are nearly the 

opposite of the ones for fat, suggesting a negative correlation between the lactose and fat 

concentration in milk samples. None of the correlation coefficients display clear absorption peaks 

linked to the dry matter components of raw milk.  

In contrast to the shorter illumination-to-detection distances, the correlation between the signal 

intensity and fat, protein and lactose content at longer distances is less consistent over the 

measured wavelength range (Figures 3.b.3 and 3.d.3). Similar correlations as those at short 

distances can be found at longer distances for spectral regions where absorption is relatively low 

(1030 to 1120 nm). However, for the other spectral regions where absorption is more dominant, 

the correlation changes. For fat, this correlation is negative for almost all wavelengths above 1150 

nm. This phenomenon has also been described by Crofcheck et al. (2002) and Kumar and Schmitt 

(1996). Nonetheless, the signal intensity of measured SRS spectra at long distances is mainly 
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limited by the water absorption, as the longer travel path of the light increases the chance of 

absorption. Moreover, it is observed that at shorter illumination-to-detection distances some 

spectral signal can be measured in the wavelength range between 1390 and 1690 nm, while this 

signal is almost completely lost at the longest illumination-to-detection distance (4 mm). This 

wavelength range from 1390 to 1690 nm overlaps largely with the absorption bands of lactose 

linked to the O-H and C-H stretching vibrations (Scheibelhofer et al., 2018). It was hypothesized 

that a larger illumination-to-detection distance would capture the increased interaction of light 

with milk serum, carrying more information about lactose content. However, due to the loss of 

signal intensity, the prediction performance of lactose at these longer distances may be 

compromised. 

3.2 Development and validation of the prediction models 

The sample dataset was split into a calibration (n = 120) and test set (n = 66). The descriptive 

statistics of the composition of these sets and their correlations are summarized in Table 1. Both 

populations were compared with a two-sample t-test, showing there was no significant difference 

(α = 0.05) between them. Therefore, the data splits made by the duplex algorithm are 

representative of the whole dataset, which is crucial for building a robust prediction model (Saeys 

et al., 2008). In addition, both groups have composition values and variability in line with those 

of the cow population that is monitored in the Flemish milk recording programs (Aernouts et al., 

2011). 

Table 1. Basic statistics and Pearson correlations for the main milk components in the calibration 

and test sets. 
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Component 

Calibration (n = 120)   Test (n = 66) 

Basic statistics (% wt/wt)  Pearson corr.  Basic statistics (% wt/wt)  Pearson corr. 

Mean SD Min Max   Fat Protein   Mean SD Min Max   Fat Protein 

Fat 4.04 0.58 2.49 5.34  1 -  3.99 0.66 2.46 5.46  1 - 

Protein 3.37 0.25 2.55 3.98  0.41 1  3.37 0.28 2.74 4.03  0.46 1 

Lactose 4.69 0.13 4.38 5.07   -0.17 -0.19   4.71 0.15 4.31 5.05   -0.21 -0.24 

 

Figure 4 shows the prediction performance on the test set of the different models for fat (4.a), 

protein (4.b) and lactose (4.c), for both the non-corrected (4.a.1, 4.b.1 and 4.c.1) and corrected 

(4.a.2, 4.b.2 and 4.c.2) scenarios. The results are plotted for a range of latent variables of the PLSR 

models, including the number of latent variables giving the best performance (lowest RMSECV 

and RMSEP) for both the non-corrected and corrected scenario. By considering a range of latent 

variables, the effect of local minima can be separated from the actual trends to evaluate the 

model performances for a certain component and scenario. 

The illumination-to-detection distance with the lowest RMSEP is represented with a squared 

point, while all other distances that show no significant difference in their prediction performance 

are indicated with a triangular point. Distances that display a significantly worse performance are 

indicated with a hollow circular point. 
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Figure 4. Plots of the root-mean-square error of prediction (RMSEP) of the milk composition 

content for the test set without dynamic range correction for (4.a.1) fat, (4.b.1) protein, and (4.c.1) 

lactose and with correction (4.a.2, 4.b.2 and 4.c.2). The minimum RMSEP values are indicated by 

squares, while triangles indicate no significant (α = 0.05) differences between the prediction 

residuals of each scan distance and the minimum. LV = number of latent variables used by the 
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model, with a selected range of latent variables around the optimal number to not overcrowd the 

figure. 

For all three milk components, good predictions are obtained at their best prediction distance, 

with RMSEP values under 0.13% (wt/wt), for protein and lactose, and lower than 0.10% (wt/wt) 

for fat. In general, it can be observed that for the non-corrected scenario, the lowest RMSEP 

values for all components are obtained at relatively short distances. This supports the hypothesis 

that the poorer use of the dynamic range of the spectrometer at the longer illumination-to-

detection distances penalizes the milk composition predictions based upon these measurements 

when compared with shorter distances. This may be attributed to the reduced SNR resulting from 

a suboptimal use of the dynamic range at longer distances.  

To exemplify, better prediction results are observed when short illumination-to-detection 

distances (1.3 – 2.6 mm) are selected in the non-corrected scenario for fat (Figure 4.a.1). Once 

the dynamic range correction is applied (Figure 4.a.2), no significant differences in the distance 

used for fat composition prediction can be observed, except for short or extremely long distances. 

The entire span of distances from 1.8 to 3.8 mm performs equally well for predicting the fat 

composition when the optimal number of latent variables (8 and 9 respectively) is selected.  

For protein, the difference between scenarios is distinct (Figures 4.b.1 and 4.b.2). The non-

corrected scenario favors shorter illumination-to-detection distances (1.1 – 3.1 mm), while the 

dynamic range correction scenario prefers distances from 2.2 to 4 mm, for the optimal number 

of latent variables (9 and 13 respectively). 
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For lactose, the difference in the distance with the lowest RMSEP selected between correction 

scenarios is less significant (Figures 4.c.1 and 4.c.2). In the non-corrected scenario, adequate 

distances to predict lactose are found in the 1.1 to 1.6 mm interval with the best performance at 

1.1 mm. The dynamic range correction slightly increased the size of this interval (1.1 – 1.9 mm) 

and the best performance moved to 1.5 mm. The PLSR models for lactose had the highest 

complexity (18 and 19 latent variables respectively). As seen in Figure 3, only the SRS data 

acquired at short illumination-to-detection distances provide useful signals between 1390 and 

1690 nm. This wavelength interval is relevant for the prediction of lactose, as it carries 

information related to absorption bands of O-H and C-H functional groups (de Lima et al., 2018). 

That is likely the reason why the best lactose predictions are obtained at short distances, even 

after implementing the dynamic range correction. Therefore, our hypothesis that lactose 

predictions would improve based on SRS spectra collected at longer distances, acquiring light that 

penetrated deeper into the milk sample, has been disproven. 

Considering the previous results, there is no overlap between the best protein and lactose 

prediction distance ranges, while the determination of fat percentage seems to perform well in 

the 1.8 to 3.8 mm range disregarding the selected distance. Therefore, to obtain the best results 

in raw milk quality analysis, it is recommended to combine a short illumination-to-detection 

distance (between 1.1 to 1.8 mm) to measure lactose and a long distance (between 2.2 and 3.8 

mm) to measure fat and protein. This disposition will allow for the simultaneous determination 

of fat, protein and lactose content while minimizing the number of fibers and measurement time. 

The requirements of the International Committee for Animal Recording (ICAR) for on-farm milk 

analyzers are used to evaluate the predictive capabilities of the approach in different on-farm 
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situations. As the RMSEP values for protein and lactose were lower than 0.13% (wt/wt) and those 

for fat were below 0.10% (wt/wt), which is well below the ICAR limits for at-line (0.2%) and in-line 

(0.25%) milk analyses (ICAR, 2017b). 

The current approach was limited by the loss of signal intensity with increasing distance, due to 

the fixed illumination intensity and spectrometer integration time employed for all spectral 

acquisitions. Increasing the integration time as distance increases could overcome this, but it 

would result in an excessively long measurement time, where the morphology of the sample 

could change significantly during the measurement. Therefore, to counteract this light loss, it is 

recommended to focus on augmenting the injected light into the sample for larger illumination-

to-detection distances to flatten the exponential-like shape of the measured SRS profiles. This 

physical compensation is expected to enhance the SNR at longer illumination-to-detection 

distances, which could not be obtained with the dynamic range correction implemented in this 

study. It is hypothesized that this would especially improve the prediction capability for protein, 

as this measurement performs better at longer distances. Furthermore, it would allow a more 

thorough examination of lactose prediction capabilities, as the spectral signal and SNR between 

1390 and 1690 nm will be higher at far illumination-to-detection distances when illumination 

intensities increase for farther distances. 

Moreover, it should be noted that this study was limited to the prediction of the milk components 

using the SRS spectra collected at single illumination-to-detection distances. Even better 

prediction performances might be obtained by employing a multiblock PLS approach (Biancolillo 

and Næs, 2019; Liland et al., 2016) combining the information acquired at different distances to 

perform a low-level data fusion (Cocchi, 2019; Hayes et al., 2023). This approach not only 
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improves performance but also allows for individual examination of the redundancy or 

uniqueness of each distance or block of distances (Westerhuis et al., 1998). 

As currently presented, this technology can be implemented in-line within milking machines or 

dairy processing lines to produce autonomous, non-destructive milk quality predictions. 

Nevertheless, exploring the applicability of this approach to other turbid foods would be of 

interest, serving to validate its use in the field of food quality control.  
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4 Conclusions 

This study has assessed the applicability of a fiber-optic LW-NIR SRS approach for raw milk quality 

analysis. The PLSR prediction accuracy using the best illumination-to-detection distances was 

good for all three milk components (RMSEP < 0.10% for fat, < 0.13% for protein and lactose) as 

these performances meet the ICAR guidelines for in-line and at-line milk analysis systems. With 

regards to illumination-to-detection distance performance, two regions of interest have been 

identified: (1) between 1.1 to 1.8 mm for lactose and (2) between 2.2 and 3.8 mm for fat and 

protein. A fiber-optic SRS reflectance probe including these distances would allow to 

simultaneously determine the fat, protein, and lactose content of raw milk with high accuracy. 
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7 Supplementary materials 

For each milk component, number of latent variables in the selected range and correction 

scenario combination, the best illumination-to-detection distance was selected as the one with 

the lowest RMSECV. Next, for each combination, the testing was conducted to identify the other 

29 distances that resulted in a prediction of the milk component that was not significantly worse 

compared to the best distance. To this end, one-sided paired T-tests (α = 0.05) were applied to 

the squared residuals of the cross-validated samples of the calibration set to compare the best 

distance to the other distances (Cederkvist et al., 2005). 

Good predictions were achieved for all three milk components at their optimal cross-validation 

distance, yielding RMSECV values below 0.10% (wt/wt) for fat, less than 0.14% (wt/wt) for 

protein, and under 0.12% (wt/wt) for lactose. In the non-corrected scenario, the lowest RMSECV 

values for all components were observed at relatively short distances, attributed to the poorer 

SNR at longer illumination-to-detection distances. 

In this scenario, shorter illumination-to-detection distances (1.2 – 2.5 mm) displayed better 

prediction results for fat (Figure 5.a.1), whereas the significance of different distances was 

expanded (1.6 – 4 mm) in the corrected scenario (Figure 5.a.2), for 9 latent variables in both cases.  

Regarding protein (Figures 5.b.1 and 5.b.2), the non-corrected scenario favored distances within 

the range of 1.1 – 2.8 mm, whereas the corrected scenario had the best performance in distances 

between 2.1 – 4 mm, with an optimal number of latent variables of 9 and 13, respectively. 

For lactose (Figures 5.c.1 and 5.c.2), the non-corrected scenario identified suitable prediction 

distances within the interval of 1.1 to 1.5 mm, with the best performance achieved at 1.2 mm. 
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The application of dynamic range correction slightly expanded this interval to 1.1 – 1.9 mm, while 

the peak performance shifted to 1.5 mm. The PLSR models for lactose exhibited the highest 

complexity, requiring 18 latent variables 

 

Figure 5. Plots of the root-mean-square error of cross-validation (RMSECV) of the milk 

composition content for the calibration set without dynamic range correction for (5.a.1) fat, (5.b.1) 

protein, and (5.c.1) lactose and with correction (5.a.2, 5.b.2 and 5.c.2). The minimum RMSECV 
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values are indicated by squares, while triangles indicate no significant (α = 0.05) differences 

between the cross-validation residuals of each scan distance and the minimum. LV = number of 

latent variables used by the model. 
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