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ABSTRACT: Stimulus-responsive polymer materials are an attractive alternative to conventional supramolecular and pol-
ymer assemblies for applications in sensing, imaging, and drug-delivery systems. Herein, we synthesized a series of pyrene-
labeled - and -poly-L-lysine conjugates with varying degrees of substitution (DSs). Hydrostatic pressure-UV/vis, fluores-
cence, excitation spectroscopies, and fluorescence lifetime measurements revealed ground-state conformers and excited-
state ensembles emitting fluorescence with variable intensities. The polylysine-based chemosensors demonstrated diverse 
ratiometric responses to hydrostatic pressure through adjustments in polar solvents, DSs, and polymer backbones. Addi-
tionally, the fluorescence chemosensor exhibited a promising glum value of 3.2 × 10-3, indicating potential applications in 
chiral fluorescent materials. This study offers valuable insights for the development of smart hydrostatic pressure-
responsive polymer materials. 

Chemosensors, also known as chemical and synthetic 
probes, exhibit notable optical signals such as colorimetric, 
fluorometric, and electrochemical responses when sub-
jected to variations in temperature, pH, pressure, and 
mechanochemical properties (such as tension and 
stress).1–7 Notably, chemosensors that demonstrate selec-
tivity and sensitivity in their signals are more suitable for 
ratiometric signal-readout systems than simple on/off sig-
naling.8–13 Ratiometric sensing/imaging approaches offer 
advantages in terms of reducing background noises and 
signal interferences, making them particularly superior in 
these aspects.14–17 For example, biological systems often 
employ the fluorescence resonance energy transfer (FRET) 
mechanism, where fluorescence responses in donor and 
acceptor chromophores mutually change.18–20 Therefore, 
developing functional ratiometric signaling systems poses 
a significant challenge in multidisciplinary chemistry.8–20 

In recent years, there has been significant progress in 
the synthesis of dynamically controllable chemosensors 
and smart materials that respond to external stimuli such 
as temperature, pressure, chemical additives, and pho-
toirradiation.21–24 In particular, hydrostatic pressure has 
gained attention in the field of "mechano" science,21 includ-
ing mechanochemistry25–27 and mechanobiology.5–7, 28–30  
Although the effects of hydrostatic pressure in the solution 
state have been studied since the 1960s,31–46 this excludes 
high-pressure solid chemistry using diamond anvil 
cells.47,48  Indeed, we have successively developed the hy-
drostatic pressure-control concept by inducing pressure-
responsive (chir)optical changes on the functional materi-
als.21 Among these advancements, notable examples in-
clude the mechanochromophore in thermally activated 
delayed fluorescence (TADF)49 and the dynamic polymers 
in aggregation-induced emission (AIE),50 both of which 
exhibit ratiometric responses under the influence of hy-
drostatic pressure. These discoveries have motivated us to 
develop a practical ratiometric chemosensor that can be 
controlled by hydrostatic pressure. 

In this study, we discovered functional polymer 
chemosensors that can exhibit ratiometric hydrostatic 
pressure signaling. The conceptual scheme, as depicted in 
Figure 1a, involves the application of hydrostatic pressure 
to induce conformational changes in the polymer, resulting 
in perturbations in the fluorescence intensities of the 
monomer and excimer forms as ratiometric responses. The 
choice of pyrene as a fluorophore in the polymer design is 
crucial owing to its dual emissive behavior as a monomer 
and an excimer. For the dynamic polymer scaffold, we se-
lected α-poly-L-lysine (α-PLL) and ε-poly-L-lysine (ε-PLL), 
with the difference in the number of methylene groups 
expected to play a significant role in the dynamics of the 
polymer backbones. The molecular design is greatly in-
spired by the fluorescence data of the pyrene-labeled 
PLLs51 and other flexible polymers52,53 under atmospheric 
conditions (0.1 MPa). Moreover, the degree of substitution 
(DS) of pyr on the polymer backbone is highly likely to 
significantly impact ratiometric signaling. Hence, we syn-
thesized a series of varying DSs (low, middle, or high DS) of 
-PLLpyr and -PLLpyr conjugates, respectively, and pyr-
ref as the reference monomer, as shown in Figure 1b. 
Herein, we present the ratiometric responses observed 
upon hydrostatic pressurization using α-PLLpyr and ε-
PLLpyr in different solvents, including MeOH, H2O, and 
PBS. The choice of PBS solution, which closely resembles 
the biological medium with an ionic strength of 166 mM, 
allows for potential applications of these polymer 
chemosensors in biocompatible materials. By conducting 
comparative studies in both hydrophilic organic solvents 
and aqueous solutions, we aim to gain deeper mechanistic 
insights into the factors influencing the ratiometric signal-
ing behavior of the polymer chemosensors. These insights 
may eventually pave the way for applications in mechano-
biological imaging. 
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Figure 1. (a) Schematic illustrations of the concept for the ratiometric fluorescence signaling based on the hydrostatic pressure-
induced conformational changes of polymer chemosensors. (b) Chemical structures of the polymer chemosensors (- and -
PLLpyrs) and the reference compound pyr-ref. 

 

First, we investigated the ratiometric behaviors (the 
monomer/excimer ratio) of all the polymers at 0.1 MPa 
(atmospheric pressure). As shown in Figures 2a and b, 
both - and -PLLpyrs showed a sudden increase in ex-
cimer emission at 500 nm with increasing DS in DMSO; 
naturally, the monomeric reference pyr-ref exhibited no 
excimer emission. This is attributed to the degree of 
crowding of pyr chromophores on the polymer backbones. 
Therefore, we will further investigate the effect of hydro-
static pressurization on these ratiometric responses, par-
ticularly in PBS. 

 

Figure 2. (a,b) Normalized fluorescence spectra of DMSO solu-
tions of (a) -PLLpyrs (20-27 M) and (b) -PLLpyrs (17-25 
M) with pyr-ref (16 M, dotted), measured at 25 °C in a 1-
cm cell. (c,d) Fluorescence spectra of (c) -PLLpyrhigh (37 M) 
and (d) -PLLpyrmid (33 M) in PBS at 0.1, 20, 40, 60, 80, 100, 
120, and 140 MPa (from black to sky blue) at room tempera-
ture in a high-pressure cell. Polymer concentrations were 
expressed in the chromophore unit. 
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As a representative ratiometric polymer, -PLLpyrhigh in 
PBS (Figure 2c) was first examined. Importantly, under 
hydrostatic pressurization, the monomer emission intensi-
ty slightly decreased while the excimer intensity increased. 
This simple ratiometric response provides a means for 
detecting applied hydrostatic pressures. In contrast, as 
shown in Figures S20a and b in the SI, both α-PLLpyrlow 
and α-PLLpyrmid exhibited a mutual decrease in both 
monomer and excimer intensities with increasing hydro-
static pressure. The degrees of decrease varied in each 
polymer, resulting in inherent ratiometric characteristics, 
as shown in Table 2. Furthermore, the hydrostatic pres-
sure-dependent fluorescence changes of α-PLLpyrs (and 
ε-PLLpyrs) in MeOH and H2O are presented in Figures 
S21–S24 in the SI. The observed changes in intensity ratios 
(monomer/excimer ratios) varied depending on the sol-
vents and chromophore substitution (DSs) used, indicating 
that ratiometric signaling under hydrostatic pressurization 
can be controlled by various parameters. 

To elucidate the excited-state species involved in -
PLLpyrs in more detail, we measured the fluorescence 
lifetimes in PBS upon hydrostatic pressurization. In Figure 
3a,b, the fluorescence decay profile at 400 nm (around the 
monomer) or 500 nm (around the excimer) in PBS exhibit-
ed multiple components and could be fitted reasonably 
well with a sum of three exponential functions (fitting re-
sults shown in Figure S25). Interestingly, in the monomer 
emissive region, we observed three distinct excited species 
with lifetimes of 0.2 ns (τ1), 9.1 ns (τ2), and 27 ns (τ3) at 
atmospheric pressure (0.1 MPa), as listed in Table 1. Com-
paring with pyr-ref, the longest τ3 species was attributed 
to the pyrene monomeric species. The shortest species of 
0.2 ns was also observed in pyr-ref, and its origin was not 
previously concluded in the literature for similar chromo-
phores.54 This short lifetime may be explained by a proton 
transfer involving the NH group in the amide moiety. Addi-
tionally, the middle species with a lifetime of τ2 can be at-
tributed to the ground-state stacked conformer (GSC), 
which generally exhibits a shorter lifetime compared to the 
monomeric species, as reported in our previous study.55 
This observation is further supported by the hydrostatic 
pressure-excitation spectra, which do not overlap with the 
UV/vis spectrum (refer to Figure S26 in the SI). Based on 
these findings, we can identify the ground-state conform-
ers and excited-state species on the polymer backbone, as 
shown in Figure 3c. Increasing hydrostatic pressure results 
in shortened lifetimes and decreasing relative abundances 
(A factors) of the main monomer emissive species, leading 
to a decrease in fluorescence intensity in the monomer 
emission region. This behavior is likely attributed to the 
flexibility of the polymer backbone. A detailed discussion 
on this aspect will be provided later by comparing with ε-
PLLpyrs. Similarly, three lifetimes of 4.2 (4), 24 (5), and 
54 ns (6) were observed in the excimer region at 0.1 MPa; 
however, their origin was unclear. The most plausible ex-
planation for τ4 is that it may correspond to a different 
type of ground-state stacked conformation (GSC). In this 
GSC2, the pyr stacking energy is more stable than in GSC1, 
resulting in emission at a longer wavelength. Similarly to 
pyr chromophores in a polymer matrix,56 the two longer 
lifetimes, τ5 and τ6, can be attributed to a second (partially 
overlapped) excimer and a sandwich (fully overlapped) 

excimer, respectively. Applying hydrostatic pressure leads 
to an increase in the A factor of the sandwich excimer. 
These observations in fluorescence lifetime measurements 
are the underlying cause of the hydrostatic pressure-
induced ratiometric responses in the polymer chemosen-
sor. 

 

Figure 3. (a,b) Time-correlated fluorescence decays of -
PLLpyrhigh (37 M) monitored at (a) 400 nm and (b) 500 nm 
in PBS at 0.1, 20, 60, 100, and 140 MPa (from black to sky 
blue) at room temperature in a high-pressure cell. Polymer 
concentrations were expressed in chromophore units. (c) 
Schematic illustration of the ground-state conformers and 
excited-state dynamics for the hydrostatic pressure-induced 
ratiometric responses of the chemosensors. 
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Table 1. Fluorescence Lifetimes of -PLLpyrhigh in PBSa

Compd. P/MPa emb/nm nc 1/ns A1 2/ns A2 3/ns A3 4/ns A4 5/ns A5 6/ns A6  

pyr-refd 0.1 400 2 0.2 <0.01   14 0.99       1.3 

-PLLpyrhigh 0.1 400 3 0.2 0.02 9.1 0.22 27 0.76       1.2 

  500 3       4.2 0.04 24 0.31 54 0.65 1.1 

  20 400 3 0.2 0.02 9.2 0.24 25 0.74       1.3 

   500 3       4.5 0.04 25 0.35 54 0.61 1.1 

  60 400 3 0.2 0.02 8.9 0.25 24 0.73       1.0 

   500 3       4.1 0.04 23 0.34 53 0.62 1.0 

 100 400 3 0.2 0.02 8.5 0.25 23 0.73       1.1 

  500 3       4.1 0.04 24 0.35 50 0.61 1.2 

 140 400 3 0.2 0.02 8.2 0.25 22 0.73       1.0 

  500 3       3.1 0.03 19 0.25 49 0.72 1.1 

aFluoresecence lifetime (i/ns) and relative abundance (Ai) of each excited species in non-degassed PBS at room temperature in 
a high-pressure cell; [-PLLpyrhigh] = 37 M in chromophore unit. bMonitoring wavelength. cNumber of components. d[pyr-ref] = 
33 M, measured in MeOH. 

 

Next, we investigated the hydrostatic pressure signaling 
of -PLLpyrs, in which the polymer backbone is believed 
to be more susceptible to a hydrostatic pressure stimulus 
owing to the flexible methylene chain in the repeating unit. 
Figure 2b demonstrates that increasing the DS results in 
the stepwise development of excimer emission in DMSO, 
similar to the behavior observed in α-PLLpyrs. However, 
the excimer emission of ε-PLLpyrhigh in PBS shows a 
slightly distorted spectral shape (see Figure S20d). This 
distortion may be attributed to the presence of aggregated 
patterns in the excited state, which are plausible in hydro-
philic and high-ionic-strength solutions such as PBS owing 
to the flexible chain. Notably, ε-PLLpyrmid exhibits re-
markable ratiometric signaling upon hydrostatic pressuri-
zation in Figure 2d, with the monomer emission intensity 
increasing and the excimer emission intensity decreasing 
with increasing pressure. Interestingly, this behavior is 
opposite to -PLLpyrhigh. To elucidate the excited-state 
dynamics of -PLLpyrmid, the hydrostatic pressure lifetime 
decay was measured. The fluorescence decay profiles 
measured at 400 (monomer region) and 500 (excimer re-
gion) nm were reasonably fitted to give a sum of three 
functions (see Figure S27 and Table S1 in SI). These six 
excited species correspond to τ1 and τ3 originating from 
the pyr chromophore, τ2 and τ4 as GSC1 and GSC2, τ5 as the 
second excimer, and τ6 as the sandwich excimer, respec-
tively. The opposite ratiometry, with decreasing excimer 
emission and increasing monomer emission, can be at-
tributed to the decreasing A factor of τ6. While the A factors 
in the monomer species also decrease, they are not the 
main determining factor for the increase in fluorescence 
intensity. Generally, the fluorescence intensity increases 
with increasing hydrostatic pressure owing to the increas-
ing viscosity of the solution, suppressing collisional deacti-
vation by a solvent attack.21,46 In the monomer region, this 
mechanism is preferable, eventually leading to an increase 
in intensity. 

Table 2 summarizes the hydrostatic pressure-
ratiometric responses (see Figure S28). The response fac-
tors  (the fluorescence intensity ratios of mono-
mer/excimer) in MeOH, a hydrophilic but organic solvent, 
are larger than those obtained in aqueous solutions such as 
H2O and PBS. These different behaviors are likely to be 
responsible for the conformational changes of the polymer 
backbones. As shown in the circular dichroism (CD) spec-
tra of Figure S29a, -PLL in MeOH shows two characteris-
tic Cotton peaks relating to -helix and -sheet; in contrast, 
the CD spectra of the aqueous solutions show only nega-
tive maxima (Figure S29b,c). These results and previous 
studies57 suggest that -PLL adopts a higher-ordered 
structure in MeOH but a random coil conformation in 
aqueous solution. Furthermore, the pressure-dependent 
viscosity of MeOH exhibits a significant change, increasing 
from 0.544 cP at 0.1 MPa to 0.924 cP at 151 MPa.58 Con-
versely, H2O’s pressure-dependent viscosity shows little 
change, ranging from 0.890 cP to 0.889 cP over a pressure 
range of 0.1 MPa to 100 MPa.59 Solution viscosity is crucial 
for the ground- and excited-state dynamics of chromo-
phores. Therefore, we revealed that these two factors are 
critical in generating larger γ values compared to those 
obtained in aqueous solutions. Additionally, the CD spectra 
of ε-PLL in all the studied solvents (as shown in Figure 
S29d-f) exhibited broad positive Cotton effects, indicating 
an extended conformation.60 The conformational flexibility 
of ε-PLLpyrs, which is attributed to the methylene linkers 
in the repeating unit, results in higher γ values compared 
to α-PLLpyrs. This suggests that ε-PLLpyrs exhibit better 
performance as hydrostatic pressure-ratiometric signaling 
chemosensors. 
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Table 2. Hydrostatic Pressure-Induced Rati-
ometric Responses 

Chemosensor Response factor () /|×10-3 MPa-1|b 

in MeOH in H2O in PBS 

-PLLpyrlow 16 2.7 2.0 

-PLLpyrmid 8.2 2.0 1.5 

-PLLpyrhigh 6.6 2.1 4.0c 

-PLLpyrlow 47 15 13 

-PLLpyrmid 20 2.7 8.2 

-PLLpyrhigh 5.9 2.0 a 

aNot applicable. bImonomer/Iexcimer, unless noted otherwise. 
cIexcimer/Imonomer. 

 

Finally, we investigated the circularly polarized lumi-
nescence (CPL) emitted by the pyrene-based polymer 
chemosensors to explore their potential as chiral emitters. 
Figure 4 shows that ε-PLLpyrhigh exhibited negative CPL in 
the excimer regions, with a glum of 2.1 × 10-3 in MeOH and 
3.2 × 10-3 in H2O, respectively. These values are slightly 
larger than those observed in the chirally modified pyrenic 
chromophores (<10-3).61,62 This phenomenon can be at-
tributed to the close packing of pyrene chromophores on 
the chiral PLL backbone. The glum value, as defined in Equa-
tion 1, allows us to quantitatively describe the circularly 
polarized luminescence as: 

ூಽ

ூೃ
=

ቀଵା
೒೗ೠ೘

మ
ቁ

ቀଵି
೒೗ೠ೘

మ
ቁ
 (1) 

The parameter IL/IR, representing the ratio of left-handed 
to right-handed CPL, becomes a chiral ratiometric factor of 
1.0021 in MeOH or 1.0032 in H2O. This new index provides 
a quantitative measure of the chiral properties of the 
fluorophore polymer chemosensors. 

 

 

Figure 4. CPL emission (top) and total emission (PL) spectra 
of -PLLpyrhigh in (a) MeOH (46 M in chromophore unit) and 
(b) H2O (46 M in chromophore unit) at room temperature. 
The insets show the photographs of the solutions. 

In conclusion, this study reports the discovery of rati-
ometric response polymer chemosensors induced by hy-
drostatic pressure, representing a novel approach in the 
field of "mechano" science. These findings provide a pre-

cise method for detecting hydrostatic pressures and offer 
advantages in terms of sensitive and selective signal 
readout. The use of pressure-responsive polymer 
chemosensors, especially in a ratiometric manner, holds 
great promise for various applications. Hence, this study 
provides guidelines for designing smart polymer materials 
with ratiometric responses to hydrostatic pressure and 
notable CPL performance, facilitating the development of 
advanced multifunctional polymer materials. 
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