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Abstract

Zener pinning refers to the dispersion of fine particles which influences grain size distribution wvia
movement of grain boundaries in a polycrystalline material. Grain size distribution in polycrystals has a
significant impact on their properties including physical, chemical, mechanical, and optical to name a few.
We explore the use of Phase-field modeling and machine-learning techniques to understand and improve
the control of grain size distribution via Zener pinning in polycrystalline materials. We develop a machine
learning model that determines the relative importance of various parameters to exercise microstructure
control via Zener pinning. Our workflow combines high-throughput phase-field simulations and machine
learning to address the computational bottlenecks associated with large-scale simulations as well as iden-
tify features necessary for microstructure control in polycrystals. A random forest (RF) regression model
was developed to predict grain sizes based on five Phase-field model parameters, achieving an average
prediction error of 0.72 nm for the training data and 1.44 nm for the test data. The importance of the
input parameters is analyzed using the SHapley Additive exPlanations (SHAP) approach which reveals
that diffusivity, volume fraction, and particle diameter are the most important parameters in determining
the final grain size. These findings will allow us to select the best second-phase particles, optimize grain
size distributions and thus design microstructures with the desired properties. The developed method is
a highly versatile and generalizable approach that can be used to assess the combined effects of individual
features in the presence of multiple variables.

1 Introduction

Grain size is a critical factor that significantly affects the mechanical, physical, and chemical properties of
polycrystalline materials [1, 2, 3]. Controlling grain size is a vital aspect of material tailoring for specific
applications. In metals, reducing grain size can increase their strength while maintaining ductility and tough-
ness, making them a valuable material for aerospace and structural engineering [1]. Conversely, larger grain
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sizes are preferred for high-temperature applications due to their improved creep resistance [4]. Similarly, in
ceramics, grain size strongly influences their optical, electrical, and magnetic properties, with smaller grain
sizes improving transparency and larger grain sizes enhancing piezoelectric properties [5, 6, 7, 8, 9, 10, 11, 12].

Controlling the grain size of polycrystalline materials has been a subject of extensive research, and
several techniques have been developed for this purpose. One widely used method is Zener Pinning, which
was introduced by Smith and Zener and involves introducing second-phase particles to control grain size
[13]. Despite its widespread use, the efficacy of this method is complex and dependent on several factors
such as size, morphology, volume fraction, coherency, anisotropic interfacial energy, and coarsening of the
second-phase particle [14]. The pinning effect exerted by second-phase particles on grain boundaries results
in the limitation of grain boundary mobility and halts grain growth. The pinning pressure exerted by these

particles, characterized by the particle size (Py) and volume fraction (V}), can be expressed as follows:

_ 3Vivea

pressure, leading to the attainment of limiting grain size (Dy;nm)[15].

. The particles’ pinning pressure can prevent further grain growth once it equals the driving
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In a study conducted by Vanherpe et al. [16], it was demonstrated that the pinning effect of particles
on grain boundaries increases with an increase in volume fraction and aspect ratio. The total fraction of
particles present at the boundaries was higher with increasing volume fraction and aspect ratio, resulting in
a higher pinning effect. An expression that relates the limiting grain size to the particle size, aspect ratio,
and volume fraction is expressed below,
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Here, [ is the long axis size of the particle, r, is the aspect ratio and K, a and b are fitting parameters. The
shape factor of second-phase particles is denoted by « in equation 3. The equation proposed by Zener, despite
being widely used in practical applications to predict the limiting mean grain size, is considered simplistic and
underestimates the pinning effect of the particle distribution. Furthermore, the analytical models discussed
earlier have a significant limitation in that they require consideration of the characteristic dimple shape
of a grain boundary near a grain boundary-particle interface, which poses a challenge in achieving a better
understanding of the pinning effect. The complexity of estimating the pinning force exerted by a distribution
of particles, given that only a fraction of the particles will be located at grain boundaries, also necessitates
the use of simplifying assumptions.

This study aims to investigate the combined effects of multiple parameters on Zener pinning and improve
its control by utilizing Phase-field modeling and machine-learning techniques. While analytical models
have limitations in comprehending the pinning effect, Phase-field models have been used to analyze the
impact of second-phase particle size, shape, and volume fraction on Zener pinning drag [17, 18, 19, 20].
However, a systematic investigation of the combined effects of these parameters has not been performed. As
multiple parameters are often varied simultaneously in practical applications, a comprehensive examination
of their combined effects is essential to improve Zener pinning control. To address this, Phase-field modeling
is used to develop an ML model that determines the relative importance of various parameters, and a
workflow (depicted in Figure 1) combining high-throughput Phase-field simulations and machine learning is
introduced to explore the 5-dimensional parameter space and gain insights into Zener pinning. Our approach
developed in this study is of general-purpose and can be applied to a wide range of materials phenomena
influenced by multiple variables. Our workflow provides a comprehensive understanding of the combined
effects of individual behaviors within diverse systems. This versatile methodology enables us to precisely
tune individual parameters, allowing us to exert inverse control over the phenomenon. This capability can
be leveraged to optimize and refine control strategies for enhanced outcomes.

Diim = K (3)

https://doi.org/10.26434/chemrxiv-2023-npjhqg-v2 ORCID: https://orcid.org/0000-0002-3193-7803 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2023-npjhq-v2
https://orcid.org/0000-0002-3193-7803
https://creativecommons.org/licenses/by/4.0/

Microstructural

Parameters Database of ML-Model to
Microstructures from Predict Grain Size
HT-Phase Field Modeling & Feature Analysis

Figure 1: Our integrated methodology combining high-throughput Phase-field simulations and machine
learning to explore Zener pinning in a 5-dimensional parameter space. The investigated microstructural
parameters include initial precipitate diameter (Py), volume fraction (Vy), diffusivity or mobility (M), shape
defined by precipitate aspect ratio (€), and the ratio of surface energy to grain boundary energy of the
precipitates (7).

2 Method

2.1 Theoretical Formulations for Phase-field Model

In this study, we investigate the microstructure of a Phase-field model, which consists of two distinct phases:
the matrix and second-phase particles (or precipitates). The matrix is composed of multiple crystals or grains
and is polycrystalline in nature, while the precipitates are single crystalline structures [21, 22]. Our main
objective is to explore the effects of various properties of second-phase particles, including their morphology
and physical properties, on grain growth in the matrix phase. Specifically, we aim to analyze how the size,
shape, volume fraction, surface energy, and mobility of the precipitates influence grain growth in the matrix
phase. Reference [23, 24] contains further information about the specifics of the Phase-field method.

2.1.1 Free Energy Functional

For our model system, the free energy functional F' is given by,

F= N/ (¢,m) + £e(Ve) —‘r—ZFLn (Vn;)?]dS2 (4)

i=1

where f(c,n;) is the bulk free energy per lattice site, k. and k, are the gradient energy coefficients for
gradients in composition field ¢ and order parameters 7;, respectively, ¢ = 1,2, ..., n describes n unique grain
orientations in the matrix phase. The bulk free energy density f(c,7;) is constructed in such a way that
grains of the matrix phase and second particle phase are in equilibrium with each other across planar surfaces
and grain boundaries. We have used the following form for f(c,n;):

n

flesm) = AG(1 = ¢)* + BEC(m) + Z(1 = ¢)* Yy o ()

i=1

C(m—z’” U +2me +0.25 (6)
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A, B, and Z are constants.

https://doi.org/10.26434/chemrxiv-2023-npjhqg-v2 ORCID: https://orcid.org/0000-0002-3193-7803 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2023-npjhq-v2
https://orcid.org/0000-0002-3193-7803
https://creativecommons.org/licenses/by/4.0/

2.1.2 Kinetics of Microstructural Evolution

The temporal evolution of microstructure is governed by the Cahn-Hilliard equation [25] and the Allen-Cahn
equation [26],

Jdc

5 = V-MVu (7)
i _ L S(F/Ny)
ot =L 57]1’ (8)

The mobility M is invariant of both the composition and the order parameter n, whereas Ny denotes
the quantity of lattice sites within a given volume unit. The relaxation coefficient is represented by L.

Table 1: Simulation variables used in our high throughput Phase-field simulations

Model Parameters Values
Ax 1.0
Ay 1.0
At 0.02
N, x Az 512
Ny x Ay 512
A 1.0
B 1.0
Z 1.0
Ke 1.0
Ky 1.0, 0.33
L 1.0
Micro-structural Parameters  Values
P, 4.0-12.0
Vi 0.0-0.1
M 0.0-5.0
€ 0.25-1.0
'Ysurf/r)/gb or 7y, 1.0, 1.5

The kinetic equations are solved using the semi-implicit Fourier spectral method with periodic boundary
conditions. The FFTW package is utilized for discrete Fourier transformations [27]. Details of the parameters
utilized in the simulations can be found in Table 1. Our study focuses on the combined effect of five
microstructural parameters, which are presented under the “Microstructural Parameters” sub-header in
Table 1 along with their corresponding ranges of values. The surface-to-grain boundary energy ratio -, is
varied by changing the x, as shown in Table 1 under the "Model Parameters” sub-header. We have selected
two specific values (1 and 1.5) for the surface-to-grain boundary energy ratio in order to model hypothetical
systems representing ceramic oxides and metallic materials, respectively. The rationale behind these choices
is based on the relationship (Ygb/Yeurt = 2003%) between the grain boundary energy-to-surface energy ratio
(Ygb/Vsurt) and the dihedral angle (¢). In ceramic oxide systems, the dihedral angle is typically around 120°,
resulting in a ratio close to 1. On the other hand, in many metallic systems, the ratio is often 2 or higher [28].
Therefore, by considering these factors, we have opted for the values of 1 or 1.5 to accurately represent the
respective systems in our study. Also, we have not accounted for misorientation effects on grain boundary
energy, by assuming isotropy ¢.e. the energy is independent of grain misorientation. To calculate the area
of both matrix grains and second-phase particles, the Hoshen-Kopelman algorithm [29] is employed.

2.1.3 Nondimensionalization

The non-dimensionalization has been carried out based on the following relationships:
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L= <A> (10)

’

o (e, =)L

T ="~ T (11)
. (e, =)D

M = pT (12)

Table 2 presents the non-dimensional parameters used in our model, which have been obtained through
the non-dimensionalization of variables using the characteristic length L', energy E’, and time T”. The prime
symbol represents dimensional quantities, while unprimed quantities indicate non-dimensional variables in
the formulation. Dimensional values of non-dimensionalized parameters are shown in Table 2.

Table 2: Dimensional values of non-dimensionalized parameters

Parameters Values
Characteristics Length L 1.0 nm
Characteristics Energy E 4.8 x 1072 ]
Characteristics Time T' 2.1 x 107* sec
Interfacial Energy *y/ 0.1 J/m?
Diffusivity D 1 x 107 m?/sec
Mobility(M ") 1.04 x 10° m?/J-sec

2.2 Machine Learning Model

Here, we chose to build a random forest (RF) regression model [30] for learning the relationships between
final grain size and the 5 Phase-field model parameters, namely diameter (P;), volume fraction (Vy), aspect
ratio (e) of the pinning particles, as well as diffusivity (M) and surface-to-grain-boundary energy ratio (7,).
Our RF model consists of a collection of decision trees trained using a bootstrapping process, which leverages
a bagging technique (i.e., ensemble learning) to reduce the variance in the grain size predictions. A grid
search approach is used to explore different combinations of RF model hyper-parameters, such as the number
of trees (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096), splitting criterion (absolute error), maximum
tree depth (3, 4, 5, 6, 7, 8, 9, unlimited), and the number of leaf nodes (unlimited). The optimal hyper-
parameters are found to be 128 trees with an unlimited number of leaf nodes, a maximum tree depth of 7,
no pruning, and one randomly selected feature at each node splitting.

3 Results and Discussions

3.1 The evolution of microstructures from Phase-field simulations

In this study, we used high-throughput Phase-field modeling to investigate the impact of various parameters
on grain coarsening. Our Phase-field model allowed us to explore the effects of particle shape as defined
by its aspect ratio (¢), particle volume fraction (Vy), particle size (Py), mobility (M), and surface-to-grain
boundary energy ratio (7,) on grain growth in a polycrystalline matrix phase. The parametric values
were non-dimensionalized and presented in Table 1. To analyze the microstructures of grain coarsening
in the presence of second-phase precipitates, we considered representative simulated microstructures, as
shown in Figure 2(a)-(f). Furthermore, we plotted the corresponding grain size versus the time plot, as
shown in Figure 3. The results demonstrate that grain boundaries reach a limiting size at the end of the
simulation in most cases, which is consistent with Equation 2. We performed simulations over a wide range
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Figure 2: The impact of different factors on Zener pinning is investigated using Phase-field modeling. Panel
(a) shows a small-sized spherical particle with a large volume fraction of 0.1, which results in a more
significant pinning effect. Panel (b) depicts a small particle with a low volume fraction of 0.025 and a high
aspect ratio (€), which results in an elongated grain shape due to the preferred growth direction parallel to
the particle’s long axis. Panel (¢) shows a small-sized spherical particle with a low volume fraction of 0.025
and a lower surface-to-grain boundary energy ratio, which results in a reduced pinning effect. In panel (d),
a small-sized particle with a low volume fraction of 0.025 and a high mobility of 1.0 is depicted, resulting
in reduced pinning and increased grain growth. Panel (e) displays a large-sized spherical particle (12 nm)
with a low volume fraction of 0.025, which exhibits a weak pinning effect. Lastly, panel (f) illustrates a
small-sized spherical particle (4 nm) with a low volume fraction of 0.025, resulting in a weak pinning effect
and a near-uniform grain size distribution.

of particle sizes, volume fractions, aspect ratios, mobility, and interface-to-grain boundary energy ratios, and
all microstructures were analyzed at a later stage (t = 15000). Our findings provide insights into the effect
of various parameters on grain coarsening and offer a useful reference for future studies in this field.

Our findings indicate that particle size (P;) and mobility (M) negatively affect the Zener pinning, as
larger particle sizes and higher mobilities result in lower pinning effects, while particle volume fraction (V)
and surface-to-grain boundary energy ratio (nyuTzforfyr) positively affect the pinning, as increasing them

enhances the pinning effect, as shown in Figure 2(e)-(f) and Figure 2 (a)-(c). Moreover, we found that the
aspect ratio (€) also influences the Zener pinning, as shown in Figure 2 (b)-(f), with a lower aspect ratio
showing a better pinning effect. These results are consistent with the Zener pinning equation (Equation 2)
and previous studies, such as the work by K. Chang et al [31], which found that smaller particle sizes and
needle-shaped particles are more effective in pinning grain boundaries for the same volume fraction. Overall,
our Phase-field modeling provides insights into the effect of various parameters on Zener pinning, which can
guide the design and optimization of materials with desired microstructural properties.

3.2 Machine Learning model for grain size prediction

To quickly predict grain size, we use a machine learning regression model to model the outcomes of our
high-throughput Phase-field simulations, as the impact of various input parameters on the final grain size
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Figure 3: This plot shows the grain size evolution over time for the simulated microstructures depicted in
Figure 2 (a)-(f), where D is instantaneous average grain size and Dy is the initial average grain size. The
data points represent the average grain size in the microstructure at each time step. As shown in the plot,
all microstructures exhibit an initial stage of rapid grain growth, followed by a slower growth stage, until
a limiting grain size is reached at the end of the simulation time (¢ = 15000). It is interesting to note
that the microstructures with higher volume fractions and higher surface-to-grain boundary energy ratio
exhibit slower grain growth and reach a smaller limiting grain size, indicating a stronger Zener pinning
effect. Conversely, microstructures with larger particle sizes, lower particle volume fractions, and lower
surface-to-grain boundary energy ratios exhibit faster grain growth and reach a larger limiting grain size,
indicating weaker Zener pinning. The effect of particle aspect ratio and mobility on grain growth is also
evident in the plot, with smaller aspect ratios and higher mobilities leading to faster grain growth and larger
limiting grain size. These results are consistent with the observations made from the microstructure analysis
and further, confirm the importance of the investigated parameters in controlling grain growth and Zener
pinning in the presence of second-phase precipitates.

is intricate and non-linear. A total of ~ 198 data points are obtained from the high-throughput Phase-field
simulations. A multivariate visualization of the data is shown in Figure 4a. We randomly shuffled and split
the data into 179 training data points and 19 test data points (7.e., ~ 10% split). The training data is used
to train the RF model and the test data, which is not seen by the model during the training procedure, is
used to validate the model performance. All data points are weighted equally. The best model is selected
based on averaged prediction errors from repeated (1000 times) training and validation of the model. The
average grain size prediction error of our best RF model is around 0.72 nm for the training data and 1.44 nm
for the test data. The parity plot in Figure 4b shows that the model performs well for grain sizes ranging
from ~ 5 nm to ~ 40 nm.

The trained RF model can be used for fast and accurate prediction of grain sizes for a given set of
Phase-field simulation input parameters. To explain its good performance, we analyzed it using the SHapley
Additive exPlanations (SHAP) approach [32]. SHAP employs the classic Shapley values from game theory to
quantify the contributions of individual features to the output of a ML model. In our case, it quantifies the
importance of the 5 Phase-field simulation input parameters in our grain size prediction model. Figure 4c
summarizes the SHAP results. The beeswarm plot at the top shows the SHAP values of all data points
for the 5 features (simulation input parameters) and is colored by the feature values. Diffusivity is found
to be the most important feature followed by volume fraction (V7), aspect ratio (), particle diameter (Py),
and surface-to-grain-boundary energy ratio (,) is found to be the least important feature. Larger values
of diffusivity, aspect ratio, and particle diameter lead to larger predicted grain sizes, whereas larger values
of particle volume fraction and surface-to-grain-boundary energy ratio lead to smaller predicted grain sizes.
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Figure 4: Multivariate visualization of Phase-field simulation data and grain size prediction using a random
forest regression model. (a) Normalized distributions and a parallel coordinate plot of the 5 Phase-field input
parameters: initial precipitate diameter (Py), volume fraction (V}), diffusivity or mobility (M), shape defined
by precipitate aspect ratio (€), and the ratio of surface energy to grain boundary energy of the precipitates
(7r) and the final grain size (D) obtained from the simulations. The parallel coordinate plot visualizes the
relationship across input parameters and the observed grain sizes. Each line represents a data point, which
corresponds to a Phase-field simulation run. To help resolve overlapping, the lines are colored and with
thicknesses set proportional to the grain sizes. (b) Parity plot showing the accuracy of grain size predictions
of both the training and testing datasets by our random forest model. (¢) Beeswarm and bar plots showing
the Shapley values of the features (i.e., simulation input parameters) for explaining their impact on the grain
size predicted by our trained model. The features are ranked from top to bottom based on their importance.
The pinning effect combines the contributions from the volume fraction (V}), initial precipitate diameter
(Py4), and aspect ratio (€) of the pinning particles.
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The bar plot at the bottom of Figure 4c¢ shows that the pinning effect, which is the combined contribution of
volume fraction, aspect ratio, and diameter of the pinning particle, is about equal or slightly more important
than diffusivity in determining the predicted final grain size.

4 Summary and Conclusions

The integration of high throughput Phase-Field modeling and machine-learning techniques has been demon-
strated as a successful approach for understanding and improving the control of Zener pinning in this study.
The resulting random forest regression model can predict grain sizes based on five Phase-field model pa-
rameters. The model’s performance was evaluated using both training and test datasets, achieving high
accuracy with an average prediction error of 0.72 nm and 1.44 nm, respectively. The SHapley Additive
exPlanations (SHAP) approach was used to determine the relative importance of each parameter, providing
critical insights into the underlying mechanisms of Zener pinning. The findings reveal that diffusivity, volume
fraction, and particle diameter are the most important parameters in determining the final grain size. This
understanding will enable us to select appropriate second-phase particles to optimize final grain size and
design materials with desired mechanical properties.

Our workflow provides a surrogate ML model that addresses the computational expense of phase-field
simulations, enabling a more efficient and effective approach to extract key features and explore the impact
of various parameters on Zener pinning. The results of this study have significant implications for improving
material properties and advancing materials engineering. This approach can be extended to other materials
systems and will enable us to develop a fundamental understanding of the role of various parameters in Zener
pinning. By gaining a better understanding of the underlying mechanisms of grain coarsening and Zener
pinning, we can design materials with desired grain structures and mechanical properties.
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