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Abstract 

As spectral imaging techniques are becoming more prominent in science, advanced image 

segmentation algorithms are required to identify appropriate domains in these images. We present 

a version of image segmentation called manifold projection image segmentation (MPIS) that is 

generally applicable to a broad range of systems without the need for training because MPIS uses 

unsupervised machine learning with a few physically motivated hyperparameters. We apply MPIS 

to nano-XANES imaging, where X-ray Absorption Near Edge Structure (XANES) spectra are 

collected with nanometer spatial resolution. We show the superiority of manifold projection over 

linear transformations, such as the commonly used Principal Component Analysis (PCA). 

Moreover, MPIS maintains accuracy while reducing computation time and sensitivity to noise 

compared to the standard nano-XANES imaging analysis procedure. Finally, we demonstrate how 

multimodal information, such as X-ray Fluorescence (XRF) data and spatial location of pixels, can 

be incorporated into the MPIS framework. We propose that MPIS is adaptable for any spectral 
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imaging technique, including Scanning Transmission X-ray Microscopy (STXM), where the 

length scale of domains is larger than the resolution of the experiment. 

TOC Graphic 

  

https://doi.org/10.26434/chemrxiv-2023-w4821 ORCID: https://orcid.org/0000-0001-6738-7930 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-w4821
https://orcid.org/0000-0001-6738-7930
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

1. Introduction 

The increased popularity in various scientific fields of utilizing high-throughput imaging 

techniques, especially spectral imaging experiments, has benefited from advanced image 

segmentation algorithms so that researchers can identify regions in the image belonging to the 

same domain, object, phase, etc. Image segmentation methods that utilize multimodal 

characterization measurements as input, which potentially could be high-dimensional, are 

especially beneficial for the scientific community1-4. However, most common image segmentation 

algorithms utilize either hand-crafted rules or convolutional neural networks, both of which can 

suffer from lack of generalizability. Moreover, not enough training data or unreliable data 

simulations may make inference unreliable when using neural networks. An alternative is to utilize 

manifold projection and clustering based on spectral similarity rather than deep learning, 

effectively performing semantic image segmentation. This manifold projection image 

segmentation, which we will refer to as MPIS, has seen success when applied to mass spectroscopy 

images5 and flow cytometry data6. 

Here, we apply MPIS to a hyperspectral imaging technique called nanoscale X-ray 

absorption near edge structure (nano-XANES)7-12. XANES is a common experimental technique 

in materials science, chemistry, and biology as it is sensitive to local electronic structure around a 

chosen atomic species13. The goal of nano-XANES imaging is often to generate a compositional 

map of the local coordination, or phase, of the element of interest. The most common practice to 

make these maps is to perform linear combination fitting (LCF) to a reference library of spectra at 

every pixel, treating the image as an ensemble of independent XANES spectra and ignoring the 

spatial location of each spectrum. The analysis of XANES spectra using LCF is highly constrained 

by the prior knowledge of the system as well as the limited information encoded in the spectra. 

Uncertainty in the system can lead to an overly large library with poor linear independence. Only 
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after LCF are the fit results used to construct the spatial phase maps. This approach is slow by 

requiring many fits, and any errors in the LCF fitting process are propagated when creating the 

spatial maps. 

We show that MPIS has three major benefits compared to the above standard practice. 

First, by implementing MPIS, we flip the order of generating spatial domains and identifying the 

compositions of those domains. By switching this order and decoupling the image segmentation 

from the LCF, one can substitute improved or specialized classification or regression techniques 

as needed while maintaining persistent image segmentation, or domain identification, via MPIS. 

Therefore, phase maps are independent of the selection of a reference library and any errors in the 

LCF results. Second, MPIS can cluster the reference library in the context of the experimental 

spectra. Because the reference library can be a large set of numerically similar spectra, researchers 

often report LCF fits by grouping reference spectra by chemical class. MPIS instead provides a 

data-driven way to group references together. 

Furthermore, MPIS is adaptable for encoding multimodal data into the image segmentation 

pipeline. In almost all nano-XANES imaging studies, XRF maps are simultaneously acquired for 

every XANES spectrum, producing a higher dimensional dataset enabling both spectroscopic and 

elemental analysis. We show that MPIS applied to an augmented encoding of both XANES and 

XRF spectra can better separate low signal-to-noise from high signal-to-noise data. Furthermore, 

encoding the position of the pixel into MPIS can generate smaller domain regions – divided by 

spatial location rather than global groupings – that is more akin to instance image segmentation, 

for example separating out each physical particle in the same phase. Finally, to force sparsity in 

the fits, the standard LCF practice uses stepwise regression, i.e., performing regression on all 

enumerated subsets of the reference library. We instead substitute stepwise regression with 
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LASSO regression, as presented in Jahrman et al.14, to speed up computations. Finally, we perform 

LCF on the cluster-averaged spectra specified by MPIS. By having a data-informed way to average 

spectra together without losing spatial resolution, our LCF is more robust against noise. 

We propose MPIS can be broadly applied to a wide range of spectroscopy techniques, 

including multimodal experiments and other imaging techniques such as Scanning Transmission 

X-ray Microscopy (STXM). While we demonstrate MPIS on a nano-XANES image, MPIS can be 

used to cluster any ensemble-based measurement because the pixel location in the image is 

encoded as optional multimodal information. Furthermore, MPIS decreases the chances of 

overfitting by requiring fewer, and physically meaningful, hyperparameters compared to deep 

learning. Finally, MPIS increases the reliability and efficiency of high-throughput analysis by 

speeding up computations and reducing sensitivity to noise in subsequent analysis. 

 

2. Methods 

2.1 Experimental Methods 

Our sample is composed of Lithium iron phosphate (LFP), pyrite, hematite, and stainless 

steel. The Lithium iron phosphate (LFP) and pyrite (Pyr) samples were purchased from Sigma 

Aldrich, St Louis, MO. Hematite (Hem) and stainless-steel (SS) nanoparticles were obtained from 

US Nano Research (Houston, TX, USA). A heterogeneous mixture of the above-mentioned 

particles was created by physically mixing in acetone, followed by ultrasonication for 5 minutes. 

About 5 mL of the dispersed mixture was drop-casted onto a silicon nitride membrane (Norcia, 

Edmonton, Canada) and the solvent was dried in air. All data was collected at the Hard X-ray 

Nanoprobe (HXN) Beamline at National Synchrotron Light Source II (NSLS-II) at Brookhaven 

National Laboratory15, 16. A detailed methodology for nano-XANES acquisition was previously 

published.12 
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We measured Fe K-edge XANES using nano-XANES imaging, where our data consist of 

a 3D image with 155 x 160 spatial pixels and just over 70 photon energies between 7.08 to 7.20 

keV, or approximately 25,000 spectra. Further processing of the stack was performed via the 

XMIDAS program17. The energy stack was first spatially aligned using the image registration tool 

in XMIDAS that uses the PyStackReg package18. Spectra are preprocessed via normalization 

and alignment using the standard procedures as described in Ref. 19. Finally, the spectra were 

assembled to create a 3D array (Fe energy stack) for XANES analysis. For each scan point, an 

energy X-ray Fluorescence spectrum was collected with a three-element silicon drift detector 

(Vortex, Hitachi Inc) positioned at 90 deg to the sample. The XRF spectra were processed using 

the PyXRF software20 to compute elemental maps. 

 

2.2 Computational Methods 

Uniform Manifold Approximation and Projection (UMAP)21 was implemented using the 

umap-learn Python package. UMAP requires two main hyperparameters – the number of 

neighbors (to control cluster sizes and thus global versus local similarity) and the minimum 

distance between points in the cluster (to control how tightly packed the clusters are). For all 

UMAP spaces, we set the minimum distance to zero (for the tightest-packed clusters possible). We 

set the number of neighbors to be between 20 and 80. Changes with this hyperparameter within a 

reasonable range (20 to 80) did not change the clustering results. 

Principal Component Analysis (PCA)22, k-means clustering, and dbscan were implemented 

using sklearn. Although PCA does not require any hyperparameters, a scree plot was used to 

determine the number of principal components to keep given a specified threshold of explained 

variance. The value of k (the number of clusters) in k-means was determined to be between 3 and 
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6 such that it appeared to qualitatively distinguish the original nano-XANES image while 

reasonably explaining the reduced space. The clustering approach dbscan uses the epsilon 

hyperparameter, which we set to be one for all UMAP spaces. We qualitatively checked that this 

epsilon value appropriately labelled the UMAP clusters by visualizing the UMAP space color-

coded by the dbscan labels. 

 

3. Results and Discussion 

A two-dimensional display of our sample, colored by maximum XANES intensity (and 

thus identifying regions with the highest photon counts) is shown in Fig. 1, where background 

spectra are filtered out such that only the sample region is examined. This sample – and thus dataset 

– is the same as the one found in Pattammattel, et al.17 Each “pixel” (150 nm wide) represents a 

processed XANES spectrum. 

 

 

Figure 1 Nano-XANES map, color-coded by the maximum spectral intensity of the Fe K-edge 

XANES spectra (to indicate the most likely places with sample due to the high photon counts). 

Each pixel is 150 nm. Note that background spectra are filtered out. 
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Fig. 2 demonstrates our MPIS procedure in relation to both the standard nano-XANES 

analysis and LCF procedures. To start the MPIS procedure, we first apply Principal Component 

Analysis (PCA)22 to the pre-processed ensemble of XANES spectra. Next, we have the option to 

encode multimodal data. Either we exclusively take the coefficients of the six highest principal 

components (determined by a scree plot, see Methods), or we use the joint encoding of those 

principal component coefficients with multimodal information. 

To be specific, the multimodal encoding starts with an array of the principal component 

coefficients, i.e.,  

𝑆(𝑥, 𝑦) = (𝑃𝐶1, … , 𝑃𝐶6)                                              (1) 

 Then, the spatial location and/or XRF of the four elements are appended to that array. In its most 

complex case, where both spatial location and XRF are jointly encoded, the encoding takes the 

form of the following vector: 

𝑆(𝑥, 𝑦) = (𝑃𝐶1, … , 𝑃𝐶6, 𝐼𝑃
𝑋𝑅𝐹, 𝐼𝑆

𝑋𝑅𝐹, 𝐼𝐶𝑟
𝑋𝑅𝐹, 𝐼𝐹𝑒

𝑋𝑅𝐹, 𝑥, 𝑦)                           (2) 

where the first six components belong to the coefficients of the first six principal components, the 

next four components are the normalized XRF data (each of the P, S, and Cr XRF maps are divided 

by the Fe XRF map so that every pixel is normalized by total Fe fluorescence), and the last two 

components belong to the x and y positions (which are scaled to be between 0 and 1). The relative 

importance of the different components is then tuned by two new hyperparameters α and β 

dictating the informational strength or the importance of the XRF and spatial location, respectively. 

Thus, the above encoding is implemented as follows:  

𝑆(𝑥, 𝑦) = (𝑃𝐶1, … , 𝑃𝐶6, α𝐼𝑃
𝑋𝑅𝐹, α𝐼𝑆

𝑋𝑅𝐹, α𝐼𝐶𝑟
𝑋𝑅𝐹, α𝐼𝐹𝑒

𝑋𝑅𝐹, 𝛽𝑥, 𝛽𝑦)                     (3) 

where α and β represent an independent scaling of importance for each distinct multimodal 

measurement. This procedure can be easily extended to encode other types of multimodal 
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information. 

 

Figure 2 Our manifold projection image segmentation (MPIS) and linear combination fitting 

(LCF) pipeline for analyzing our nano-XANES image. 

We then take the (multimodal) encoding and pass it to a nonlinear dimensionality reduction 

routine to identify spectral clusters. In general, applying dimensionality reduction before clustering 

increases the reliability of the clustering labels by combating the “curse of dimensionality” (as 
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opposed to clustering applied directly to the spectra). We compared using a linear routine – namely 

PCA – to a nonlinear routine – namely Uniform Manifold Approximation and Projection 

(UMAP)21 – when performing the dimensionality reduction step of MPIS. Prior work has shown 

that nonlinear dimensionality reduction, compared to linear, does better at disentangling the 

inherently nonlinear spectral features in X-ray absorption spectroscopy23, 24, albeit linear routines 

are often sufficient25, 26. However, maintaining PCA as a preparation step for UMAP speeds up 

UMAP and filters out unimportant noise in the spectra, as shown in Fig. S1. Although we chose 

PCA as our linear routine, other linear methods such as non-negative matrix factorization (NMF)27, 

could also be used. 

While a center-of-mass-based clustering algorithm such as k-means28 pairs well with PCA, 

we opted for a density-based cluster algorithm called dbscan29 for the nonlinear embedding via 

UMAP. To see the effectiveness of UMAP and dbscan for clustering as opposed to PCA and k-

means, see Fig. 3. The left panels in Fig. 3 show distinct and well separated clusters when UMAP 

and dbscan are used as opposed to overlapping or non-separated clusters using PCA and k-means 

Moreover, k-means needed five clusters to appropriately group the data in the PCA space, which 

is larger than the expected four known phases. Although Fig. 3 shows a two-dimensional 

projection of the data, we used six principal components in our MPIS pipeline as six principal 

components explained 97% of the variance of the data. See Figs. S2-5 for the triangle plots that 

visualize the PCA and UMAP hypercubes we used as well as other supplementary figures relating 

to MPIS. 
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Figure 3 (top) k-means clustering on the first two principal components. (bottom) dbscan 

clustering on a two-dimensional UMAP embedding. The clusters and labeling in the two-

dimensional UMAP representation not only match expectations, but they are easier to see and thus 

interpret than the k-means clusters on the top two PCA components. 

 

Finally, we identified the composition of each cluster by performing linear combination 

fitting (LCF) to a reference library using the MPIS cluster-averaged spectra. To do so, we utilized 

the procedure presented in Jahrman, et al.14, involving Least Absolute Selection and Shrinkage 

Operator (LASSO) regression instead of stepwise regression. However, instead of bootstrapping 

our data to generate estimates in uncertainty, we utilized leave-one-out validation. Specifically, 

we refit each spectrum with one reference spectrum in the library removed at a time and noted the 

changes in the fit results. In addition to speeding up computation time by avoiding stepwise 

regression, we reduced the total number of fits by performing LCF on the average spectrum for 

each cluster rather than the spectrum at every pixel individually. See the Supplementary 

Information for details on LASSO regression. In brief, hyperparameters were chosen via 5-fold 

cross validation. 
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Our reference library for LCF was composed of both the known phases – LiFe(II)PO4 

(LFP), pyrite, stainless steel, and hematite – and additional mineral phases to model a typical 

experiment, namely HFO (hydrous ferric oxyhydroxide), goethite, maghemite, magnetite, Fe3P, 

Fe(III)PO4, and Fe(III)SO4
12. Specifically, hematite, goethite, maghemite, and HFO are all oxides 

and have very similar spectra, while Fe3P has the same oxidation state as elemental Fe, which is 

the same as stainless steel. The selection of this library was based on a quick XRF measurement 

and the availability of experimental reference spectra. Moreover, this reference library represents 

a realistic uncertainty for chemical speciation of Fe-phases in heterogeneous samples with a priori 

knowledge. 

 

Figure 4 Reference chemical classes. Often, LCF results are reported using the chemical class of 

the references. These classes are usually created using chemical knowledge of the system. Instead, 

we offer a completely data-driven way one can generate these classes, specifically by projecting 

references onto the UMAP space determined by the experimental spectra. 

 

Finally, we reported LCF fit results by the chemical classes for the references, which we 

developed by projecting the reference spectra onto the UMAP space of the experimental data, as 

shown in Fig. 4. We divided the references from the same cluster if the XRF would be able to 

distinguish between references. For example, while Fe3P and stainless steel appeared in the same 
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cluster, they are theoretically distinguishable using both the P and Cr XRF data. Following this 

procedure, all references were split into their own class besides the “oxides” – hematite, 

maghemite, HFO, and goethite – which were grouped into one combined class. To see the 

correlation matrix for references, see Fig. S6. 

We hypothesized that applying MPIS and LASSO regression rather than pixel-by-pixel 

stepwise regression would speed up computation time while maintaining accuracy. We ran both 

procedures and found MPIS took about 30 seconds compared to the standard pixel-by-pixel 

stepwise regression procedure of enumerating all quaternary combinations of 11 references, which 

took 4 minutes (using 8 GB RAM on a 2-core Intel i5 CPU). However, the time complexity of 

stepwise regression fits grows as O(nk) given the reference library size n and the combination size 

k, so a larger reference library will greatly increase computation time. 

We then compared the effect of encoding the XRF and spatial location of every spectrum 

into MPIS on the LCF results, as shown in Fig 5. The uppermost left panel shows the LCF results 

with no multimodal encoding in MPIS. We compared predicted coefficients using the “standard” 

approach (non-negative least squares for every pixel), likewise using “LASSO” for every pixel, 

and then using “MPIS” and predicting concentrations from cluster averages. These coefficients 

were scored against the “true” concentrations, which were obtained by non-negative least squares 

per pixel using only the four known phases in the reference library (rather than all 11 as in the 

“standard” case).  
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Figure 5 (a) Effects on the clusters when encoding XRF data and spatial location into the MPIS 

pipeline. (b) The resulting 2D phase maps, colored by cluster. (c) Score of linear combination 

fitting (LCF) predictions via the standard pixel-by-pixel analysis (“Standard”), pixel-by-pixel 

LASSO regression (“LASSO”), and LASSO regression via MPIS (“MPIS”). The upper leftmost 

panel shows no joint information encoding. 

 

In general, MPIS scored just as well as the standard approach (if the spatial strength is not 

too large) but in less time. Moreover, by identifying domains, fits are less sensitive to uncorrelated 

noise in the dataset. To demonstrate this effect, we augmented the experimental spectra with 

additional uncorrelated Gaussian noise with increasing intensity and compared domain 

identification using the standard pixel-by-pixel analysis with domains identified by MPIS, as 

shown in Fig. 6. Because the standard procedure constructs phase maps after LCF, there are 

spurious single-pixel phases when the noise is large. However, MPIS is more robust against these 

fluctuations. Moreover, generating cluster-averaged spectra via MPIS is an informed way to 

average noisy spectra together for LCF fits without needing to lose resolution by Gaussian blurring 

the image. Furthermore, when noise is so high that MPIS on just the spectra fails, encoding XRF 
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and spatial location into MPIS recovers the analysis, as shown in Fig. S7. Fig. S8 compares the 

average error in predicting concentrations. 

 

 

Figure 6 Adding noise (as a percentage of spectral intensity) to the experimental spectra causes 

pixel-by-pixel analysis to have small unphysical fluctuations in the phase maps, resulting from 
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uncertain LCF fits (top row). By applying MPIS (second row), the phase maps (third row) are 

more robust to noise, demonstrated by the consistent LCF results (bottom row). 

 

5. Conclusions 

The standard procedure for analyzing nano-XANES imaging is performing linear 

combination fitting (LCF) via stepwise regression for every pixel independently and then 

constructing phase maps using the fit results. Instead of stepwise regression, we encourage sparsity 

by performing LASSO regression to LCF onto our reference library. LASSO regression reduces 

computation time by decreasing the required number of fits. We also implement manifold 

projection image segmentation (MPIS) to cluster experimental spectra first before performing 

LCF, enabling LCF to only identify the composition of the phases rather than informing the spatial 

maps. By identifying domains first, we decouple the reliance on correct LCF fit results for 

appropriate phase maps, which can be greatly impacted by noise. The other benefit to using MPIS 

rather than the traditional deep learning approaches is that it requires fewer hyperparameters 

(which avoids overfitting), all of which are physically motivated, and can be more computationally 

efficient. Moreover, MPIS is adaptable to include multimodal data, which we demonstrated by 

encoding X-ray Fluorescence and spatial location of pixels in addition to the XANES spectra. 

Because the spatial location of pixels is encoded as additional information, the basic procedure of 

MPIS can be applied to any ensemble-based spectroscopy measurements where clustering is 

important. Furthermore, we propose that MPIS can be applied to any spectral imaging 

measurement, such as Scanning Transmission X-ray Microscopy (STXM), where the experimental 

resolution (pixel size) is smaller than the intrinsic length scale of domains. 
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Linear combination fitting objective function 

Our linear combination fitting (LCF) objective function is: 

 

𝑐𝑗
̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑐𝑗⃗⃗ ⃗⃗ [ 

1

2
||𝑦𝑗⃗⃗⃗⃗ − 𝑅𝑇 ⋅ 𝑐𝑗⃗⃗⃗||

2

2

+ λ1 ||𝑐𝑗⃗⃗⃗||
1

+ λ2 ||1 − Σ𝑖𝑐𝑖𝑗||
2

2

 ] 

 

where y is the unknown experimental spectra, R is the matrix composed of reference spectra, and 

c is the coefficients contributing to the spectra. The first term represents reconstruction error (via 

a L2 norm, which is equivalent to a Euclidean distance metric), and the second term is the 

regularizer, modified by a Lagrange multiplier. The regularization was set to be the L1 norm to 

encourage sparsity. These terms effectively constitute LASSO regression. However, the input for 

each spectrum is the same – specifically the reference set R – so each spectrum is fit independently 

of the others. 

The hyperparameters for the fits were found via 5-fold cross-validation on a dataset 

composed of linear combinations of reference spectra (with forced sparsity and various levels of 

noise introduced). Specifically, we found a λ1 value of 0.0006 and λ2 value of 10 to be best, with 

consistent convergence onto a solution. Again, note that this objective function is minimized for 

every spectrum (or data point) and is therefore not trained on any training dataset as the input (the 

reference set R) is the same for every fit. To minimize the above objective function, we used 

scipy’s minimize function with bounds on the weights to be in the range 30. Moreover, we used 

scipy’s built-in Sequential Least Squares Programming (SLSQP) optimization method, which is 

a quasi-Newton method. 
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Fig. S1 UMAP spaces with and without PCA processing. UMAP applied to the first 6 principal 

components produces clusters that are very similar to the clusters made when UMAP is applied 

directly to the spectra, both on the raw experimental data and with augmented noise added to the 

spectra. 
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Fig. S2 PCA triangle plot of all two-dimensional projects of the six-dimensional hypercube of the 

top principal components of the spectral dataset. Six dimensions were chosen because it takes the 

top six principal components (PCs) to explain 97% of the variance. 
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Fig. S3 Scree plot of experimental spectra. It takes 6 PCs to explain 97% variance (dashed line). 
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Fig. S4 First four principal components of the measured spectra. 
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Fig. S5 Four-dimensional UMAP hypercube (applied to the top PCA components), with two-

dimensional projections (color-coded by density) shown in the bottom left corner. The upper right 

corner is composed of the same projections (transposed so that the upper and lower triangles 

match), except instead color-coded by the dbscan clustering labels. 
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Fig. S6 Correlation of reference spectra. (a) 1000 randomly sampled experimental spectra (which 

passed the background filter) normalized following the standard procedure in Athena 19. (b) 

Reference spectra used in this study (11 total). (c) Variation of both the 1000 experimental spectra 

and the reference spectra. (e) Mean squared error between the original spectra and the fitted (via 

least squares) spectra of both the experimental data and true linear combinations of references 

(with random normal noise with a variance of 3% of the spectral intensity to model true 

experimental noise).  
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Fig. S7 Augmented MPIS versus noise. When noise is set to 10%, only three clusters appear (left 

column). However, adding XRF and spatial encoding recovers the lost cluster (right column). 
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Fig. S8 Error in predicted concentrations versus noise (on a dataset composed of true linear 

combinations of references) for both our MPIS cluster-averaged pipeline and the standard 

individual spectrum analysis. The variance in predictions decreases when spectra are averaged 

together in an informed way via MPIS. 
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