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Abstract 

Non-crystalline solid materials have attracted growing attention in energy storage for their 
desirable properties such as ionic conductivity, stability and processability. However, compared 
to bulk crystalline materials, fundamental understanding of these highly complex metastable 
systems is hindered by the scale limitations of density functional theory (DFT) calculations and 
resolution limitations of experimental methods. To fill the knowledge gap and guide the rational 
design of amorphous battery materials and interfaces, we present a molecular dynamics (MD) 
framework based on machine-learned interatomic potentials trained on the fly to study the 
amorphous solid electrolyte Li3PS4 and its protective coating, amorphous Li3B11O18. The use of 
machine-learned potentials allows us to simulate the materials at time and length scales that are 
not accessible to DFT while maintaining a near-DFT level of accuracy. This approach allows us 
to calculate amorphization energies, amorphous-amorphous interface energies, and the impact of 
the interface on lithium ion conductivity. This study demonstrates the promising role of actively-
learned interatomic potentials in extending the application of ab-initio modeling to more complex 
and realistic systems such as amorphous materials and interfaces. 

 

Introduction 

Li-ion batteries have revolutionized the portable electronics industry.1 All-solid-state Li-ion 
batteries employing nonflammable solid electrolytes are attracting growing attention due to their 
enhanced safety and higher energy density.2-4 Although several classes of inorganic solid 
electrolytes with high ionic conductivity have been identified, the performance of all-solid-state 
batteries is often compromised by interfacial side reactions.5-9 At present, a major challenge facing 
all-solid-state batteries is developing materials that enable high mobility of lithium ions in the bulk 
as well as across interfaces.10, 11  

Computation has become an important approach for advancing material research for batteries.12, 13 
Density functional theory (DFT) has been particularly successful in evaluating thermodynamic 
stability, providing bounds for electrochemical stability windows, predicting ionic diffusion 
mechanisms, and guiding interface engineering.14-16 In recent years, high-throughput 
computational screening over wide chemical spaces has emerged as a valuable tool to improve 
upon experimental trial and error.16 Simulations of specific material structures have provided 
insights on atomic and electronic scales, thus aiding the interpretation of experimental 
observations.17, 18 Due to the computational cost of DFT calculations, currently most atomic-level 
studies of materials focus on crystalline materials.19  

State-of-the-art solid electrolytes are comprised of crystals, glass-ceramics and glasses.3, 20 
Inducing disorder into the structure has emerged as a potential route to enhance the rate of ionic 
conduction.21, 22 Compared to crystalline structures, the amorphous counterparts could provide 
percolation pathways and avoid problems with lattice mismatch, contributing to improved rate 
capability and long-term cyclability. As opposed to energetically favorable migration paths in 
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particular directions characterized in various crystalline lithium borate materials,23 the diffusion 
rate of charge carriers in the amorphous phase is independent of its orientation, which facilitates 
processing to achieve the theoretical rate capability. The benefits of non-crystalline materials are 
reflected in the fact that many state-of-the-art coatings used in batteries, including LiNbO3, LiTaO3, 
Li4GeO4, Li3PO4, Al2O3, Li3.5Si0.5P0.5O4, and lithium borate obtained by various preparation 
methods, exhibit low crystallinity in experimental characterizations.24-30 Despite the increasing 
interest in using amorphous materials as solid electrolytes and electrode coatings,31-33 relatively 
little is known about the interfacial properties and atomistic mechanisms of ionic diffusion in these 
materials, leaving a gap in our knowledge of how to improve cycling performance in batteries with 
amorphous materials.  This is in part due to the challenge of using experimental methods to 
accurately characterize atomic structures of amorphous materials.34  

First-principles modeling of amorphous structures is challenging because unlike crystals, 
amorphous structures lack translational symmetry.  It is thus necessary to use large simulation cells 
which can be prohibitively expensive to model, especially if long time scales are required. Ab-
initio molecular dynamics (AIMD) has been used in several studies on solid electrolyte materials 
with high lithium ion conductivity,35-37 but there have only been a few reported studies that 
simulated amorphous coatings, and these were mainly done with empirically parametrized models 
such as classical force-field-based molecular dynamics simulations and Monte Carlo annealing.37-

39 It is a non-trivial task to develop interatomic potentials for new glass chemistries, and it becomes 
even more challenging for highly complex systems such as amorphous-amorphous interfaces. To 
circumvent the limitation of inaccurate empirical interatomic potentials, other approaches have 
been employed to construct atomistic models for disordered and heterogeneous systems including 
reverse Monte Carlo modeling (RMC)40 and hybrid reverse Monte Carlo algorithm (HRMC)41 
which combines RMC with molecular dynamics (MD). Although these methods can be effective, 
they require experimental diffraction data which is not always readily available.  

Machine learning has proven to be versatile for circumventing the limitations of first principles 
calculations, facilitating the prediction of materials properties that are otherwise hard to access.42-

45 In our previous work, we developed a screening scheme for solid-state ionic conductors based 
on active learning of moment tensor potential (MTP) models and achieved better agreement with 
experimentally-determined activation energies than what could be achieved by DFT alone.46-48 In 
this scheme, structures that are significantly different from those used to train the potential are 
identified on the fly during MD and added to the training set, preserving the accuracy of the 
machine-learned potential and minimizing the cost of generating training data. Such an active 
learning scheme is also promising for amorphous materials, as it provides accuracies close to that 
of DFT but allows simulations on much longer time and length scales. In this work, combining the 
capability of first principle methods to accurately treat arbitrary configurations with the high speed 
of machine-learned interatomic potential models, we present an active learning scheme to achieve 
accurate atomistic modeling of amorphous materials. We demonstrate this scheme by applying it 
to the commonly employed amorphous solid electrolyte Li3PS4 and the novel amorphous 
protective coating Li3B11O18.30  
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While most simulations on battery materials so far have studied bulk structures, understanding the 
atomic dynamics across interfaces is critical to improving the cycling performance of all-solid-
state batteries.49 Due to the unique chemical environment at the interface, ionic dynamics in its 
vicinity may differ from that in the constituent phases on either side. It is non-trivial to estimate 
the conduction rate or the diffusion mechanism across the interface even when both bulk materials 
are well characterized. Recently several DFT studies have examined the geometry and electronic 
properties of systems such as Li/Li2O, Li/Li3PS4, Li/Li7La3Zr2O12, Li/LiPON on the anode side50-

52 and LiCoO2/Li3PS4, LiFePO4/Li3PS4 on the cathode side.53, 54 Among those studies, a few 
reported diffusion activation energies across crystalline interfaces by performing climbing-image 
nudged elastic band (CI-NEB)55, 56 calculations with a manually determined diffusion paths.52, 54 
Such an approach could be very challenging for amorphous materials due to their high structural 
complexity, wide variety of local atomic environments, and cooperative atomic motions involved 
in diffusion. To address this challenge, we extend our active learning-driven MD study to 
investigate the  atomic structure and ionic diffusion at the amorphous-amorphous interface 
between Li3B11O18 and Li3PS4. This approach enables us to predict the interfacial energy between 
two amorphous ionic compounds, which is rarely found in literature. We further quantify the effect 
of the interface on the overall ionic conductivity of the coated solid electrolyte. The result provides 
atomic-scale insights into the experimentally-observed enhanced rate performance by the borate 
coating.30  

 

Methods 

1. Molecular dynamics 

Ab-initio MD simulations were performed using the Perdew-Burk-Ernzerhof (PBE) generalized 
gradient approximation exchange-correlation functional57 and projector augmented wave58 
potentials (PAW_PBE Li, PAW_PBE P, PAW_PBE S, PAW_PBE B and PAW_PBE O) using the 
Vienna Ab initio Simulation Package (VASP).59, 60 We used a plane wave energy cut-off of 400 eV 
and a minimal Γ-centered 1 × 1 × 1 k-point mesh which has been shown to provide a satisfactory 
balance between computational accuracy and cost in large systems.61, 62 Non-spin-polarized 
calculations were performed. A time step of 2 fs was adopted for MD. The temperature control for 
NVT-AIMD simulations and NPT-AIMD simulations was achieved by using a Nosé-Hoover 
thermostat with a Nosé-mass corresponding to a period of 40 time steps (SMASS=0)63, 64 and 
Langevin thermostat65, 66 respectively. 

Our learning on-the-fly (LOTF)-MD scheme automatically switches between MTP-MD in 
LAMMPS67 and DFT retraining in VASP. During the dynamic evolution of the structure in MTP-
MD, MTP re-training was conditionally activated by the occurrence of an “extrapolating” 
configuration as determined by the D-optimality criterion,68 corresponding to the extrapolation 
grade69 parameter coded in MLIP. The MPT-MD was terminated once the extrapolation grade 
exceeded the selection threshold, which we set to 10, consistent with recent publications.46 
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Structures that had extrapolation grades above 1.5 were selected from the MD trajectory to be 
added to the DFT training set. The MTP was re-trained on the updated training set and MTP-MD 
run was restarted with the new potential. The active learning process was managed by the Machine 
Learning of Interatomic Potentials (MLIP) software package.69 The MTP cutoff radius and the 
maximum level of basis functions, levmax were chosen to be 5.0 Å and 12, respectively. MTP-MD 
simulations in the isothermal-isobaric (NPT) ensemble used the Nose-Hoover thermostat and 
barostat.64, 70 The Nose-Hoover thermostat was also used to maintain the temperature in the 
canonical (NVT) ensemble. We applied a time step of 2 fs in LAMMPS, consistent with that used 
in AIMD. Details of the active learning criteria, DFT validation error of energies and forces on 
various crystalline structures as well as experimental benchmark results on diffusion barrier energy 
prediction can be found in our previous publication.46 

 

2. Workflow 

The initial structures of bulk glasses were constructed by randomly distributing Li atoms and PS4 
tetrahedral units (96 atoms in total) in 12 Å × 12 Å × 14.87 Å simulation boxes for Li3PS4, and Li, 
B and O atoms (128 atoms in total) in 12 Å × 12 Å × 10.64 Å simulation boxes for Li3B11O18, to 
match the densities of their crystalline counterparts.71, 72 Interface structures were initialized by 
stacking randomly initialized bulk components. The vertical displacements of the top component 
were adjusted within the range of 1.2~1.5 Å to ensure Li-Li distance of at least 2.5 Å. We obtained 
an ensemble of four independently initialized structures for each composition of bulk materials 
and the solid-solid interfaces.  
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Figure 1. Potential training and MD production of bulk Li3PS4, bulk Li3B11O18 and 
Li3PS4/Li3B11O18 interface: Initial AIMD and learning on-the-fly MD in supercells of 10-12Å, 
followed by melt-quench in large simulation cells (>20 angstroms between periodic images) to 
obtain equilibrated amorphous structure models and calculate ionic diffusion coefficients.  
  
Amorphous structures were optimized using the melt-quench method as shown in Figure 1. To 
generate the initial training dataset for moment tensor potentials73, an AIMD simulation was 
carried out for 15 ps at 1000 K in the NVT ensemble. In each AIMD run, the first 2 ps were used 
for equilibration and then a 13 ps dynamic trajectory was produced for training. The initial training 
data for the interatomic potential was generated by taking snapshots of the AIMD simulation at 
intervals of 10 fs.  This potential was then used in learning on-the-fly MD (LOTF-MD) at 1000 K 
until the MD simulation ran for at least 2 ns without activating DFT re-training. Then LOTF-MD 
simulations in the NPT ensemble were performed at 1000 K for a duration of at least 2 ns to relax 
the lattice strain.  MTP-MD runs in the subsequent iterations were initialized by the last non-
extrapolating snapshot from the previous MD run. In this way, the quality of amorphous structures 
and the potential models were simultaneously improved during LOTF-MD iterations. During MTP 
learning on-the-fly, the training weights of energy, force, and stresses were 100:0.1:0 and 100:0.1:1 
for NVT-MD and NPT-MD, respectively. The ensemble of independently generated training sets, 
with compositions of Li3PS4, Li3B11O18 and Li3PS4/Li3B11O18, were consolidated into one training 
set containing a diverse sampling of local atomic configurations. A single interatomic potential 
was trained on this combined set of training data. To validate the prediction accuracy of the trained 
potential and compare the energies of structures generated by LOTF-MD with those from AIMD, 
we performed AIMD static calculations on 200 snapshots evenly selected from a 2 ns LOTF-MD 
trajectory with 10 ps time interval for each composition.  

To calculate the diffusion properties of the bulk amorphous materials, we constructed 2×2×2 
supercells of the final structure from the previous LOTF-MD runs. For the interface, we 
constructed a 2×2×1 supercell. The supercells contain 1024, 768 and 896 atoms for compositions 
of Li3PS4, Li3B11O18 and Li3PS4/Li3B11O18 interface, respectively. The potential trained on the 
combined training data was used to melt the system at 1000 K in the NPT ensemble for 20 ps, 
which ensures loss of the memory of the initial configuration. The system was subsequently cooled 
linearly to 300 K in 2 ns with the cooling rate at 3.5x1011 K/s. We then equilibrated the glassy 
system at 300 K at 1 atm pressure in the NPT ensemble for 1 ns to relax any stress.  

We applied the following equation to compute the tracer diffusivity: 

  (1) 

where ⟨∆2𝑟(𝑡)⟩ is the mean square displacement (MSD) of Li atom after time 𝑡, and the constant 
6 is used for three-dimensional diffusion. To calculate the tracer diffusivity as a function of 
temperature, we performed LOTF-MD in the NVT ensemble with the lattice dimension fixed at 
that of the room-temperature equilibrated structures. The initial temperature (𝑇) for LOTF-MD 
simulations of each simulation snapshot was 720 K, and the MD simulation temperature was 
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decremented by 10 K until the diffusivity of Li was so low that no site-to-site hopping was detected 

within 100 ns. The temperature-dependent diffusivities were used to fit the Arrhenius relationship,  

 . (2) 

We denote the estimated tracer diffusivity at temperature 𝑇 as 𝐷(𝑇). The activation energy, 𝐸𝑎, 
can be calculated from a linear fit of log⁡(𝐷(𝑇)  to 1

𝑘𝐵𝑇
 , where 𝑘𝐵  is Boltzmann’s constant. As 

demonstrated by He et al.,74 the variance of the independent variable D should be considered when 
fitting the Arrhenius equation for a statistically meaningful estimation of 𝐸𝑎 . Following their 
method, we estimated the variance of the diffusivity of lithium ions and propagated to the variance 
of the activation energy 𝐸𝑎. These variances were then used in a weighted least-squares regression 
to estimate 𝐸𝑎. The equation for variance calculation and weighted least-squares regression are 
provided in Section 1 of the Supplemental Information. The room-temperature conductivity 
𝜎300𝐾was calculated using the Nernst−Einstein relation under the assumption that the Haven ratio 
is equal to one:75, 76 

 , (3) 

where 𝑛 is the volume density of the diffusing species, 𝑒 is the unit electron charge, 𝑧 is the charge 
of the ionic conductor (here 1 for Li⁺), and 𝐷300𝐾  is the extrapolated room-temperature tracer 
diffusivity. 

 

3. Calculation of interfacial energy 

The interfacial energy, 𝛾𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  is computed with respect to the two constituent bulk phases: 

 

 , (4) 

where 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  denotes the total energy the simulated interface model, 𝐸𝑏𝑢𝑙𝑘,𝐿𝐵𝑂 and 𝐸𝑏𝑢𝑙𝑘,𝐿𝑃𝑆 
are the energy per formula unit of amorphous Li3PS4 and Li3B11O18, respectively, 𝑁𝐿𝐵𝑂 and 𝑁𝐿𝑃𝑆 
are the number of formula units of Li3B11O18 and Li3PS4 in the interface system, and 𝐴 is the area 
of each interface in the simulation cell.  

Results and discussion 

1. Structure of simulated glasses 
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Figure 2. Snapshots from LOTF-MD trajectories in the final production steps at 300 K for the 
amorphous structures of (a) LPS, (b) LBO, and (c) the interface between LPS and LBO. Green, 
yellow and red spheres represent Li, S and O, respectively. Purple tetrahedra, green tetrahedra and 
triangles represent PS4, BO4 and BO3 ionic units, respectively. The dimensions of the unit cell 
used for the interface are shown on the schematic.  

 

We evaluate the atomic ordering in the amorphous structures generated by the melt-quench method 
(Figure 2) by calculating the pair radial distribution functions (RDFs) of Li-Li, B-O and P-S pairs 
with reference to their crystalline counterparts (Figure 3). The Li-Li RDF in both bulk materials 
exhibits no sharp peaks, suggesting a highly disordered Li distribution in the glasses at room 
temperature. In contrast, the clear peaks in the P-S and B-O pair distribution functions indicates 
that the PS4 tetrahedra, BO4 tetrahedra and BO3 triangular anion units remain largely intact in the 
amorphous structures during Li diffusion (Figure 3). Our computed RDF of amorphous Li3PS4 

agrees with previous experimental characterization where the first peak around 2.0 Å is due to the 
P–S covalent bond in PS43− which are the predominant anion units in the structure.77 The RDF of 
non-lithium species in the amorphous structures differ from crystals in the longer range features. 
Integrating the curves for P-S and B-O pairs (Figure 3) up to the first minimum (~2.5Å), the 
average coordination number of P by S atoms and B by O atoms are 4 and 3.2, respectively. A 
similar analysis was conducted on the geometry of interfaces, and approximately the same 
coordination number of P-S and B-O were obtained. This suggests that the short-range ordering of 
anion units in the interface resembles that in the bulk phase.  
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Figure 3. Pair radial distribution functions (RDFs) at 300 K of (a) amorphous Li3PS4 for atom pairs 
Li-Li and P-S, and (b) amorphous Li3B11O18 for atom pairs Li-Li and B-O with reference to their 
crystalline counterparts. Colored dash lines represent the RDFs from LOTF-MD trajectories of 
multiple independently simulated amorphous structures. Black solid lines represent the RDFs of 
crystalline Li3PS4 and crystalline Li3B11O18. 
 

The thermal history of glasses is critical to the structural properties of amorphous systems.78, 79 
However, given the timescale accessible to AIMD, which are generally less than a nanosecond, 
the simulated cooling rate in an AIMD simulation is typically on the order of 1013-1015 K/s, which 
is much higher than that performed experimentally (1–100 K/s).80-82 Several computational studies 
have investigated the effect of thermal history on the structures and properties of silicate, borate, 
phosphate, borosilicate and aluminosilicate glasses.83-86 It was found that cooling rates in the range 
of 5⨉1012 - 1⨉1011K/s yield reasonable structural properties.79, 87, 88 Enabled by the high efficiency 
of LOTF-MD, we carry out cooling over 2 ns time duration at the rate of 3.5⨉1011 K/s, which 
would be prohibitively expensive with AIMD in large unit cells.  

To better understand the effects of cooling rate on the amorphous structure we compare the radial 
distribution functions produced by cooling at 3.5⨉1011 K/s with those produced by fast quenching 
at 3.5⨉1014 K/s  (Figure 4). The fast quenching rate resulted in considerably more spread in the 
pair distributions functions than the quenching rate that was three orders of magnitude slower, 
suggesting that the pair distributions functions had not yet converged. This provides evidence that 
high quenching rates might result in unrealistic structures in the amorphous system, which 
highlights the important role of active learning potential models in studies of amorphous materials. 
Although additional structural refinement might be achieved with even slower quenching, 
convergence of the cation spatial distribution among multiple MD initializations indicates that the 
simulated quenching provides a reasonable approximation to the actual amorphous structure. It 
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has previously been reported that intermolecular S-S units can emerge from fast quenching.89 An 
RDF analysis of S-S pairs (SI Figure S1) in our samples shows a similar peak for intermolecular 
S-S bond formation at the fast cooling rate, but the peak is not apparent at the slow cooling rate.   

 

 
Figure 4. Li-Li pair radial distribution functions (RDFs) of glass Li3B11O18 at 300 K in 
configurations produced by cooling at the rate of a) 3.5 ⨉ 1014 K/s b) 3.5 ⨉ 1011 K/s.  
 

 

 
Figure 5. Trajectories of B and P atoms during 20 ns LOTF-MD at 700 K in the unit cell projected 
on the b-c plane for a) bulk LPS b) bulk LBO and c) a LPS/LBO interface. Coordination 
environments of B and P atoms are colored according to the legend. 
 

For the interface structures, most of the time a clear boundary between the two materials can be 
recognized, while occasionally B-O units diffuse into the solid electrolyte. There are two types of 
polyhedra (BO3 and BO4) in the lithium borate glassy network. To investigate the arrangement of 
the polyatomic anions at the interface, we analyze the coordination numbers of boron with oxygen 
and phosphorus with sulfur over the course of 20 ns of LOTF-MD production. As shown in the 
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trajectory plot (Figure 5), the distribution of polyatomic anions in the bulk materials is similar to 
that near the interface. The molar fraction of BO4 tetrahedra with reference to the total number of 
B-O units (0.26) is slightly higher than the molar fraction in the unit cells containing an interface 
(0.22).  

To validate the generated structures (Figure 2 and Supplemental Information Figure S2),  we 
compared the calculated densities to those previously reported in literature. The density of Li3PS4 

relaxed by LOTF-MD in the NPT ensemble at room temperature is 1.79 ± 0.014 g/cm3 averaged 
over four independent simulation cells. Experimental measurements of the density vary between 
1.45 and 1.89 depending on the molding conditions.90 The AIMD-calculated density of LPS 
glasses, calculated using melt-quench procedures, have been reported as 1.79 g/cm3 and 1.56 
g/cm3.37, 91 In the paper reporting the lower density,37 it was suggested that the difference might be 
attributed to fact that the computational cell was constrained to be cubic in the calculation that 
yielded the higher density.37 To clarify this discrepancy, we performed AIMD in the NPT 
ensemble following the procedures in ref 37 where a density of 1.56 g/cm3 was reported, and we 
obtained a density of 1.802 g/cm3 after 30 ps AIMD. The density evolution over the course of 
AIMD simulation is shown in the SI Figure S3. This indicates that LOTF-MD reproduces the 
AIMD optimized density well. The LOTF-MD-calculated density averaged over an ensemble of 
four Li3B11O18 is 2.09 ± 0.01 g/cm3, which achieves good agreement with the experimental density 
of 2.1 g/cm3. 92, 93 

2. Energies of amorphous bulk materials and interfaces   

To calculate the energies of bulk amorphous materials and interfaces, the initial atomic structure 
of each amorphous phase at room temperature was obtained using the melt-quench procedures 
described in the Methods section. To examine the progress of energy minimization and geometry 
optimization over time, we took snapshots evenly selected from the trajectories of the initial AIMD 
(150 fs time interval), LOTF-MD equilibration (10 ps time interval), and production periods (10 
ps time interval) and recalculated their energies by DFT to make a comparison with AIMD. We 
note that across all systems, the mean absolute validation error between DFT and MTP is about 4 
meV / atom (Figure 6) and 0.24 eV/Å (Figure S4) for energies and forces, respectively.  To 
understand the evolution of the structure over time, we also calculate the Global Instability Index 
(GII) of these snapshots. The GII represents the mean deviation of the bond valence sums from 
the formal valences.94 It has been previously used to evaluate the stability of crystalline 
structures,95, 96 and here we use it as a measure of atomic order in amorphous structures.  The 
procedure of calculating the GII can be found in Section 2 of the Supplemental Information.  

From MD trajectories of bulk glasses and the amorphous interface structures, we found a 
substantial correlation between GII and the DFT energy which continuously decreased over the 
course of the initial AIMD period and the LOTF-MD equilibration period. In Figure 7, we illustrate 
this trend for the solid-solid amorphous interface structure, which possesses the highest degree of 
complexity among the systems we studied. During the initial 15 ps AIMD simulation, the energy 
decreased from -5.74 eV/atom to -5.99 eV/atom, and the GII decreased from 0.6 to 0.4. In the 
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subsequent 100 ps LOTF-MD equilibration, the total energy further decreased by 0.1 eV/atom. 
This suggests that inadequate equilibration time (e.g. tens of picoseconds) could yield structures 
trapped in unrealistically high energy states. In the final LOTF-MD production, the GII ranged 
from 0.24 to 0.33, and the total energy fluctuated between -6.11 eV/atm and -6.13 eV/atom, which 
suggests the convergence of energy. As a reference, it has generally been found that stable 
crystalline structures are characterized by GII ≤ 0.2,94, 97, 98 suggesting that the amorphous 
structures exist just outside this range. 

 
Figure 6. Comparison of DFT- and MTP-predicted energies for snapshots selected from 2 ns 
LOTF-MD trajectories for a) bulk Li3B11O18, b) bulk Li3PS4 and c) the Li3B11O18/ Li3PS4 interface.  
The corresponding mean absolute errors (MAE) are labeled on the plots. 
 

 

 
Figure 7. DFT energy per atom of an interface structure plotted against the global instability index 
(GII) for 13 ps AIMD started from randomly initialized structure (blue), 100 ps LOTF-MD 
equilibration (orange), and 1 ns LOTF-MD production (green). The configurations at the first step 
of AIMD and the last step of LOTF-MD production are shown on the plot.  
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The energies of bulk Li3PS4, bulk Li3B11O18, and the interface are determined by taking the 
ensemble average of structures in the LOTF-MD production period for each composition. Based 
on the DFT energies of amorphous Li3PS4 and Li3B11O18 with reference to their crystalline 
counterparts, we calculated the amorphization energies to be 36.7 and 42.0 meV/atom, respectively. 
These values are on the lower end of the range of amorphization energies reported in a systematic 
study of 41 binary amorphous systems by AIMD.93 This is consistent with the strong glass forming 
tendency of these materials and the long equilibration times enabled by LOTF-MD. The relatively 
slow cooling rate allowed the structures to relax into low-energy amorphous configurations that 
may be impractical to achieve with AIMD, ultimately yielding more physically plausible and 
representative models for subsequent structural and dynamic analyses.       

The interfacial energy between the two amorphous phases (Equation (4)) was calculated to be 620 
mJ/m2 (38.5 meV/Å2). To our knowledge, this is the first time the interfacial energy between two 
amorphous ionic compounds has been reported.  This is just above the range of a typical 
semicoherent interface (200 – 500 mJ/m2) and comparable to that of a low-energy incoherent 
interface.99 For comparison, the computationally predicted interfacial energies of crystalline 
LiCO2/β- Li3PS454 and Li/γ- Li3PO452 have been reported to be 2466 and 624 mJ/m2, respectively.  

 

3. Li-ion conductivity of bulk and interfacial amorphous systems 

To accurately characterize the transport properties of lithium ions in the glass materials and 
minimize finite-size effects, we constructed supercells of over 2 nm in each dimension for bulk 
Li3PS4 and Li3B11O18. Figure 8(a) and (b) show the calculated total Li+ temperature-dependent 
diffusivities of the sulfide and borate glasses, where the Arrhenius relationship is fitted to statistics 
collected from multiple uncorrelated amorphous phases. The error bar on each averaged diffusivity 
data point is derived from hundreds of nanoseconds MD trajectories using the method of He et 
al.74 At intermediate temperatures for systems with activation energies over 0.5 eV, a nano-to-
micro second timescale is essential to obtain results with high statistical quality.  While there are 
varying diffusivities at the same temperature among the different samples (especially in the 
borate), the average diffusivities exhibit good linear dependence on reciprocal temperature for both 
the fast-conducting sulfide electrolyte and the intermediate-conducting borate coating. The 
statistical quality is enhanced by the extensive sampling of the configuration space by nanosecond 
timescale LOTF-MD production.  
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Figure 8. Arrhenius plots of Li+ temperature-dependent diffusivities and activation energies (Ea) for bulk 
(a) Li3PS4 (b) Li3B11O18, and (c) Li3PS4/ Li3B11O18 diffusion along the three main axes. Each series of 
colored dots represents an independently simulated glass structure. At each temperature, an average 
diffusivity is calculated across all of these structures as shown by the black stars with corresponding error 
bars. The weighted Arrhenius fit to the diffusion data is denoted by the black lines.   

 

The calculated bulk Li3PS4 conductivity is 16.4 × 10−3 S cm−1 at 300 K, in good agreement with 
19 × 10−3 S cm−1 from a comprehensive study of Li3PS4 using AIMD.37 The theoretical predicted 
ionic conductivities are higher than experimentally characterized values by about two order of 
magnitude.100-102 It has been speculated that ionic-impeding impurity/residues such as Li2S, P2S64- 
and P2S74- raised the apparent Li-ion diffusion barrier in the synthesized amorphous Li3PS4.37  

The conductivity for Li3B11O18 calculated using LOTF-MD is 1.38 × 10−4 S cm−1 at 300 K with a 
predicted diffusion activation energy of 0.53 eV. We have not found any reported experimentally-
determined ionic conductivity for this specific borate glass in the literature. For comparison, the 
experimental activation energy for the composition 0.2Li2O·0.8B2O3 with a lower Li content is 
0.8 eV.103  
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To probe the impact of the interface on the ionic conductivity across the cell, we analyze 
diffusivities along axes parallel and perpendicular to the interface plane as shown in Figure 8(c). 
The lateral isotropic diffusion barrier represents the total resistance of bulk sulfide glass, borate 
glass, and the interface connected in parallel. The apparent activation energy is dominated by the 
component with the highest ionic conductivity. In the direction normal to the interface, lithium 
ions encounter the resistance of the bulk sulfide glass, the interface and the borate glass connected 
in series. In this direction, the activation energy is dominated by the component that has lowest 
ionic conductivity.  

To ensure sufficient sampling of all three types of diffusion, we analyzed the displacement of each 
individual lithium ion along interface normal as shown in Figure 9. The distance between 
neighboring interfaces in the simulation cell is ~14 Å. The histogram shows that within 1 ns MD 
production, most lithium ions were bouncing within the bulk phases and few diffusion hops across 
the interface were sampled. During the long MD simulation of 55 ns, over 25% of the lithium ions 
in the simulation cell have displaced from their original location by at least 30 Å in the direction  
normal to the interface, which means they have traveled across an interface at least two times.  

To determine the extent to which the amorphous-amorphous interface may hinder lithium ion 
conductivity in a solid-state battery, we compare the diffusion across the interface to diffusion in 
the bulk materials. If the interface were a significant barrier to diffusivity, we would expect to see 
a significantly higher activation energy for diffusion in the direction normal to the interface. 
However the calculated activation energy in this direction (0.55±0.02 eV) is very similar to the 
calculated activation energy for diffusion through the bulk borate glass (0.53±0.02 eV), giving 
evidence that diffusion across the interface does not reduce the rate of Li-ion conduction. These 
findings are in line with previous studies demonstrating that the local Li-ion environment has 
minimal impact on Li-ion diffusivity.35, 89 Our results indicate that lithium ions experience 
negligible additional impedance when diffusing between amorphous sulfide and borate anion 
sublattice. This might not be the case with crystalline systems due to lattice mismatch at the 
interface.  
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Figure 9. Histogram showing the displacement of lithium ions along the c axis perpendicular to the 
interface averaged over four individual interface structures simulated at 700 K for durations of 1 ns, 10 
ns, and 55 ns.  

 
Figure 10. Trajectory of interface-crossing Li atoms projected onto the x-y plane.  
 

To investigate the diffusion pathways across the amorphous interface, we calculated an isosurface 
of Li-ion probability density for the LPS/LBO interface at 700 K (Supplementary Information 
Figure S4(a)). In addition, we calculated the distribution of lithium ions moving across the 
interface by keeping track of lithium ions coordinated by both S (from Li3PS4) and O (from 
Li3B11O18) atoms excluding those coordinated by both S and O atoms in the snapshot taken 1 ps 
earlier. The spatial distribution plots in Figure 10 and Figure S5 provide evidence for a 
homogeneous distribution of Li diffusion events within the interface region, with some fluctuations 
in density at the angstrom scale that are likely due to the host atomic structure. 

 

Conclusions  
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Machine-learned interatomic potentials trained on-the-fly with DFT can give new insights into the 
kinetic behavior of amorphous materials and interfaces. Through realistic large-scale MD 
simulations using a highly accurate machine-learned interatomic potential model, we investigated 
the interface morphology, thermodynamic properties, and Li-ion diffusion rates in amorphous 
battery materials. We found that the amorphous structures obtained by simulated melt-and-quench 
are critically affected by the cooling rate, and AIMD in particular may be insufficiently fast to 
obtain a reasonable approximation of the amorphous structure. With MD simulations of tens of 
nanoseconds enabled by the machine-learned potential model, we obtained structures with 
amorphization energies significantly lower than those obtained by sub-nanosecond quenching. The 
structural stability of these amorphous structures as measured by the global instability index is just 
above the range of crystalline materials. The interfacial energy between the sulfide solid electrolyte 
and borate protective coating was calculated to be 620 mJ/m2, which to our knowledge is the first 
calculation of the interfacial energy between two amorphous materials from first principles. The 
calculated activation energies for lithium-ion diffusion across the interface provide quantitative 
evidence that the interface between amorphous Li3PS4 and amorphous Li3B11O18 does not impede 
Li-ion diffusion. The method introduced in this study is generalizable to model a variety of 
interfaces involving amorphous materials, which can help to reduce experimental efforts of 
synthesizing and characterizing these systems. 

 

Supporting Information  

Details of statistical error analysis and weighted Arrhenius fitting; Global instability index (GII) 
calculation method; Radial distribution function (RDF) analysis of S-S pairs in the glass structure 
simulated by two different cooling rates; Snapshots of simulated glasses; The density evolution 
over 30 ps AIMD simulation of amorphous Li3PS4; Mean absolute errors for predictions of forces 
by MTP with reference to DFT; Isosurfaces of the Li-ion probability density distribution from the 
LOTF-MD simulation at 700 K for the LPS/LBO interface and spatial distribution of interface-
crossing Li atoms. 
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 3 

1. Statistical error analysis and weighted Arrhenius fitting 

He, X. F. et al.,  defined the relative standard deviation as the ratio between the standard deviation 
of the diffusivity and the diffusivity itself.1  Through a series of benchmarks they fit the following 
equation for the relative standard deviation (RSD) of ionic diffusivities:  

 RSD =
s D

Dtrue
=
3.43
Neff

+ 0.04  (1) 

where  

 
( )

2

max TMSD t
t

effN
a


  

=   (2) 

where ( )TMSD t  is the total mean squared displacement (the sum of the mean squared 

displacements of the lithium atoms) after time t  and a  is the length of a site-to-site ion hop.   

To estimate the uncertainty in the calculated activation energies we start from the Arrhenius 
equation  

 D T( ) = D0e
-
Ea
kBT   (3) 

where ( )D T  is the diffusivity at temperature T , 0D  is the diffusivity in the limit of infinite 

temperature, and aE  is the activation energy for diffusion. Taking the natural log of both sides 

gives an equation that is linear in aE : 

 ln D T( )( ) = ln D0( ) -
Ea
kBT

  (4) 

The variance of ( )( )ln D T , s
ln D T( )( )
2 , is approximately related to the variance in ( )D T , 2

TD , 

through the following equation:2 

 ( )( )

2
2

2ln
TD

D T
TD


    (5) 

where we estimate s DT

2  using the equation of He, X. F., et al.1 (Equation (1) t ).  We estimate aE  

by performing a weighted least squares regression3 of ln D T( )( ) with respect to 1

Bk T
, where the 
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 4 

weight of each sample is the inverse of ( )( )
2
ln D T  for that sample. aE  is a coefficient of the linear 

estimator, and the variance of aE  is taken as the square of the standard error of the coefficient. The 

weighted least squares regression and standard error of the coefficient were calculated using the 
SciPy package.4    
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 5 

2. Global instability index (GII) calculation  

The bond valence 𝑆𝑖𝑗 (the term is associated with cation–anion interaction) of the bond formed 
between two oppositely charged ions 𝑖 and 𝑗 is defined as follows: 
 

 

 
(1) 

 
where 𝑅𝑖𝑗

0  is the bond valence parameter of cation–anion pairs, which is empirically determined 
using experimental room temperature structure data. The value of b can often be treated as a 
universal constant with a value of 0.37.5 The bond valence sum of the 𝑖 th ion is represented as 
follows: 

 
 

(2) 

 
The bond discrepancy factor 𝑑𝑖 is defined as the deviation of the bond valence sum from the 
formal valence. It is represented as follows: 
 

  (3) 

 
where 𝑉𝑖(𝑜𝑥) represents the formal valence of the ith ion. The parameter di is a measure of bond 
strain. The global instability index can be expressed as 

 

 

(4) 

 
where 𝑁 is the number of ions per unit cell.  The further the bond valence sums are from the 
formal valence of the ion, the greater the value of the GII. 
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 6 

Figure S1: RDF analysis of S-S pairs in the glass LPS/LBO interface structure simulated at two 
different cooling rates: slow cooling at 3.5 ⨉ 1014 K/s and fast cooling at 3.5 ⨉ 1011 K/s. As 
reported by M. Sadowski and K. Albe,6 intermolecular (S−S) bonding will lead to a second peak 
located around 4 Å.  
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 7 

Figure S2: Snapshots of simulated glass materials and heterogeneous interfaces.  
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Figure S3: The density evolution over 30 ps AIMD simulation of amorphous Li3PS4 

  

 
Figure S4: Comparison of DFT- and MTP-predicted forces for snapshots selected from 2 ns 
LOTF-MD trajectories at 300 K for a) bulk Li3B11O18, b) bulk Li3PS4 and c) the Li3B11O18/ 
Li3PS4 interface.  The corresponding mean absolute errors (MAE) are labeled on the plots. 
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Figure S5: (a) Isosurfaces of the Li-ion probability density distribution from the LOTF-MD 
simulation at 700 K for LPS/LBO interface. Violet and green polyhedra are the P atoms 
coordinated by S and B atoms coordinated by O, respectively. (b) Trajectory of interface-
crossing Li atoms which are coordinated by both S (from Li3PS4) and O (from Li3B11O18) atoms 
excluding those coordinated by both S and O atoms in the snapshot taken 1 ps earlier. 
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