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Abstract 28 

Lipophilicity is a physicochemical property with wide relevance in drug design and is 29 

applied in areas such as food chemistry, environmental chemistry, and computational biology. This 30 

descriptor strongly influences the absorption, distribution, permeability, bioaccumulation, protein-31 

binding, and biological activity of bioorganic compounds. Lipophilicity is commonly expressed 32 

as the n-octanol/water partition coefficient (PN) for neutral molecules, whereas for molecules with 33 

ionizable groups, the distribution coefficient (D) at a given pH is used. The logDpH is usually 34 

predicted using a pH correction over the logPN using the pKa of ionizable molecules, while often 35 

ignoring the apparent ionic partition (PI
app) because of the challenge of predicting the partitioning 36 

of the charged species and/or related species (e.g., ion-pairs, counterions, molecular aggregates). 37 

In this work, we studied the impact of PI
app on the prediction of both the experimental lipophilicity 38 

of small molecules and experimental lipophilicity-based applications and metrics such as lipophilic 39 

efficiency (LipE), distribution of spiked drugs in milk products, and pH-dependent partition of 40 

water contaminants in synthetic passive samples such as silicones. Our findings show that better 41 

predictions are obtained by considering the apparent ionic partition, whereas ignoring its 42 

contribution can lead to inadequate experimental simplifications and/or computational predictions. 43 

In this context, we developed machine learning algorithms to determine the cases that PI
app should 44 

be considered. The results indicate that small, rigid, and unsaturated molecules with logPN close 45 

to zero, which present a significant proportion of ionic species in the aqueous phase, were better 46 

modeled using the apparent ionic partition (PI
app). In addition, we validated our findings using a 47 

test and two external sets, which included small molecules and amino acid analogs, where the 48 

logistic regressions, random forest classifications, and support vector machine models predicted 49 

better formalism to determine the logDpH for each molecule with high accuracies, sensitivities, and 50 

specificities. Finally, our findings can serve as guidance to the scientific community working in 51 

early-stage drug design, food, and environmental chemistry who deal with ionizable molecules, to 52 

determine a priori which pH-dependent lipophilicity profile should be used in their research and 53 

applications depending on the structure of a substance. 54 
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Introduction 58 

Lipophilicity has been a relevant physicochemical property in pharmaceutical research 59 

since the late 1800s, where the toxicity and anesthetic properties of several substances have been 60 

correlated to their solubilities in water and oil/water partition coefficients.1 In addition, this 61 

property has also been associated with several pharmacokinetic properties, such as enzyme 62 

binding2, toxicity3, solubility4, membrane permeability5, and bioaccumulation.6 Thus, lipophilicity 63 

has been considered a significant descriptor in drug discovery metrics, such as Lipinski’s7 and 64 

Veber’s8 empirical rules, which are intended to optimize oral bioavailability for drug-like 65 

compounds. The partition coefficient (PN) describes the equilibrium of a molecule between the 66 

organic and aqueous phases, where the n-octanol/water system has historically been the medium 67 

of choice in pharmaceutical research because of its high correlation with biological activities.9,10 68 

However, logPN only describes the equilibrium of molecules in their neutral states, which implies 69 

an unrealistic protonation state for most molecules with ionizable groups at physiological pH. 70 

Since the pH of the solution directly affects the concentration of neutral and ionic species, 71 

the equilibrium constant varies with pH, which also means that the lipophilicity of a compound is 72 

dependent on it. The partition coefficient as a function of pH is often called distribution coefficient 73 

(logDpH).11 The logDpH is often considered to be a more proper descriptor than logPN for human 74 

bioavailability due to the frequent pH-dependence of drugs. This property has been shown to be 75 

useful in QSAR models to explain how small molecules have human brain cell permeability12 or 76 

bind to human serum albumin13. The logDpH has also been used as an effective predictor of pH-77 

dependent lipophilicity profiles for small molecules14 and to characterize structural properties in 78 

proteins and peptides, such as protein-folding and aggregation15, solubility16, and antimicrobial 79 

activity17,18, through pH-dependent lipophilicity scales.19,20 80 

As an alternative to experimentally determined logDpH values, theoretical lipophilicity 81 

profiles provide the opportunity to obtain this descriptor quickly and often with high 82 

accuracy.14,21,22 Equation 1 models logDpH as a function of pH for monoacidic and monobasic 83 

compounds. This equation is derived as the mass balance between the ionic and neutral species in 84 

thermodynamic equilibrium in the aqueous phase. This model assumes that the organic phase holds 85 

mostly neutral species, so that the acid-base dissociation is negligible, and it also assumes that 86 

there is not a partition equilibrium for the ionic species.23 87 
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logDpH =	log	PN	- log 	$1 + 10δ%                                              [1] 88 

where d = pH – pKa for acids, and d = pKa – pH for bases. 89 

 90 

Figure 1a shows the equilibria from which Eq. 1 is derived. This formalism has been used 91 

to easily calculate logDpH from logPN values obtained by empirical computational models.24–26 This 92 

equation was widely used in logDpH estimation methods in the SAMPL6 and SAMPL7 blind 93 

challenges, which is a large-scale comparative evaluation for drug design predictive models.27,28 94 

 95 

Figure 1. Representations of the partition mechanism for a symbolic ionizable acidic molecule for 96 

both neutral (HX) and ionic (X−) species using (a) Equation 1 and (b) Equation 2. The theoretical 97 

partition of the charged organic species (PI,X-) was replaced by experimentally measurable apparent 98 

partitioning (PI
app) in Eq. 2.  99 

 100 

Equation 2 represents the extended lipophilicity profile of monoprotic acids and bases (Fig. 101 

1b). This model considers acid-base ionization in both water and n-octanol phases, where ionic 102 

species migrate between the phases.  103 
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                           logDpH = log$PN + PI
app⋅10δ% - log$1 + 10δ%                           [2] 104 

 105 

Equation 2 is commonly called the ionic partition PI model29, which represents a 106 

simplification that considers only the partition of the charged organic species (see Figure 1b).  107 

Experimental techniques for lipophilicity evaluation such as shake-flask, potentiometric, and 108 

chromatographic methods30, can measure but do not allow direct identification of the nature of the 109 

ionic species involved in the partitioning; hence, the partition of ionic species is measured as an 110 

apparent partitioning (PI
app). This experimentally measurable apparent partition coefficient 111 

depends on the background salt31 and compound concentration32, and may involve many more 112 

complex species, such as ion-pairs33–40 and aggregates41. Some studies have simplified the PI
app to 113 

the partition of only ionic organic species (PI) because these methods have been parametrized 114 

using experimental PI
app values14,42, while other theoretical studies have modeled it using the 115 

participation of ion-pairs (PIP)21,22. Recently, an alternative model14 to ion-pair partitioning has 116 

been used by applying the theory of ionic transfer between two immiscible electrolyte solutions 117 

(ITIES)43,44, obtaining excellent predictions of experimental logDpH values. Previous experimental 118 

trials have also shown the importance of the PI
app of ionizable molecules in n-octanol/water 119 

systems33-40. Recently, Disdier et al. measured the logDpH at different pH values of a set of 13 120 

compounds via the shake-flask method45, where fitted experimental values to lipophilicity 121 

formalisms for mono- and poly substituted acids, amphoteric, and zwitterionic species derived on 122 

previous theoretical studies.46 The relevance of PI
appfor small ionic molecules between aqueous 123 

and organic phases has also been studied through interphase transfer mechanisms of substances 124 

via ionic partition diagrams as a function of pH obtained through cyclic voltammetry.47–49 125 

Despite the lack of a consensus formalism to model logDpH as a function of PI
app, and 126 

considering that different theoretical approaches have shown similar trends14,21,22, Equation 2 has 127 

been successfully used for modeling the lipophilicity of ionized compounds in many areas of basic 128 

and applied sciences. For instance, to study the aggregation of naphthenic acids in aqueous 129 

environments with different saline concentrations50, in logDpH calculations for lignin derivatives 130 

and small datasets of drug-like compounds in different solvents by QM and statistical 131 

thermodynamical methods51 , partitioning of antioxidants52, aquatic hazard assessment of ionizable 132 
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organic chemicals53, sorption mechanisms of antimicrobials in the soil54, and physicochemical 133 

properties of peptides and proteins.15–18 134 

Previous studies have evaluated predictions of logDpH using Equations 1 and 2 for a small 135 

set of 35 ionizable molecules with computed logPN and logPI
app values calculated via an extension 136 

of the Miertus-Scrocco-Tomassi solvation model.14 It has been reported that Equation 1 tends to 137 

overestimate the hydrophobicity of the studied molecules, given that the PI
app is not considered, 138 

whereas Equation 2 predicts a logDpH value closer to the experimental values. This study showed 139 

that Equation 2 provided a more exact lipophilicity profile over a wider pH range than Equation 140 

1. However, no systematized study has been performed to evaluate the importance of considering 141 

the ionic partition on the logDpH prediction for large sets of small drug-like molecules at various 142 

pH values, although it has been reported that much of the poor performance of some models on 143 

blind challenges has been due to the simplification of ignoring the ionic species partition.27 144 

In this study, our aim is to evaluate the impact of considering the PI
app in determining pH-145 

dependent lipophilicity profiles of small molecules. We also aim to provide guidance to the 146 

scientific community working in early-stage drug design, food, and environmental chemistry, 147 

specifically those dealing with ionizable molecules. Our goal is to help researchers determine a 148 

priori which pH-dependent lipophilicity profile should be used based solely on structural features 149 

of the substance of interest. To this end, we collected the experimental values of logPN, pKa, and 150 

logPI
app of different compounds at various pH values as well as experimental data of lipophilicity-151 

based applications and metrics such as lipophilic efficiency (LipE), distribution of spiked drugs in 152 

milk products and pH-dependent partition in passive samples, which were used to compute logDpH 153 

with Equations 1 and 2. The predictions using both equations were then used to compare their 154 

performances using statistical parameters. Finally, logistic regression (LR), random forest 155 

classification (RFC), and support vector machine (SVM) models were developed to define from 156 

the molecular structure which formalism is recommended for modeling pH-dependent lipophilicity 157 

profiles.  158 

 159 

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3 ORCID: https://orcid.org/0000-0003-4029-4528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3
https://orcid.org/0000-0003-4029-4528
https://creativecommons.org/licenses/by/4.0/


   
 

   
 

7 

Methodology 160 

Data collection and classification 161 

We critically compiled the experimental values of logPN, pKa, logPI
app, and logDpH of 225 162 

entries based on earlier literature reports (database available in reference 33).29,55,56 Refs. 29 and 163 

55 were chosen based on the wide selection of experimental data for logPN, logDpH, and logPI 164 

values and because they encompass the desired chemical space of small molecules for our 165 

modeling. SMILES codes were collected from publicly available data in PubChem.57 The 166 

experimental pKa values were also obtained from PubChem, but they were corroborated by 167 

reviewing their values in primary literature reports.38,57–80 The experimental technique of logPN, 168 

logDpH, and logPI
appmeasurements for each entry were thoroughly revised and added to the 169 

database.74,81–90 Ref 55 provided experimental logDpH values of molecules in diverse pH ranges. 170 

The logPI values were obtained from the logDpH at the most extreme measured pH, in which the 171 

molecule would be mostly (above 95 %) in its ionized state. The logPI
appvalues for molecules that 172 

were not measured under ionizable pH conditions were obtained from external sources.38,74,91,92 173 

The molecules were classified as acids or bases based on their functional groups and pKa values. 174 

Zwitterionic compounds were found by evaluating the difference between acidic and basic pKa in 175 

conjunction with ChemAxon’s calculator of protonated species distribution in function of pH.93 176 

Zwitterionic and amphoteric species were also classified as acidic or basic based on the behavior 177 

of their lipophilicity profiles, which were evaluated using the ChemAxon partitioning calculator.94  178 

Figure 2 shows the distribution of the molecules along several descriptors of their chemical 179 

space. Most compounds can be considered small molecules because they tend to have small 180 

molecular weights (< 400 gmol-1) and topological polar surface areas (< 100 Å2). Our database 181 

consists mostly of lipophilic species since the clogP values are mostly positive, which coincides 182 

with the low polarity of our molecules, demonstrated by the tendency of low counts of hydrogen 183 

bond donors (< 3) and acceptors (< 7).  184 

 185 

 186 

 187 

 188 
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 189 

Figure 2. Distribution of molecular properties in the database56 by (a) Molecular weight (MW), (b) 190 

hydrogen bond acceptors, (c) hydrogen bond donors, (d) calculated logPN (obtained with Alogp)95, 191 

and (d) topological polar surface area. These descriptors were calculated using the ‘RCDK’ 192 

package in R. 193 

 194 

Performance of pH-dependent lipophilicity profiles 195 

 196 

The experimental data for each molecule were used to compute the logDpH values using 197 

Eq. 1 and Eq. 2 and were labeled as logDEq.1 and logDEq.2, respectively. The modeling performance 198 

for each molecule was evaluated by calculating the absolute errors d1 and d2 (Eqs. 3 and 4): 199 

d1= '	logDEq.1 - logDexp	'                                                     [3] 200 

d2='	logDEq.2 - logDexp	'                                                     [4] 201 

where logDexp represents the experimental logDpH value.  202 
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The performance of the two formalisms was tested by performing a linear regression of 203 

logDEq.1 and logDEq.2 on their experimental values. The root-mean-squared error (RMSE), mean 204 

absolute error (MAE), mean squared error (MSE), and Pearson’s correlation coefficient squared 205 

(R2) were calculated with the ‘Metrics’ package in R.96 We also tested the performance of each 206 

formalism on each individual molecule using the descriptor d3 (Eq. 5). When d3 yielded a value 207 

greater than zero, Eq. 2 fits better than Eq. 1. Accordingly, we created a binomial conditional based 208 

on the values of d3, where Eq. 2 should be used when d3 is greater than 0.2 (see Results and 209 

Discussion); otherwise, both equations are considered equivalent, which can be interpreted as Eq. 210 

1 provides better modeling, owing to its simplicity. 211 

d3	=	d1	-	d2                                                               [5] 212 

 213 

Experimental data of lipophilicity-based applications and metrics used in medicinal, food, 214 

and environmental chemistry. 215 

We also investigated the impact of the apparent ionic partitioning contribution to 216 

lipophilicity-based parameters commonly used in the fields of food, medicinal, and environmental 217 

chemistry. Two tests were conducted for food applications. First, we evaluated Eqs. 1 and 2 to 218 

reproduce the experimental logD4.5 for the partition of bioantioxidants in a oil/water system.97 219 

Secondly, we collected data on the distribution of spiked drugs in milk products using the pH, pKa, 220 

logPN and logD6.8 reported in the original work.98,99 However, ionic partition was obtained from 221 

ChemAxon, except for the oxytetracycline (OTET ), for which the experimental logPIapp was found 222 

in the literature100 and used to measure the logD6.8 using Eq. 1 and Eq. 2. 223 

In addition, as an environmentally relevant application, we obtained experimental pH-224 

dependent distribution data for a series of ionizable compounds on a passive sampler 225 

polydimethylsiloxane (PDMS)  and water. For this task, monoprotic acids and bases were searched 226 

for within the 514 compounds in the article. The experimental pKa values, logDPDMS/w, at several 227 

pH values including extreme ranges (from which we were able to obtain logPN and logPIapp) were 228 

provided by the article.101 Therefore, predictions of the distribution coefficients in the PDMS/water 229 

system to pH = 7.4 using Eq. 1 and Eq. 2. were calculated and compared with those reported in 230 

experimental work.  231 
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Finally, we explored the influence of Eq 1. and Eq. 2  to predict a relevant metric used in 232 

medicinal chemistry lead optimization affairs,  the lipophilic efficiency (LipE):102 233 

𝐿𝑖𝑝𝐸 = 𝑝𝐴𝑐𝑡 − 𝑙𝑜𝑔𝐷#$ , 																																																															[6] 234 

where logDpH stands for the distribution coefficient and pAct represents the negative 235 

logarithm of biological activity, that is, half maximal inhibitory concentration (IC50, mol/L), 236 

inhibitory constant (Ki, mol/L), or binding energy constant (Kb). Here, we searched the literature 237 

for ionizable monoacidic or monobasic drug-like molecules with both experimentally determined 238 

logDpH measurements and biological activities.103–114 In some cases, the experimental logPN, pKa, 239 

and logPIapp were reported, but otherwise they were determined using ChemAxon. The LipE was 240 

then simulated using Eq 1. and Eq. 2 and compared to their experimental values. 241 

 242 

Machine Learning models to classify the molecules according to the best fit to pH-dependent 243 
lipophilicity profiles 244 

Topological and constitutional descriptors were calculated with the software ‘rcdk’ 245 

package in R115 while experimental measurements (i.e., logPN, pKa, and pH) were added from our 246 

dataset. We also added the free energies of hydration and hydrogen bond strengths computed using 247 

the new open-source tool ‘Jazzy’.116 The H-bond donor and acceptor strengths were obtained by 248 

calculating the partial charges of the hydrogen atoms and atoms with lone electron pairs, 249 

respectively, along with corrective terms. The free energy of hydration was calculated using the 250 

sum of the polar, apolar, and interaction terms. The polar term was derived from the previously 251 

calculated H-bond donor and acceptor strengths. The apolar terms consist of the sum of the 252 

weighted contributions of the topological surface area, number of rings, and p-orbital counts in the 253 

sp and sp2 atoms. The interaction term consists of a weighted sum of the amount of neighboring 254 

H-bond acceptor groups each atom has in a molecule.116 255 

We eliminated intercorrelated properties so that no descriptor had a correlation value of r2 256 

> 0.6 (Figure S1 and S2). After this filtration step, two different feature selection methods were 257 

tested to choose the best descriptors for the Machine Learning models. First, we performed 258 

Welch’s t-test (WTT), which evaluates the statistical difference between the means of two 259 

populations that have unequal variances and sample sizes.117,118 The algorithm calculates the mean 260 
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of both groups from the binomial conditional for each descriptor. These values were evaluated 261 

using Equation 7. 262 

																																																													𝑡 =
∆𝜇
δ%&̅

																																																																									[7] 263 

 264 

where t stands for the statistic t in Welch's t-test, and Dµ represents the mean difference between 265 

data samples from each population (Eq. 1 or Eq. 2 better fits), and the uncertainty value of both 266 

groups, which was calculated using the standard deviation of both population samples (Eq.8): 267 

																																												δ%&̅ = =>
𝑠(
@𝑁(

B
)

+ >
𝑠)
@𝑁)

B
)

																																																								[8] 268 

WTT was performed for each descriptor using R, and the p-value was extracted. Features that did 269 

not show statistical significance between means (p > 0.05) were eliminated. Second, recursive 270 

feature elimination (RFE) was performed. This iterative feature selection method builds a 271 

predictive model using the entire set of descriptors and calculates its importance score (Figure S3). 272 

The least important descriptors were removed, and the model was reiterated to achieve maximum 273 

performance.119 This RFE algorithm was programmed using the ‘caret’ package in R120 and tuned 274 

via a 5-time repeated k-fold cross-validation (k = 10). Table 1 shows the descriptors selected using 275 

the WTT feature selection method for acids and bases, along with their definitions and target 276 

molecules. Table S1 lists the descriptors selected using the RFE method. 277 

  278 
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Table 1. List of the most influential structural descriptors95,116,121,122 used for the Machine Learning 279 

classification models, their target molecules, and the divergence between the two populations from 280 

our dataset were determined using the WTT feature selection method by separating the populations 281 

with the conditional d3 > 0.2. 282 

Descriptor Type Definition Target 
molecules 

MDEC.11 

Topological CDK 
descriptor 

Molecular distance edge between all 
primary carbons. Acids 

MDEC.22 Molecular distance edge between all 
secondary carbons. 

Acids 

khs.sCH3 Number of -CH3 fragments in a molecule 
(Kier and Hall). 

Acids 

C2SP3 Singly bound carbon atom bound to two 
other carbons. 

Acids 

khs.dsCH Number of =CH- fragments in a molecule 
(Kier and Hall). Acids 

khs.sNH2 Number of -NH2 fragments in a molecule 
(Kier and Hall). Acids 

khs.dssS Number >S= fragments (sulfones) in a 
molecule (Kier and Hall). Acids 

HybRatio 
Ratio of the number of sp3-C atoms 

compared to the sum of sp3 and sp2 C 
atoms. 

Acids 

C1SP3 Singly bound carbon atom bound to one 
other carbon. Acids 

nRings7 Number of 7-membered rings Bases 

khs.aaNH Number of Ar-NH-Ar fragments in a 
molecule (Kier and Hall). Bases 

ATSc3 

Autocorrelation topological distance 
weighed by charge calculated at every 3-
atom distanced segment. Moreau-Broto 

autocorrelation descriptor 3 using 
polarizability 

Bases 

Alogp2 Constitutional CDK 
descriptor 

(logP)2 value calculated with a QSAR 
method (Ghose & Grippen logKo/w). Acids & Bases 

delta Experimental 
descriptor 

d (acids) = pH - pKa 

d (bases) = pKa - pH Acids & Bases 

CH_strength Jazzy calculation C-H donor strength predicted with the 
Jazzy calculations. Acids 

 283 
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Logistic Regression Classification 284 

A logistic regression (LR) is a simple classification statistical model that provides a binary 285 

response to the distribution of the input data among a specific descriptor. The simplest regressions 286 

fit the distributions of data to a sigmoidal function, where the input values are given a probability 287 

value, which is then classified into one of the two classes based on a cut-off value. We firstly 288 

performed a feature selection process specific for logistic regressions by using the ‘bestglm’ 289 

package in R123 which evaluates through n iterations, which combination of descriptors gives the 290 

best fitted regression through the leaps algorithm.124 This package evaluates the weight of each 291 

descriptor by linearizing the sigmoidal function and giving a slope value and standard error for 292 

each parameter like a multiple linear regression model (Equation 9). 293 

ln G *(&)
(-*(&)

H = ∑ 𝑐.𝑥./
.0( + b                                                      [9] 294 

The ‘bestglm’ package drops the parameters, where 𝑐. → 0. The algorithm iterates the 295 

sigmoidal fit using Equation 8 n times until it finds the combination of descriptors in which the 296 

parameters have the smallest standard error.123 This feature selection process was performed 297 

separately for acids and bases because the descriptors have different behaviors for each type of 298 

molecule.  299 

Figure 3 shows a flowchart of the modelling process. The dataset was divided into acids 300 

(113 entries) and bases (100 entries). Zwitterions (12 entries) were not considered for the Machine 301 

Learning predictions because of their small sample size and because further lipophilicity modeling 302 

will be performed for these molecules (see Results and Discussion section). Acids and bases were 303 

randomly and reproducibly sampled into the training and test sets at a ratio of 80:20. Multiple 304 

logistic regressions were performed for the training sets based on previously collected descriptors. 305 

Predictive models were programmed using the ‘caret’ package. Acids and bases were modeled 306 

separately and labeled as Models A and B, respectively (see Figure 3). The test sets were evaluated 307 

using both models. The performance of Models A and B was evaluated using confusion matrices 308 

(see Table S2), which are widely used to evaluate classification models.125 The confusion matrices 309 

tabulate the number of true positives (TP), false positives (FP), true negatives (TN), and false 310 

negative (FN) predictions, along with the sensitivity, specificity, and accuracy of the models. 311 

Sensitivity determines the ability of the model to detect events of the positive class; that is, it 312 

indicates the predictive performance of the molecules of the logDEq.2 population (Equation 10). On 313 
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the other hand, the specificity indicates the performance of the model in detecting the negative 314 

class, which in this case are the molecules of the logDEq.1 population (Equation 11). The accuracy 315 

indicates the overall performance in detecting false positives and false negatives (Equation 12). 316 

 317 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																																												[10] 318 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁																																																									[11] 319 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁																																													[12] 320 

 321 

Models A and B were tested further using an external set. The experimental lipophilicity 322 

measurements made by Disdier et al.45 consisted of 69 data entries of small molecules with 38 323 

acids, 16 bases, and 15 zwitterions, the latter being discarded for our analysis. To further check 324 

the robustness of our models, a second external set of amino acid analogs was evaluated126, 325 

consisting of 8 entries of histidine (basic amino acid) and 10 entries of tyrosine (acidic amino acid). 326 

Then, we evaluated the performance of Models A and B for this dataset using confusion matrices 327 

(see Table S3-S4). 328 

 329 
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 330 

Figure 3. Graphical representation of the data classification and sampling of our dataset to create 331 

our predictive multiple logistic regression model using topological, constitutional, and 332 

experimental descriptors. 333 

 334 

 335 
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Random Forest Classification  336 

Decision trees are a simple visual method for evaluating or classifying data, where each 337 

node consists of a variable in the dataset. Each node leads to a leaf in which the desired output is 338 

issued. A random forest is a combination of decision trees, which are randomly sampled, and the 339 

nodes are randomly organized.127 We split our dataset into training-, and test sets, as shown in 340 

Figure 2. In this case, Models A and B consisted of random forest classifications (RFC) performed 341 

with the ‘randomForest’ package in R.128 Both models were previously refined using the tuneRF 342 

function within the package, which chooses the optimal mtry variable. This value indicates the 343 

number of features selected at each split in each decision tree, where mtry = 2 provided the best 344 

prediction for both models (number of trees = 500, see Supporting Information Figure S4). The 345 

importance of each descriptor in both models was evaluated through the mean decrease in the Gini 346 

impurity index using the MeanDecreaseGini function (Figure S4). 347 

The best lipophilicity profile fit for the acidic and basic tests and external sets was predicted with 348 

Models A and B, respectively. The performance of each prediction was evaluated using confusion 349 

matrices (see Tables S5-S7) and their respective sensitivity, specificity, and accuracy calculations 350 

(Eqs. 10-12). 351 

 352 

Support Vector Machine Classification 353 

A Support Vector Machine (SVM) algorithm works by dividing training data into two 354 

categories, either by linear or nonlinear classification; new data are then assigned to one of the two 355 

classes. The model separates the data by finding a hyperplane that maximizes the gap between 356 

categories. In the case of linear classification, the space is two-dimensional, making the hyperplane 357 

a linear function.129 When the data are not linearly separable, the algorithm performs the kernel 358 

trick, which involves increasing the dimensions of the data space. This results in the hyperplane 359 

being able to be another function in the original space, such as radial or polynomial, allowing to 360 

classify the data in different ways.130 361 

We split our datasets in the same manner as the other classification models and set Models 362 

A and B as support vector machines given by the ‘e1071’ package in R.131 We decided to compare 363 

the performance of using a linear kernel (SVML) and a polynomial kernel (SVMP). Radial kernels 364 

were not evaluated because our binary data do not follow a circular separation in the hyperplane; 365 
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therefore, our classifications do not provide an adequate fit. The hyperparameter selection for each 366 

model was performed with the trainControl and train functions from the ‘caret’ package, which 367 

executes a k-fold cross-validation (k = 10 was used), where different values of the parameters were 368 

tested and selected, which resulted in the highest accuracy. The best hyperparameters were the 369 

function's default parameters: C = 1 for SVML and for SVMP, C = 1, degree = 3, gamma =1, and 370 

coef0 = 0. We calculated the accuracy, sensitivity, and specificity of each model using Eq. 9-11, 371 

using the results from their respective confusion matrices (see Tables S8-S13). We then compared 372 

the confusion matrices of the LR, RFC, SVML, and SVMP models to determine the one that 373 

yielded the best results.  374 

 375 

Results and Discussion 376 

 377 
Performance of pH-dependent lipophilicity profiles in predicting experimental distribution 378 
coefficients  379 
 380 

One of the main objectives of this study was to assess the extent of the most widely used 381 

formalisms in the literature for reproducing experimental pH-dependent distribution coefficients 382 

in small molecules. To achive this task, we built a database which consists of experimental pKa, 383 

logPN, logPI
app, and logD7.4 values reported by Avdeef.29 In addition, we employed experimental 384 

entries of 86 molecules from the work of Tsantili-Kakoulidou et al., containing logDpH values at 385 

various pH for each molecule as an individual entry.55 Molecules with logDpH values measured in 386 

the presence of background salt concentrations above 0.15 mol/L were discarded because the study 387 

of the effect of external ions on lipophilicity is beyond the scope of our study. Thus, we obtained 388 

225 entries (118 individual molecules) with 113 acids, 100 bases, and 12 zwitterions. The limited 389 

number of data entries in our database lies in the lack of publicly available data of experimental 390 

measurements of pH-dependent lipophilicity profiles of molecules, especially the limited number 391 

of apparent ionic partition coefficient measurements in the literature. 392 

The logDpH was calculated using Eq. 1 and Eq. 2 for each molecule at their respective pH 393 

values. Figure 4 shows the overall performance of each model by comparing the modeled values 394 

with their respective experimental logDpH values. As expected, most of the molecules whose 395 
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logDpH values were measured under different pH conditions to 7.4, present the largest deviation 396 

using Eq. 1 (see Figure 4a, red marks), with highly underestimated predictions. As a consequence, 397 

Eq. 1 poorly predicts logDpH values at extreme pH values. On the other hand, the predicted values 398 

using the Eq. 2 are significantly better (see Figure 4b), reducing the RMSE by 0.48 logD units, 399 

which represents an improvement of 55% in accuracy. 400 

 401 

 402 

Figure 4. Evaluation of the computed logDpH of our database compared with the experimental 403 

values with (a) Eq. 1 and (b) Eq. 2. Rhomboids represent logDpH when the pH is different of 7.4. 404 

Red dots and rhomboids highlight compounds with deviations greater than 1.5 logD units. 405 

Statistical parameters were calculated using the ‘Metrics’ package in R (R2 = squared Pearson’s 406 

correlation coefficient, RMSE = root mean squared error, MAE = mean absolute error, and , MSE 407 

= mean signed error).  408 

 409 

Table 2 shows the reduction of RMSE in logD units of each molecule type using Eq.2 410 

instead of Eq.1. It is observed that our dataset shows a significant improvement (ca. 54 %) in its 411 

performance when its distribution coefficient is modeled with logDEq.2 (see Figure S5). Basic 412 

molecules showed the greatest improvement, amounting to 66 %, whereas the acid ones 44 %.  413 

Zwitterions also showed a significant improvement (ca. 30 %), even though these molecules can 414 

have multiple ionic partition coefficients (cationic partitions P+, anionic partitions P-, and 415 

zwitterionic partitions Pz), which are not considered in the model logDEq.2. These partitions can be 416 
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added by considering both acidic and basic pKa into the thermodynamic equilibria.45 Despite this, 417 

the implementation of just one of the two PI
app show an improvement in the lipophilic modelling 418 

of zwitterions since the pH conditions favored one of these possible ionic species over the others. 419 

 420 

Table 2. Values of DRMSE for each type of molecule analyzed within our dataset by comparing 421 

the modelled lipophilicities by logDEq.1 and logDEq.2 with their experimental values (Figure S1). 422 

Type DRMSEa 

Acid 0.30 

Base 0.67 

Zwitterion 0.38 

All 0.48 

a ΔRMSE	=	RMSE	$logDEq.1%	-	RMSE		$logDEq.2% 423 

 424 

The molecules with the highest deviations in the prediction of experimental logDpH using 425 

logDEq1 are displayed in Figure 5. The chemical nature of the outliers is dominated by the presence 426 

of ionic species because these compounds were experimentally measured under extreme pH 427 

conditions. These deviations correspond to the theoretical frameworks of Eqs. 1 and 2. Thus, the 428 

inclusion of the term PI
appin Eq. 2 significantly corrects the prediction. Figure 5 also shows various 429 

polyacids with pKa values separated by more than four orders of magnitude, allowing us to analyze 430 

the distribution coefficient using the most acidic pKa. Bases with entries 16, 151-152 have multiple 431 

protonation sites, while acids with entries 77, 78, and 87 have two deprotonation sites. More 432 

complex thermodynamic models can be considered for these molecules.45 However, as mentioned 433 

above, because of the separation of their pKa, the consideration of PI
app

 for the carboxylate species 434 

with logDEq.2 is enough to remarkably increase the accuracy of the lipophilicity prediction of these 435 

compounds to extreme pH where one charged species can predominate over the others. 436 
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 437 

Figure 5. Representation of the molecules with the highest deviations in the prediction of the 438 

experimental logDpH using logDEq1. The protonation and deprotonation sites of each molecule are 439 

labeled in blue and red, respectively. 440 

 441 

We also tested the performance of both formalisms by evaluating the entire pH-442 

lipophilicity profile of individual molecules. To this end, an acidic (Naproxen) and two basic 443 

(compound ‘1774’ from Ref 55 and Debrisoquine) examples were used. Naproxen and the 444 

compound ‘1774’ (see Figure 6a-b) were selected because of the large amount of experimental 445 

data available in our database.56 Therefore, it is better appreciated how the behavior of the 446 

experimental lipophilicity profiles fits more closely when evaluated using Eq. 2, particularly at 447 

extreme pH values. Additionally, at pH 7.4, the influence of apparent ionic partitioning can be 448 

observed depending on the chemical nature of the molecule. For instance, Debrisoquine in Figure 449 

6c represents a base with a very high pKa. Hence, ionic species were more abundant at pH 7.4, 450 

which aligned more closely with the lipophilicity profile determined by Eq. 2. These results 451 

indicate that to reproduce the pH-dependent lipophilicity profiles of small molecules, it is 452 
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recommended to use Eq. 2, especially under pH conditions where ionic species are more 453 

representative than neutral species.  454 

 455 

 456 

Figure 6. Calculated pH-dependent lipophilic profiles of (a) acidic (Naproxen) and (b-c) basic 457 

molecules (compound ‘1774’ from Ref 55 and Debrisoquine) within our dataset. The dashed lines 458 

represent the logDpH values calculated using Eq. 1, and the solid line represents the values 459 

calculated using Eq. 2. The dots represent experimental logDpH values. A dot-dashed vertical line 460 

was placed at pH 7.4. 461 

 462 

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3 ORCID: https://orcid.org/0000-0003-4029-4528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3
https://orcid.org/0000-0003-4029-4528
https://creativecommons.org/licenses/by/4.0/


   
 

   
 

22 

Use of pH-dependent distribution coefficients in medicinal, food, and environmental 463 

chemistry. 464 

 465 

Although the distribution coefficient in solvent systems represents only a mimetic for many 466 

biological and physicochemical processes, its relevance and successful application in several life 467 

sciences fields is undeniable. In this regard, we further investigated the repercussions of the 468 

apparent ionic partition of molecules in the applied parameters and metrics where lipophilicity is 469 

relevant.  470 

First, owing to the availability of experimental values for pH-dependent distribution 471 

coefficients in the olive oil/water system for two bioantioxidants96, we simulated the logD4.5 for 472 

these phenolic acids using Eq. 1 and Eq. 2. Table 3 shows that Equation 2 fits best with gallic acid. 473 

On the other hand, for caffeic acid, an appreciable error was observed using both formalisms, 474 

amounting to almost 1 logD unit.  475 

 476 

Table 3. Experimental and modeled distribution coefficients for the two bioantioxidants to 477 

a pH of 4.5 in the olive oil/water system using Eq. 1 and Eq. 2.  478 

Compound 
Experimental values (Ref 96) Calculated logD4.5 (ΔlogDa) 

logPoil/water pKa logPI
app logD4.5 Eq. 1 Eq. 2 

Gallic acid 2.97 4.40 2.34 2.70 2.62 (-0.08) 2.73 (0.03) 

Caffeic 

acid 
3.26 4.54 1.70 2.04 2.98 (0.94) 2.99 (0.95) 

aΔlogD  = (calc − exp) 479 

 480 

 481 

 482 

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3 ORCID: https://orcid.org/0000-0003-4029-4528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-54gv8-v3
https://orcid.org/0000-0003-4029-4528
https://creativecommons.org/licenses/by/4.0/


   
 

   
 

23 

 483 

Second, previous studies have shown that the distribution of spiked drugs between milk 484 

fractions, for example, the curd/whey system, to a pH of 6.8, can be properly mimicked through 485 

the n-octanol/water distribution coefficient (logD6.8) using Eq. 1 (see Figure 7a).98,99 Despite the 486 

excellent results obtained using Eq. 1, we were interested in investigating whether the use of Eq. 487 

2 further improves the observed model (see Figure 7b).  488 

 489 

 490 

Figure 7. Comparison between n-octanol/water logD6.8 using Eq. 1 (a) and Eq. 2 (b) and 491 

the experimental distribution of spiked drugs between the curd/whey milk fractions. Drugs that 492 

represent each acronym in the plot are listed in Table 4. 493 

 494 

 495 

 496 

 497 

 498 

 499 
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Table 4 reports the data used in the previous report98,99 as well as the logPIapp of the tested 500 

molecules picked up from experimental measurements from the literature when available; 501 

otherwise, this parameter was simulated using predictive software such as ChemAxon.94,100 The 502 

predicted n-octanol/water distribution coefficients for spiked drugs to pH = 6.8 using Eq. 2 (see 503 

Fig 7, right) improved the correlation by 4% and showed an improved linear regression between 504 

both descriptors (see the linear equations in Fig. 7). In more detail, the improvement resides 505 

precisely in two compounds that had an experimental value of logPIapp (ketoprofen and 506 

oxytetracycline). This observation highlights the importance of experimental measurements of 507 

ionic partitions but also calls for more experimental work focused on these issues, taking into 508 

account the scarce values available in the literature and the difficulty of finding them in public 509 

databases. 510 

Table 4. Experimental distribution of spiked drugs between curd/whey milk fractions and 511 

predicted n-octanol/water distribution coefficients for spiked drugs at pH = 6.8 using Eq. 1 and 512 

Eq. 2. 513 

Compound 

Original data from Refs. 98 and 99 

logPI
app 

Calculated logD6.8 

logPN pKa 
logD 

curd/whey 
(pH = 6.8) 

Eq. 1 Eq. 2 

Penicillin G 
(PENG) 1.67 3.53 0.08 -2.75 -1.60 -1.57 

Sulfadimethoxine 
(SDMX) 1.48 6.91 0.51 0.12 1.23 1.24 

Ketoprofen 
(KETO) 2.81 3.88 0.38 -0.95a -0.11 -0.05 

Ivermectin B1a 
(IVR) 6.61 12.47 1.47 1.55 6.61 6.61 

Oxytetracycline 
(OTET) -1.60 7.75 0.16 -0.74b -2.60 -0.78 

Erythromycin A 
(ERY) 2.83 8.38 0.39 -0.89b 1.24 1.24 

Thiabendazole 
(THIA) 2.93 4.08 0.84 1.28 2.93 2.93 

aExperimental data reported in our database in Ref 56. b Experimental data reported in Ref. 99. 514 
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Additionally, in environmental chemistry research, passive equilibrium sampling of 515 

dissolved contaminants in water has been studied using polymer polydimethylsiloxane (PDMS) as 516 

an absorbent phase. This hydrophobic passive sampler can extract ionizable compounds from 517 

sediments and suspended particulate matter in a pH-dependent manner.101 The authors tested the 518 

partitioning of ionizable compounds between PDMS and water (logDPDMS/w) at different pH 519 

values. Thus, logDPDMS/w measurements at extreme pH were considered as logPN or logPIapp 520 

depending on the acidic or basic nature of each molecule. These values were used to calculate 521 

logDEq.1 and LogDEq.2 in order to reproduce the experimental logDPDMS/water measurements to a pH 522 

of 7.4 (see Supporting Information, environmental.csv).  523 

 524 

Figure 8. Comparison between PDMS and water logD7.4 using Eq. 1 (left), and Eq. 2 (right), and 525 

the experimental logDPDMS/w for a series of 52 ionizable compounds. 526 

 527 

 528 

 529 

 530 

 531 
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Figure 8 shows that the consideration of the apparent ionic partition significantly improved 532 

the correlation between the experimental and predicted values, where the RMSE decreased in 0.26 533 

logD units, representing an appreciable improvement of 54 %. This application demonstrated that 534 

the thermodynamic equilibrium derived in Eq. 2 applies to partitions other than the n-octanol/water 535 

system, such as in the PDMS/water phases. The presence of some free silanol groups, combined 536 

with the highly hydrophobic polymeric chain might create a suitable environment for ionized-537 

organic species in the PDMS phase through a combination of hydrogen bonds from the terminal -538 

OH groups and dispersion non-covalent forces from the polymeric chains.101,132 539 

Finally, an important metric that has been increasingly applied in drug discovery and 540 

medicinal chemistry lead optimization endeavors is the lipophilic efficiency (LipE, see Eq. 6). 541 

LipE relates the binding affinity and lipophilicity of a compound, which creates a significant 542 

parameter for estimating druglikeness.102 A proper interval of lipophilicity at physiological pH 543 

(logD7.4), usually between 1 and 3, underpins the desired ADME properties and dose; therefore, 544 

improving potency without excessively increasing lipophilicity is of vital importance in drug 545 

discovery optimization programs. Table 5 compiles the LipE values obtained in the literature using 546 

strictly experimental pAct lipophilicity at physiological pH, the latter due to the impossibility of 547 

finding data at other pH values in the literature. 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 
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Table 5. Experimental lipophilic efficiency (LipE) for compounds reported in the literature and 560 

predicted lipophilic efficiency at pH = 7.4 using Eq. 1 and Eq. 2. The number representing the 561 

compounds in each original work is placed in column ‘Id’. 562 

Compound Id (Ref) 
Exp. 

pAct 

Exp. 

logD7.4 

Exp. 

LipE 
logPN pKa logPI

app 
LipE 

Eq. 1 

LipE 

Eq. 2 

1 6 (112) 8.5 1.4 7.1 2.07 8.42 -0.20 6.51 6.51 

2 8 (112) 7.9 1.3 6.6 1.88 8.42 -0.39 6.01 6.01 

3 9 (112) 8.1 1.7 6.4 2.37 8.42 0.09 5.73 5.72 

4 10 (112) 7.8 2.1 5.8 2.29 8.42 0.03 5.60 5.60 

5 11 (112) 7.9 2.3 5.6 3.59 8.42 1.32 4.34 4.34 

6 12 (112) 7.8 3.5 4.3 3.43 8.42 1.16 4.43 4.43 

7 Rosuvastatin (109) 9.0 -0.3 9.3 1.90 4.27 -1.63 10.23 10.08 

8 Pravastatin (109) 7.1 -0.2 7.4 2.18 4.20 -2.41 8.15 8.13 

9 Fluvastatin (109) 6.6 1.9 4.7 4.17 4.30 0.18 4.65 4.65 

10 8 (108) 8.4 3.0 5.4 4.50 3.84 1.67 7.46 6.66 

11 9 (108) 7.7 2.4 5.3 4.99 3.89 1.42 6.20 5.93 

12 12 (108) 8.2 2.5 5.7 5.01 4.07 1.41 6.47 6.28 

13 13 (108) 8.3 3.2 5.1 5.61 3.92 2.67 6.17 5.52 

14 14 (108) 8.3 2.0 6.3 4.23 4.08 2.43 7.39 5.86 

15 8 (107) 6.4 2.7 3.7 2.77 7.90 1.50 3.71 3.7 

16 10 (107) 5.9 2.3 3.6 2 7.00 0.75 4.43 4.37 

17 11 (107) 6.9 2.3 4.7 2.3 7.60 1.00 4.87 4.86 

18 19 (107) 4.8 0.1 4.8 0.43 9.50 -2.00 4.43 4.43 

19 Indinavir (104) 9.1 2.9 6.2 2.92 6.20 -2.42 5.15 5.15 

20 3 (104) 8.0 3.2 4.9 4.5 8.97 0.77 5.18 5.17 

21 Crizotinib (104) 8.1 1.9 6.1 4.28 9.40 -0.38 5.82 5.81 

22 8l (112) 6.4 1.7 4.7 1.78 5.66 -1.96 6.42 6.42 

23 22 (102) 7.0 3.6 6.4 4.24 8.87 0.43 5.28 5.28 

24 7a (113) 9.2 2.8 6.3 2.65 9.60 -1.13 7.66 7.65 

25 7j (113) 5.6 1.0 5.5 3.38 9.70 -0.41 7.03 7.01 

26 7k (113) 7.9 1.6 6.1 3.04 9.70 -0.75 7.34 7.32 

27 7m (113) 6.8 2.1 6.6 2.22 9.70 -1.57 8.18 8.16 

28 7s (113) 7.9 2.4 6.0 2.89 9.70 -0.90 7.53 7.52 

 563 
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Figure 9 shows the LipE simulated using Eq 1. and 2 compared to their experimental LiPE 564 

values. Eq. 2 again shows favorable statistical parameters compared with Eq.1, improving the 565 

RSME in log D units by 11 %. Let us mention that the reproduction of LipE in both cases was not 566 

very satisfactory, this may be mainly due to the lack of experimental data of logPN values for these 567 

compounds, but in particular to the use of simulated 	568 

logPI
app	values. Although, tools such as ChemAxon have presented very good results in partition 569 

coefficient predictions, the molecules included here belong to novel compounds reported in 570 

medicinal chemistry articles with new chemical spaces that may impact the performance of 571 

predictive tools, especially in	logPI
app which to the best of our knowledge, this is the first work in 572 

reporting a free database for this parameter taken from several reports in the literature. 573 

574 
Figure 9. Comparison of the lipophilic efficiency (LipE) using Eq. 1 (left), and Eq. 2 (right), and 575 

the experimental lipophilic efficiency for a series of 28 ionizable compounds. 576 

 577 

 578 

 579 

 580 
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To summarize, it can be noted that the inclusion of apparent ionic partitions can improve 582 

metrics in the modeling of various metrics where lipophilicity is crucial to simulate biological or 583 

artificial environments of higher complexity. Of special interest, we demonstrated that these 584 

formalisms can be applied to systems beyond the classical n-octanol/water system. The 585 

improvements studied ranged from 4 to 54 % in terms of RMSE (logD units) and depended mainly 586 

on the pH at which the system was being simulated, pKa, and hydrophobicity of the molecules. 587 

 588 

Machine Learning models to guide the choice of pH-dependent lipophilicity profiles as a 589 

function of molecular properties. 590 

The application of Eq. 1 offers significant advantages due to its simplicity of 591 

implementation. However, the preceding sections emphasize the importance of employing Eq. 2 592 

in various scenarios. It is important to note that the application of this formalism is constrained by 593 

the availability of experimental data for partitioning of ionic species and simulations that ensure 594 

adequate accuracy. This led us to propose a model that will help as a guide to discern cases in 595 

which the simplified model represented in Eq. 1 can be used, or the consideration of the apparent 596 

ionic partition is mandatory, as in Eq.2. 597 

Consequently, one of the aims of this study was to develop a classification algorithm that 598 

can differentiate whether the lipophilicity profile of a molecule can be better predicted with 599 

logDEq.1 or logDEq.2. However, a significant number of entries indicate that both formalisms 600 

compute a similar result compared to their experimental values by yielding d3 values close to 0 601 

(see Figure S6a). Let us note that we focus on the specific cases with a significant improvement 602 

when the PI
app of molecules is considered. Therefore, we decided to delimit the conditional d3, 603 

indicating that if a molecule exceeds a certain value of d3, it is important to consider its apparent 604 

ionic partitioning to predict its lipophilicity. We tested d3 values between 0.1-1 and picked the 605 

optimal value based on two main parameters. First, considering that our set was small because we 606 

used strictly experimental values in our database, we seek that the population of molecules that 607 

best fit with logDEq.2 should be at least 10 %. Then, there should be a sufficient number of 608 

descriptors that have statistically proven divergence by WTT (p < 0.05). Thus, Machine Learning 609 

algorithms have a larger number of parameters to create predictive models with higher accuracy. 610 

Consequently, the delimiter ‘0.2’ showed an adequate balance between these two parameters and 611 
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was selected as our cut-off value (see Figure S6b). Molecules with values of d3 > 0.2 showed an 612 

improvement in lipophilicity modeling using Eq. 2. On the other hand, entries that had negative d3 613 

values or that fell into the range 0.2 < d3 < 0 were classified as molecules where the difference 614 

between both models was negligible, and thus were classified as better fitted using logDEq.1 due to 615 

its easy implementation (it does not depend on PI
app , resulting in less computational effort and 616 

fewer experimental parameters). Higher thresholds significantly decreased the population in 617 

logDEq.2, while lower values reduced the structural divergence between molecules in logDEq.1 and 618 

logDEq.2, making it more difficult to find descriptors that can differentiate between both 619 

populations. The value ‘0.5’ was also tested because a local maximum of descriptors with p < 0.05 620 

was observed at this point (see Figure S6b). Furthermore, this value is of experimental interest, 621 

because logPN measurements of substances with different techniques tend to vary by less than 0.5 622 

logP units (using the Shake-Flask method as a reference), which is considered as a parameter 623 

indicating that the experimental techniques are not equivalent.30 However, this extreme value and 624 

the descriptors selected (see Table S14) showed poor performance in the ML models tested, 625 

especially with External Set 1 (see Figure S7). This phenomenon can be explained because this d3 626 

delimiter has a very small logDEq.2 population, thus the datasets are extremely unbalanced and the 627 

robustness of the models is reduced. On the other hand, the accuracy of experimental methods, 628 

even using different techniques, rounds at values less than 0.2 logP units.30 Therefore, we 629 

continued to train the ML models using the d3 > 0.2 cut-off value to determine tendencies among 630 

the selected descriptors via the feature selection methods and to evaluate the performance of the 631 

ML algorithms.  632 

Figure 10 shows the distribution of the molecules in our database, classified using the 633 

criterion d3 > 0.2 as a binary descriptor. Most entries can be computed using logDEq.1 with 634 

satisfactory results. However, we observed that 25 acids and 10 bases showed a clear improvement 635 

within our d3 threshold by modeling lipophilicity with logDEq.2.  636 
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 637 

Figure 10. Distribution of acid and basic entries from our dataset as a function of their d3 values. 638 

 639 

We obtained several structural and physicochemical descriptors of the molecules to 640 

identify considerable divergence between populations. First, our database was split into acids and 641 

bases, and then into the training and test sets. The ‘rcdk’ package in R was used to look through 642 

the descriptors, along with the Jazzy calculations of energies of hydration and hydrogen-bond 643 

strengths and the experimental descriptors. The selected feature selection methods showed a wide 644 

range of diverse descriptors (see Tables 1 and S1). We performed a Welch’s t-test on our 645 

descriptors (WTT), which analyzes the divergence between populations relative to the variances 646 

of the two groups.117 This test was selected over a Student’s t-test because of the divergence of 647 

sample sizes (Figure 10) and variances between groups (Figure 11-12).118 The WTT descriptors 648 

provided acceptable accuracies (see Figure S8).  649 

An iterative feature selection method was also tested using the RFE model. The algorithm 650 

achieved better performance when the 14 most important variables for acids and the nine most 651 

important variables for bases were maintained. The importance of each descriptor posed by the 652 

RFE is shown in Figure S3. Good results were obtained when these descriptors were implemented 653 

during the training of the Machine Learning models. However, the accuracy decreased 654 

significantly when the Test and External Set 1 were evaluated (see Figure S8c-d), indicating that 655 

these descriptors did not generate a sufficiently robust model, or that the large number of chosen 656 

descriptors (see Table S1) may overfit the data. Therefore, we selected WTT descriptors to analyze 657 
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the tendencies of the molecules in each population and to evaluate the overall performance of the 658 

Machine Learning algorithms that we developed. 659 

 660 

 661 

Figure 11. Violin plots of the distribution of the acidic molecules in our dataset along the selected 662 

descriptors for the acids ((a) delta, (b) CH_strength, (c) C1SP3, (d) C2SP3, (e) HybRatio, (f) 663 

khs.dsCH, (g) khs.dssS, (h) khs.sNH2, (i) Alogp2, (j) khs.sCH3, (k) MDEC.11, and (l) MDEC.22). 664 

Distributions are separated between acids and bases and classified by the binary operator d3 > 0.2 665 

(green) and d3 < 0.2 (red).  666 

 667 

 668 

 669 

Figure 12. Violin plots of the distribution of the acidic molecules in our dataset along the selected 670 

descriptors for the bases (a) delta, (b) ATSc3, (c) Alogp2, (d) khs.aaNH, and (e) nRings7). 671 

Distributions are separated between acids and bases and classified by the binary operator d3 > 0.2 672 

(green) and d3 < 0.2 (red).  673 

 674 

 675 
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Figure 11 and 12 show the selected descriptors for acids and bases, respectively, used to 676 

train our classification ML models. These descriptors showed statistically significant divergence 677 

between the means of both populations among the 180 descriptors tested for acids and bases. Both 678 

acidic and basic compounds showed significant differences in their means (p < 0.05 in WTT test) 679 

for the delta and Alogp2 descriptors (Table 1). The descriptor delta was calculated at the respective 680 

pH of each entry for acids and bases. As expected, this descriptor proved to be the most important 681 

in every test carried out in this regard (see Figures S3-S4), as it correlates with the prominence of 682 

ionic species in both phases. Therefore, the apparent ionic partition becomes more significant for 683 

entries with higher delta values (Figures 11a and 12a). This result is very promising, because 684 

despite being an experimental descriptor, there are computational methods to determine pKa that 685 

include first-principles models133–136 as well as machine learning tools137,138.Thus, the descriptor 686 

delta can be automated and easily used to classify molecules according to the lipophilicity 687 

formalisms analyzed here. In fact, the root-mean-square error (RMSE) between predicted pKa 688 

values using the software ChemAxon and experimental data in our database is just 0.58 log units 689 

and the squared coefficient of determination (R2) of 0.95 (see Figure S9) 690 

The ALogp2 descriptor consists of a 3D-QSAR model by Ghose & Crippen (1986), which 691 

predicts a square value of the clogPN value by analyzing the presence of 110 structural fragments 692 

within the molecules.95 Figure 11i and 12c show that molecules with hydrophobicity close to logP 693 

= 0 (with lower Alogp2 values) tend to fit best with logDEq.2. Although water and n-octanol are not 694 

miscible, a small amount of water can dissolve in octanol at room temperature (~ 2.9 mol/kg).139 695 

These hydrophilic molecules might be dragged by the dissolved water to the octanol phase along 696 

with the ionic species; thus, the apparent ionic partition would have a higher importance in these 697 

molecules.  698 

This affinity for water, at least for acidic compounds, was further demonstrated using the 699 

CH_strength descriptor (Figure 11b). This descriptor, calculated by Jazzy, predicts the hydrogen-700 

bond donor strength in carbon atoms.116 The smaller CH_strength values indicate that for entries 701 

with d3 < 0.2, H-bond donors are not primarily found on carbons. Instead, they are found on other 702 

more electronegative heteroatoms. Thus, by weakening the X-H covalent bonds through H-bonds, 703 

the possibility of ionization of these species in both water and n-octanol increases. Figure 11e,k-l 704 

presents other important descriptors for acidic compounds such as MDEC.11, MDEC.22, and 705 

HybRatio. The MDEC.11 and MDEC.22 descriptor consists of a relationship between the number 706 
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of primary (MDEC.11) and secondary (MDEC.22) carbons in the molecule and the squared 707 

average atomic distance between these atoms.121 Whereas, HybRatio is the number of sp3-C atoms 708 

compared to the sum of sp3 and sp2 C atoms. Eq. 2 works better for acidic substances with low 709 

values of these descriptors, which considers together the values of Alogp2, allows us to infer that 710 

small and rigid ionizable molecules with instaurations or aromatic systems need considering the 711 

PI
app to obtain an accurate prediction of logDpH.  712 

Similarly, for basic compounds, higher values of the ATSc3 descriptor are associated with 713 

the consideration of the PI
app for modeling pH-dependent lipophilic profiles on basic molecules 714 

(Figure 12b). This descriptor is related to the high molecular polarizability, which agrees with the 715 

pattern of small molecules in the presence of polar atoms such as nitrogen. Therefore, the apparent 716 

ionic partition effect should be considered for these small, rigid, and unsaturated molecules, which 717 

present a significant proportion of ionic species in the aqueous phase. It has been previously shown 718 

that the PI
app

  of molecules may mechanistically occur via a simple ion-transfer reaction.140 Thus, 719 

it is more plausible that small and compact molecules have a more prominent PI
app

  because of the 720 

lower energetic cost of transferring to the cavity of the ion they replace.  721 

After establishing a distinct division between the two populations and applying an 722 

appropriate feature selection method, Models A and B (see Figure 3) were trained using the logistic 723 

regression (LR), random forest classification (RFC), and support vector machine (SVM) 724 

algorithms. A training set for acidic and basic molecules was used for each model and was 725 

evaluated using a test set consisting of 20% of the population. In addition, the two external sets 726 

were validated using the experimental data obtained by Disdier et al. (External Set 1)45 and 727 

Fauchère and Pliška (External Set 2).126 Predictions were made to determine which formalism best 728 

modeled the lipophilicity of the inputs, and the results were collected in confusion matrices. The 729 

performance of each marker was evaluated by calculating its accuracy, specificity, and sensitivity. 730 

Figure 13 shows the results of the calculations of the four algorithms for the test and external sets 731 

of acidic and basic molecules.  732 
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 733 
 734 

Figure 13. Accuracy, sensitivity, and specificity of each ML model evaluated in this study for 735 

acidic (a,c,e) and basic (b,d,f) entries within the test and external sets by defining our populations 736 

with the conditional d3 > 0.2. Descriptors were selected using the WTT method. Accuracies, 737 

sensitivities, and specificities were calculated with Eqs. 10-12 based on the results of each 738 

confusion matrix (Tables S2-S13) 739 
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It is observed that most of the calculated accuracies for our test set have high values 740 

(between 0.8 and 0.95), denoting that these classification models manage to distinguish relatively 741 

well which molecules best fit with logDEq.1 and logDEq.2. However, the sensitivity decreased in the 742 

test set of acidic molecules, indicating that the models had difficulties in detecting molecules that 743 

fit logDEq.2 (Figure 13a). External Set 1 exhibited good performance, with all models showing 744 

similar accuracies, sensitivities, and specificities to those evaluated in the Test Set (Figure 13c-d). 745 

Additionally, External Set 1 mainly comprises more hydrophobic molecules than our dataset, as 746 

most molecules have logDpH values < 0 (Figure S10). This demonstrates that our models exhibit 747 

high robustness, even when dealing with species belonging to slightly different chemical spaces. 748 

External Set 2, associated with capped amino acids as reported by Fauchère and Pliška126, obtained 749 

divergent results. On the one hand, the pH-dependent values of N-Acetyl-L-tyrosine amide were 750 

predicted with excellent metrics, especially using the LR and SVMP models, because our training 751 

set had a representative number of molecules with phenolic groups. On the other hand, in the case 752 

of N-acetyl-l-histidine amide, the results were very poor due, at least in part, to the fact that our 753 

set had few bases in relation to the acids that best fit Eq. 2, mainly because there was no imidazole 754 

fragments present in our set of bases, thus limiting the performance of our models. 755 

 756 
 757 

 758 
 759 

 760 
 761 

 762 
 763 

 764 
 765 

 766 
 767 
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Conclusions 768 

Lipophilicity is undoubtedly the most widely used and important descriptor in the early 769 

stages of drug discovery and development. Additionally, it is a crucial descriptor in substance risk 770 

assessment and in areas such as adsorption in materials, catalysts, food chemistry, and 771 

computational biology. There are multiple tools to determine this descriptor, mainly for neutral 772 

molecules (logPN). For substances with ionizable groups, two formalisms are commonly used to 773 

determine the distribution coefficient (logDpH), being the simplest pH correction model is the most 774 

widely used. However, previous studies carried out on specific and small molecule sets 775 

recommend considering the effect of the apparent ionic compounds (PI
app) because it has a negative 776 

impact on the accuracy of computing lipophilic profiles when charged species or related species 777 

are ignored. Our study, which was based on a larger amount of data and strictly on experimental 778 

values, validated the observations presented in previous studies. We have also evidenced the 779 

impact of PI
app on the prediction of both the experimental lipophilicity profiles of small molecules 780 

and experimental lipophilicity-based applications and metrics such as lipophilic efficiency (LipE), 781 

distribution of spiked drugs in milk products, and pH-dependent partition of water contaminants 782 

in synthetic passive samples such as silicones. Our findings show that better predictions are 783 

obtained by considering the apparent ionic partition, whereas ignoring its contribution can lead to 784 

inadequate experimental simplifications and/or computational predictions. 785 

Finally, we developed machine learning algorithms using logistic regression, random forest 786 

classification, and support vector machine models to determine from molecular structures in which 787 

cases the PI
app should be considered. The results indicate that small, rigid, and unsaturated 788 

molecules with logPN close to zero, which represent a significant proportion of ionic species in the 789 

aqueous phase, are better modeled using the formalism that takes into account the apparent ionic 790 

compounds (PI
app). 791 

Although we are aware of the molecular complexity of the species that can be included in 792 

the computational determination of the apparent ionic partition (PI
app), parameterization or training 793 

of models using experimental values of PI
app can help alleviate the restricted application of 794 

formalisms that include this effect. Finally, our findings can serve as guidance to the scientific 795 

community working in early-stage drug design, food, and environmental chemistry who deal with 796 
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ionizable molecules, to determine a priori which lipophilicity profile should be used depending on 797 

the structure of a substance in research efforts. Future studies will address the influence played by 798 

the apparent ionic partition (PI
app) on the pH-dependent lipophilic profiles in more complex 799 

systems such as zwitterionic and peptides. 800 
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