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ABSTRACT: Family 1 glycosyltransferases (GT1s, UGTs) 
catalyze the regioselective glycosylation of natural products in a 
single step. We identified GmUGT88E3 as a particularly promising 
biocatalyst, able to produce a variety of pure, single glycosidic 
products from polyphenols with high chemical yields. We 
investigated this particularly desirable duality towards specificity, 
i.e., promiscuous towards acceptors while regiospecific. Using 
high-field NMR, kinetic characterization, molecular dynamics 
simulations and mutagenesis studies, we uncovered that the main 
molecular determinant of GmUGT88E3 specificity is a methionine-
aromatic bridge, an interaction often present in protein structures 
but never reported for enzyme-substrate interactions.         

Glycosides are ubiquitous in nature, yet comparatively absent from 
our human-made chemosphere. Indeed, traditional chemistry 
struggles with glycosylation reactions, requiring multistep 
synthesis to ensure control of both regio- and stereoselectivity, 
resulting in high costs and poor atom economy. Conversely, family 
1 glycosyltransferases (GT1s, according to the CAZy database 
classification),1 are able to catalyze the synthesis of glycosides in a 
single step from unprotected acceptors.2 
GT1s are phylogenetically related and present a GT-B fold, with an 
active side cleft at the interface of the two Rossmann domains.3 
GT1s catalyze inverting reactions using UDP-a-glycosyl as donors 
(hence they are also commonly termed UDP-dependent 
glycosyltransferases or UGTs), resulting in b-glycosides. Most of 
them act via base catalysis with a His-Asp dyad as catalytic 
residues (Figure 1).4 

 
Figure 1. Generalized reaction mechanism for family 1 
glycosyltransferases. 

Recently, in an effort to develop a predictor for GT1 acceptor 
selectivity, we assessed reactions catalyzed by 40 GT1s against 32 

polyphenol acceptors.5 Analyzing this dataset, we here identify a 
high-performing enzyme, GmUGT88E3, which showed great 
activity (>90% conversion in 24 hours) towards 15/32 acceptors 
with strict regiospecificity on 7 of those 15. Additionally, when 
assessing yields above 50% in the same timeframe, it presents strict 
regiospecificity on 14/32 acceptors. Interestingly, GmUGT88E3 
thus appeared to be the most promiscuous enzyme relative to 
acceptor specificity, while presenting the strictest regioselectivity 
of all 40 assayed enzymes, two properties that seem opposite. 
Moreover, while a large number of GT1s present scalability issues 
related to chemostability, GmUGT88E3 seemed to be unaffected 
by the process.6 Overall, GmUGT88E3 appears to be a very 
promising biocatalyst for the biotechnological chemosynthesis of 
polyphenols glucosides. Here, we determine the kinetic parameters 
of these glycosylation reactions and the NMR structures of the 
products. Then we used molecular dynamics simulations of the 
Michaelis complexes and mutagenesis studies to identify the 
molecular determinants of these unusual properties, uncovering 
that Met127 is forming a methionine-aromatics bridge (Met-Ar) 
between Phe126 and the polyphenol acceptors. Strikingly, while 
Met-Ar interactions have been reported as a common feature 
involved in protein folding and stability,7 it has never been 
described in enzyme-substrate interactions. 
GmUGT88E3 has been previously investigated. In a study carried 
out by Livingstone et al. on the transcript levels of six isoflavone 
7-O-glucosyltransferases, GmUGT88E3 (GmUGT1/GmIF7GT) 
transcript levels were found to be significantly higher in early and 
late seed tissues than the other five GTs8. GmUGT88E3 displays 
activity towards genistein and daidzein, as was shown by Noguchi 
et al.,9 resulting in the major forms of isoflavones found in 
soybeans, genistin and daidzin.10 Though kinetic analysis and 
structure determination are reported only for genistein, daidzein, 
and kaempferol, GmUGT88E3 has been described to show activity 
towards a wide range of acceptors; flavones, flavanones, flavonols, 
an aurone, a coumarin and a chalcone.9,11  
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Figure 2. Substrate panel used in this study accompanied by 
Michaelis-Menten kinetic parameters and the site of glycosylation 
highlighted in red as uncovered by NMR. Substrates and kinetic 
parameters as determined by Funaki et al. (2015)11 

Thus, we undertook the characterization of the reactions and 
products of GmUGT88E3 against 8 polyphenols. The assessed 
acceptors include three isoflavones, a flavone, methyl caffeate, a 
coumarin, a benzophenone, and a stilbene demonstrating the 
promiscuity of the enzyme. GmUGT88E3 proved to maintain a 
similar level of specificity and activity over the various assayed 
chemicals, with kcat in the per-second range (1.15‒17.7 s‒1) and Km 
in the micromolar range (4.21‒64.3 μM) (Figure 2, Table 1).  

Table 1. Michaelis-Menten parameters for the aglycones with 
GmUGT88E3 

Name Km (µM) kcat (s−1) 
6,7,4’-trihydroxyisoflavonea 24.8 ± 3.9 4.57 ± 0.23 
Irigenina 11.9 ± 1.3 2.89 ± 0.08 
Calycosina 6.91 ± 1.4 2.92 ± 0.13 
Oroxylin Aa 64.3 ± 24.2 17.7 ± 2.71 
Methyl caffeatea 11.3 ± 1.3 1.15 ± 0.03 
5,7-dihydroxy-4-methylcoumarina 40.9 ± 4.7 3.16 ± 0.13 
2,4’-dihydroxybenzophenonea 4.21 ± 1.57 1.41 ± 0.1 
4’-methoxyresveratrola 11.8 ± 1.18 1.70 ± 0.04 
Kaempferolb 3.81 ± 0.63 1.95 ± 1.01 
Daidzeinb 18.9 ± 2.4 5.75 ± 0.47 
Genisteinb 17.0 ± 2.3 4.34 ± 0.6 

aThis study,  bFunaki et al11 
The site of glycosylation highlighted in red was unraveled by NMR 
spectroscopy (Figs. S3–S8). The reaction mixture that contained 
product glycoside, UDP, UDP-glucose, and potentially remaining 
aglycone was lyophilized, dissolved in DMSO-d6 and directly 
analyzed by NMR. Glycoside structures of 2,4’-
dihydroxybenophenone and calycosin were determined according 
to a change in chemical shift of nearby aromatic protons. The sites 
of glycosylation for the other compounds were identified by 1D 

NOESY experiments. A response of the nearest aromatic protons 
was observed through targeted irradiation of the anomeric alpha 
proton of the resulting glycoside. 
GmUGT88E3 is reported as an isoflavone-7-O-
glycosyltransferase, we observed glycosylation at the 7-position for 
our assayed isoflavones, as well as glycosylation at the 7-position 
for the flavone Oroxylin A. On the contrary, kaempferol, a flavone, 
was glycosylated at the 4’-position as was reported by Funaki et al. 
which raises the hypothesis that in absence of a hydroxide group at 
the 4’-position, the hydroxide on the 7-position is preferred. Both 
methyl caffeate and 2,4’-dihydroxybenzophenone are glycosylated 
at the para position of the aromatic ring. The structure of the 4’-
methoxyresveratrol was not determined by NMR since the 
hydroxides are chemically identical due to free rotation.  
In order to establish a better understanding of the determinants 
governing the broad substrate range of GmUGT88E3, molecular 
dynamics (MD) simulations of the ternary complexes 
enzyme:UDP-Glc:acceptor were carried out (Figures 3 and S9–
S17). Overall, five amino residues have been identified that form 
important interactions with the aglycones. First, the catalytic base 
His15, directed by Asp125, forms a hydrogen bond with the 
reactive hydroxyl. The only other key residue that appears to 
interact with all compounds is Met127. While rarely described as a 
key interactor, methionine is known to act as a bridging motif 
between aromatic amino acids, appearing in approximately one-
third of all known protein structures as a stabilizing motif.12 In all 
our simulations (Figures 3 and S9–S16), we observed optimal 
distances and angles for a Met-Ar bridge between the various 
polyphenol acceptors and Phe126. Note that these three residues 
are consecutive: Asp125, Phe126, and Met127.  Besides, Thr155 
appears to interact with hydroxides on the opposite side of the 
glycosylated position in isoflavones. Interestingly, Oroxylin A 
which is devoid of such a hydroxyl group presents a significantly 
higher Km value (Figure 2). Moreover, for 2,4’-
dihydroxybenzophenone we observe a strong interaction between 
Glu197 and the hydroxide on the 4-position, which might explain 
its low Km value. 
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Figure 3. Molecular simulation of the ternary Michaelis complex in the presence of UDP-Glc and 2,4’-dihydroxybenzophenone. Left, 
snapshots showing key interactions showing 2,4’-dihydroxybenzophenone (cyan), UDP-glucose (yellow), and interacting residues (white). 
Right, monitoring of selected distances and angles from MD trajectories. 
 
Clearly, Met127 appeared to be a key residue within the active site 
of GmUGT88E3 and is absent from the other 39 GT1s assayed. 
Therefore, five mutants were constructed to verify the significance 
of Met127 in substrate binding and regioselectivity. However, 
M127A, M127L, M127I, and M127E could not be purified, 
possibly due to the disruption of the methionine-aromatic bridging 
motif between Phe126 and Met127. Only M127K, which was 
chosen as it might present a replacement stabilizing cation-π 
interaction, was successfully purified and found active (Figure 
S10).11,13 However, the activity was drastically reduced compared 
to the wild-type enzyme, leading to severely reduced yields even at 
10-fold higher enzyme loadings (Fig. 4). This large difference in 
activity clearly demonstrates how the loss of the Met127 is 
detrimental to activity. 
To summarize, the potent GmUGT88E3 was identified as a 
particularly interesting biocatalyst, being able to deliver high 
product yields (>90%) and perfect regiospecificity for a broad 
substrate range of polyphenol glucosylation. A substrate panel was 
established based on observed regiospecificity, kinetic values and 
chemical structures were determined. A fast NMR methodology to 
determine the structure of the products directly from the enzymatic 
mixture was established via 1D NOESY experiments. Strikingly, 
the molecular determinant that governs selectivity appears to be a 
Met-Ar bridge, leading to a Phe126-Met127-phenol interaction.  
 
 
 
 

Figure 4. Comparison of GmUGT88E3 wild-type (2 µg/mL) and 
mutant GmUGT88E3_M127K (20 µg/mL) against 6 of the 
assessed aglycones. The reactions were monitored by HPLC after 
90 min at 25°C in Na-phosphate buffer pH 8. Similar results after 
30 min are displayed in Fig. S18. 
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