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Abstract

Computational techniques, including virtual screening, de novo design,
and generative models, play an increasing role in expediting DMTA cycles for
modern molecular discovery. However, computationally proposed molecules
must be synthetically feasible for laboratory testing. In this perspective, we
offer a succinct introduction to the subject, showcase typical workflows to
integrate synthesis planning, synthesizability scoring, and molecule generation.
Finally, we address limitations and opportunities for future research.

1. Introduction

Virtual screening, and de novo design are computational techniques to
propose molecules with optimal property profiles for drug, materials, and
fine chemicals discovery [1, 2, 3]. Usually, multiple properties, in particular
biological, ADMET, and physico-chemical properties have to be optimized
and often balanced against each other.

The putative molecules also need to satisfy additional criteria, such as
sufficient novelty, and chemical stability. Finally, before any molecule can
be tested, it needs to be synthesizable, i.e. successfully made in the lab, or
otherwise be accessible from natural sources.

A target molecule can be synthesized if and only if a viable synthesis route
of reactions from the starting materials to the target can be found. This
depends on the availability of suitable starting materials, (often also called
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building block molecules), and the chemical tractability of the reactions in
the route. Also, the viability of a synthesis depends on fulfilling different
requirements dependent on the stage of a molecular discovery project. For
example, in hit-to-lead discovery or early lead optimization, to achieve short
design-make-test cycle times, complex and time-consuming multi-step syn-
theses that could take weeks or months are usually undesirable. In contrast,
in late lead optimization for high-profile first-in-class targets, more involved
syntheses might be acceptable. Similarly, low-yielding or expensive reactions
are tolerable when it helps to reach a goal quickly in earlier discovery phases,
whereas later in scale up for production this is not the case. Taking this a
step further, in material science or agro-chemistry, larger amounts of the com-
pounds are often required and material cost needs to be low, hence syntheses
typically need to be simpler compared to drug discovery. Thus, synthesiz-
ability is not an inherent molecular property, as it can only be indirectly
predicted from molecular structure in isolation.

While early computational methods for virtual screening (VS) and de
novo design (DND) did not take synthesizability into consideration, in the
chemoinformatics community the problems of synthesis of algorithmically
generated molecules have been recognized since the 1990s [4, 5]. For example,
a succinct description is available in Klebe’s popular “Drug Design” textbook
(2009) [1].

Recently, the interest in de novo design has been rekindled by generative
machine learning (ML)/AI models [6, 7, 8]. Generative models for molecules
complement established chemoinformatics methods. They allow to learn to
construct molecules in a probabilistic way directly from data, thus allowing
to sample from the distribution of the training data.

Besides summarizing current state of the art, this article also intends
to make the concept of synthesizabilty accessible to the machine learning
community. We refer the reader also to other reviews on the topic of de novo
design and chemical space exploration [3, 9, 10].

The article is organized as follows: We first introduce the concept of
chemical spaces, and then provide a unified of how virtual screening and de
novo design explore such spaces. We then discuss how synthesizability scoring,
synthesis prediction, generative models and synthesis constrained generation
can be used to obtain synthesizable chemical spaces and their limitations.
Finally, we discuss a few recent examples of prospective validation.
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2. Chemical Spaces

Chemical Space usually refers to the set of all possible molecules under a
given definition of how these can be constructed, or obtained.

Due to the combinatorial nature of molecules, chemical spaces can be very
large [9, 11]. They are almost always too large to enumerate, let alone store.
For drug-like molecules, the number has been estimated to be at least 1033

[12]. However, current molecules entering the clinic get more complex, and
research into new modalities like PROTACs, which leads to molecules with
larger molecular mass, indicates the our notion of what constitutes drug-like
chemical space needs to be expanded, and previous size estimates are likely
too conservative.

Accessibility, of which synthesizability is an important part, differs vastly
between chemical spaces (Figure 1). Theoretically, we could generate a very
large chemical space of molecules by enumerating all possible combinations of
atoms and bonds, subject only to valency constraints. However, most of them
would not be synthesizable or even stable, let alone reasonable. In contrast,
the molecules in a high-throughput screening (HTS) deck are highly accessible
because the compounds are already on stock, and do not have to be made
on demand. Virtual molecules, generated on the fly with synthesizability
constraints, represent a trade off, as they can often be readily obtained, while
at the same time cover large chemical spaces.

3. A unified view on Virtual Screening and De Novo Design

After having introduced Chemical Spaces, we can now discuss how they
can be explored.

We consider a general, multi-objective scoring function f : M → R
which, given molecule m ∈ M, yields a numerical score s ∈ R as a weighted
sum of the objectives. We note that more sophisticated ways for multi-
objective scoring and optimization exist, however, this goes beyond the scope
of this article [2]. Common objectives could be fingerprint similarity towards a
reference molecule, docking, machine learning/Quantitative Structure-Activity
Relationships (QSAR), or more sophisticated physics-based simulators such as
free energy pertubation (FEP), or computable physicochemical or topological
properties, which can be as simple molecular weight, ring counts or the
presence or absence of substructures. Second, we assume we have a molecule
representation and a construction algorithm, which will be discussed in more
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Figure 1: Schematic Representation of Chemical Space. Accessibility here refers to a
combination of ease of access and synthesis, but also other important criteria such as
stability and chemical reasonableness. On-shelf compounds, for example from a high
throughput screening (HTS) collection, are readily accessible. Virtual make-on-demand
compound datasets that rely on enumeration of a small number of robust reactions against
building blocks represent larger chemical spaces, but suffer from the need to store the
full data sets, which becomes intractable quickly. Synthesis-constrained or biased de novo
design can give molecules as accessible as in enumerated VS libraries, but allows to access
much larger spaces as generated molecules do not need to be stored. Unrestricted de novo
design, which can combine atoms and bonds under valency constraints, provides the largest
theoretically possible chemical space. However, most of these molecules would not be
synthesizable.

detail in Sec. 7. Third, we need some kind of optimization component, which
either returns the best molecules scored so far, or pushes the construction
algorithm towards higher scoring molecules. Fig. 2 shows the how the common
steps fit together.

Virtual Screening (VS) is named due to its similarity to high-throughput
screening. Generally, in VS, first a virtual library, i.e. a dataset, of molecules
is generated, and stored.[5, 13] Then, in a second step, all molecules in the
library are scored using the scoring function, and eventually the highest
scoring molecules are selected. De Novo Design (DND) [14, 15] usually
combines three components: molecule generation of novel molecules from
scratch, the scoring function, and an optimization, search, or reinforcement
learning routine that drives the algorithm to generate higher scoring molecules.
The latter drives the molecule generator to create higher-scoring molecules.
Hierarchical Virtual Screening,[5, 16] where an informer library is screened
and then locally expanded, and Combinatorial Fragment Space Search[17, 18]
can be seen as instantiations of DND. Generative Models are machine learning
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Figure 2: Virtual screening (VS) and de novo design (DND) are means to the same end:
Obtaining optimal molecules according to an arbitrary scoring function (e.g. a docking
engine, MD simulation, ML/QSAR, similarity, and multi-objective combinations). In
Virtual Screening, first a database of molecules is constructed (a). Then, each molecule in
the database is scored, and the best molecules returned (b). The currently most widely
used DND approaches are optimization-based (c). Here, molecules are constructed, scored,
and using optimization, search or RL, the algorithm or model is driven to construct
molecules with improved scores in the next iteration. Eventually, the best molecules
are returned. Conditional Molecule Generation (d) is an emerging approach, where a
pre-trained conditional generative model P (M|P) is used to directly generate molecules
M that likely exhibit properties P.

models that can construct molecules, and have been used as part of DND
and VS.

Virtual Screening and de novo Design are thus means to the same end: an
exploration of chemical space to seek out high-scoring molecules. In practice,
VS/DND are often used to generate focused libraries using computationally
cheaper scoring functions, which are then narrowed down in a ”funnel”-like
setup with increasingly expensive scorers.

Probably the biggest differences between VS and DND is in the type of
guarantees they provide and the size of chemical space they can access. Since
screening a given library will score all N molecules, it is guaranteed to find the
best-scoring ones. However, in particular with more expensive physics-based
scoring, this is limited to smaller Ns. DND on the other hand has no guarantee
to return the best molecules in the chemical space accessible by its molecule
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generator. However, because it can explore and sample chemical space in a
much more focused way due to the additional optimization component, it
can potentially find much higher scoring molecules, in particular those that
satisfy multiple criteria.

Larger chemical spaces can also lead to unintended consequences: Since
most scoring functions, in particular those for predicting biological endpoints,
are imperfect proxies, with more fine-grained sampling of the chemical space
it becomes more likely that limitations of the scoring function are exploited to
give false-positive molecules whose predicted properties to not match wet-lab
experiments [19]. This phenomenon is also known as Goodhart’s law, often
stated as ”When a measure becomes a target, it ceases to be a good measure”.
Alternatively, this can be described as the selection of molecules outside of
the applicability domain of the scoring function, or, from the ML perspective,
as an unintended adversarial attack on the scoring function, or in the context
of reinforcement learning as reward-hacking.

Renz et al. observed that generative models, when used for very fine-
grained and long exploration outside of recommended parameter ranges,
can be driven to exploit scoring functions and generate unsynthesizable
and unreasonable molecules[20]. This was later corrected by Langevin et
al. [21], who demonstrated that this observations should be attributed to
the imperfections in the scoring function, and can be addressed when using
generative models with appropriate parameters.

Therefore, it is often beneficial to restrict the exploration of the chemical
space, and, critically, employ some notion of synthesizability either in the
scoring, the construction, or the post-processing of the generated molecules.

4. Accounting for synthesizability in Virtual Screening and de novo
Design

Synthesizability can be accounted for with different techniques, which fall
into the following categories:

• Synthesis Planning

• Synthesizability Scoring

• Biased Molecular Generation, using fragments or generative models

• Reaction-Driven Molecule Generation

6
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In Synthesis Planning, complete routes from the building blocks to the
target molecule are returned. Synthesizability scoring provides numeric or
categorical scores for how easy a molecule can be made. In Biased Molecular
Generation, molecules are constructed from fragments derived from sets of
successfully synthesized molecules. In Reaction-Driven Molecule Generation,
molecules are constructed as they would be made in the lab, using recur-
sive application of virtual reaction rules and building blocks in the forward
direction. Fig. 3 shows how these methods can be incorporated into DND
workflows. We will now discuss the methods in more detail.

Figure 3: Synthesizability can be incorporated in de novo design workflows by including a
fast synthesizability score into the de novo design optimization loop, which is then used
to gather a focussed library of the best scoring molecules, biased towards synthesizabilty.
Slow full-scale synthesis planning is then used to compute full routes for each molecule in
a post-processing step.

5. Synthesizability Scoring

Given a target molecule, synthesizability scoring approaches provide nu-
merical or categorical proxy scores for the ease of synthesis, without performing
time-consuming complete synthesis planning. The advantage of such scoring
functions is that they are very fast to compute, taking at most milliseconds
per molecule, as they are often only based on molecular features of the target
molecules. This means that they can be used as part of the scoring function
in large scale VS and in the DND loop. Several different approaches to scoring
have been proposed. First, scores can be based only on topological features
of the molecular graph, and fragment analyses, resting on the assumption
that molecules containing common fragments are easier to make, or involve
a simplified or truncated, fast retrosynthetic analysis. Boda et al. and
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Huang et al. suggested scores combining of structural and reaction features,
and simplified retrosynthesis planning. [22, 23] A widely used approach is
SAScore, as proposed by Ertl and Schuffenhauer. It penalizes molecules
with rare fragments mined from PubChem, and molecules with too many
stereo-centers, certain ring-features, and spiro-centers [24]. A disadvantage of
such topological approaches is that they capture molecular complexity rather
than direct difficulty of synthesis.

More recently, scores based on ML have emerged. SCScore is based on
the assumption that the reactants of a reaction should be easier to make than
the products, and trains a model for such ranking, which can then be applied
to score new molecules [25]. Such scores can also be used to guide synthesis
planning algorithms [25, 26]. SYBA is a binary classifier trained to distinguish
between real and algorithmically generated, supposedly hard-to-synthesize
molecules [27]. More recently, Liu et al and Thakkar et al proposed models to
approximate the output of synthesis planning algorithms [28, 29]. They first
perform synthesis planning to compute routes for a large test set of molecules,
and train the models to predict whether a route for the molecule could be
found, or predict scores derived from the routes, such as the number of steps,
or cost.

An important investigation about how different synthesizability scoring
methods work when integrated with de novo design was provided by Gao et
al [30]. They demonstrated that without additional synthesizability scoring,
de novo design algorithms generated large proportions of unsynthesizable
molecules.

In particular when using de novo design algorithms that are not synthesis-
constrained, we usually recommend to include a synthesizability score into
the multi-objective scoring function in particular for de novo design.

While cheap to compute, a fundamental limitation of synthesizability
scorers is that they do not return full synthesis routes, and do not necessarily
capture that a seemingly complex molecule can be easily synthesized if the
right building blocks are commercially available.

6. Synthesis Planning and Synthesis Prediction

Computer-Aided Synthesis Planning (CASP) can provide full synthesis
routes via multi-step retrosynthesis: Starting with the target molecule, for-
mally reverse reactions and potential precursors for the current molecule are
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explore.

predicted recursively until the molecule is deconstructed into commercially
available or known building blocks (see Fig. 4).

CASP has a rich research tradition of 70 years [10]. Until 2017, most
systems have relied on hand-coded expert systems or data-mining approaches
[10]. The more recent introduction of deep neural networks, and RL-inspired
search such as MCTS has led to a qualitative step forward, in particular in
how reactions are predicted, as well as how potential steps are prioritized
during the search [31, 32]. When combined with conditions and sophisticated
forward reaction prediction, these algorithms can also be coupled with robotic
synthesis [33]. Early ML-based approaches focused on combining graph-based
reaction modeling with ML [31, 33]. Recently, purely seq2seq-approaches have
also been presented [34]. Several open source implementations are available
[32, 33, 35, 36].

Because they are computationally expensive, requiring at least several
seconds for typical lead-like molecules, CASP is usually not used as part
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of the VS or DND in-the-loop scoring functions. Rather, they are used to
post-process the most interesting molecules from these pipelines. Despite
considerable progress in the recent years, and their usefulness as a filtering
step to remove clearly problematic molecules, modern CASP tools still have
limitations. The reaction models can fail, in particular for less well precedented
reactions [31]. It is not fully established whether condition and yield prediction
works well enough already[37, 38]. Search algorithms can lead to strategically
questionable routes in particular for more complex molecules [31]. Organic
chemistry expertise is still required to inspect the results.

7. Fragment- and Synthesis-driven molecular construction and gen-
erative models

Molecule construction and generation algorithms in the 1980s and 1990s
relied on atom-by-atom construction or manipulation, however, it was recog-
nized early that these methods lead to a large proportion of unsynthesizable
as well as unstable molecules [4, 5, 1]. To address this issue, molecules can
be constructed from fragments derived from previously synthesized molecules
[39, 17]. Here, molecules are fragmented along predefined bonds, for example
corresponding to those often build up in chemical reactions [40]. Then, the
fragments can be flexibly recombined. Another effective fragment-based ap-
proach used is based on matched molecular pairs [41]. While this approach is
a major step forward in terms of molecule quality, and often used in practice,
it does not come up with proper synthesis routes (see Fig. 5).

A sensible alternative is to conduct virtual reactions (VR) [5]. Here,
reaction rules are applied recursively to matching building block molecules in
the forward direction, until desired number of steps is reached. Most virtual
screening libraries are generated this way. This approach has also been used
for de novo design. In pioneering work, Vinkers et al. describe an algorithm
combining VRs with simulated annealing and search to optimize given scoring
functions [42]. Approaches investigating different optimization strategies have
been reported as well [43, 44, 45]. Forward VR enumeration can also be
combined with retrosynthesis planning to generate focused libraries close to
target molecules [46].

The usefulness of molecules generated with VR enumeration hinges on
the quality of the underlying reaction rules. In particular, for the simpler
molecules required in particular in hit expansion and hit to lead scenarios,
virtual screening on such libraries can work well and is now routinely used in
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Figure 5: Approaches for Molecule Construction take synthesizability into account dif-
ferently. Forward synthesis models, which can be based on generative models or also
rule-based, apply reactions to building blocks until a target molecule is returned, which
allows to generate molecule and their corresponding routes, thus handling synthesizability
explicitly. It does not allow for a fine-grained exploration of chemical space. Fragment-based
algorithms, which include synthon-based approaches, pretrained generative models, and
algorithms based on matched molecular pairs are all based on data-mining of or training on
data sets of known, synthesizable models, and thus implicitly capture the synthesizability of
the underlying data. This restricts chemical space exploration to some extent. Unrestricted
molecule construction, which can combine any atom and any bond, subject to basic valency
constraints, allows for a very fine grained exploration of chemical space, but does not
consider synthesizability even implicitly. However, depending on the use case, all of these
approaches have their place.

academia and industry: VR-enumerated libraries compiled by vendors such
as Enamine have been very successfully used in prospective VS campaigns,
leading to an ≈80% success rate in synthesis [47, 48, 16, 49, 18]

More recently, generative models for molecules have been suggested as
construction algorithms. These refer to a variety of machine learning models,
for example autoregressive models, (variational) autoencoders, normalizing
flows or diffusion models, which can be trained on target chemical spaces,
and then sample new molecules from that space as if one would sample
from probability distribution over molecules.[6, 7, 3] Generative models for
molecules can be trained on different representations, for example SMILES,
molecular graphs, fragment graphs, or 3D molecular structures, and also
perform de novo design, for example when coupled with fine-tuning or RL
algorithms.[6, 50, 51, 52, 53, 54, 55, 15, 3] Despite their simplicity, SMILES-
based autoregressive models (also called Chemical Language Models, CLMs),
have shown robust performance to generate reasonable and synthesizable
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molecules when trained on previously synthesized, drug-like molecules, and
have been experimentally validated (see below). However, in particular when
used in de novo design, generative models based on atomistic representa-
tions can be pushed towards generating unreasonable or hard to synthesize
molecules, even though to a lesser degree than previous, unconstrained de
novo design algorithms, if the exploration is not carefully restricted.[15, 30]

A promising newer direction are generative models for forward synthesis
routes, which similar to the VR approach generate molecules and synthesis
routes, leading to much more reasonable structures[56, 57, 58, 45, 59]: Brad-
shaw et al. proposed generative models that construct multi-step forward
reaction routes where the model learns to pick building blocks and inter-
mediates, which are then submitted to a reaction predictor[56, 57]. They
demonstrated competitive performance of their algorithm on the Guacamol
benchmark[15] compared to less restricted generative models, while main-
taining synthesizability. By switching the reaction model to reaction rules,
and changes to the tree generation process, Gao et al. recently reported
a generative model for reaction routes that does not use a reaction predic-
tor, but can learn to choose which reactions to run. They demonstrated
competitive performance to strong baselines on the TDC generative bench-
mark, while maintaining synthesizability and molecule quality. They also
demonstrated that their model could generate synthesizable analogs using
conditional molecule generation, as well as forward synthesis planning.[58]
However, this approach has not been scaled up yet to more complex rule-bases,
thus limiting the size the chemical space the model can explore. Gottipatti
et al. proposed a reinforcement rearning-based approach to generate routes
in the forward direction, however, their algorithm is limited to generating
linear reaction routes, instead of more general tree-shaped routes [60]. Re-
cently, also hybrid algorithms combining atom-based generative models with
reaction-driven generation emerged.[61, 59, 62, 63]

Despite this progress, and proven uses for simpler, early stage molecules,
current reaction-driven construction algorithms, both enumeration-based and
generative models, still have a number of limitations: The predicted routes
depend on the quality of single step reaction models or reaction rule-base.
Current reaction models, for example the Molecular Transformer, will always
predict a product, or even hallucinate completely incorrect structures, even
when a reaction is not going to proceed. On the other end, compiling and
maintaining high quality rule-bases is time-consuming, and does not scale [31].
The breadth and complexity of chemistry captured by these models is still
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limited, leading to a restricted exploration of chemical space. Improvements
could be made by incorporating models that can be trained on positive and
negative reactions, such as the in-scope filter models introduced by Segler
and Coley [31, 33], even though significantly more effort needs to be made
to gather the required training data. It is also an open question to what
extent reaction-driven generation, which is discrete, limits the exploration
of chemical space, making optimization during de novo design harder than
compared to models which can more flexibly exchange atoms in a molecule.

8. Benchmarking Synthesis-aware generative models

Computational benchmarks are important to drive the progress of com-
putational methods. Measuring enrichment factors in virtual screening, or
benchmarks like Guacamol represent sensible benchmarks and have been use-
ful to make progress, however, also here ”Goodhart’s law” has to be invoked,
as they represent only proxies, and still do not capture the full intricacies
of molecular discovery. We nevertheless recommend the following steps for
benchmarking the approaches described in this work:

1. Can the virtual screening or de-novo design algorithm find molecules
that maximize given objectives? Example Benchmarks: Guacamol [15],
VS benchmarks

2. Use CASP tools to predict routes for generated molecules or synthesiz-
abilty scores: Gao et al.[30]

3. Are the generated molecules reasonable? Quality filters like in Guacamol[15]
can be applied. ML Publications should always contain visualizations
of non-cherry picked, random samples of molecules.

4. Synthesis planning algorithms should be evaluated quantitatively and
qualitatively.[31]

On the other hand, it is an open question whether small increases on
computational benchmarks translate to meaningful improvements in real
world drug discovery, where data is often sparse, and projects can operate
on quite diverse chemical matter, with distributions shifts, where robustness
is key. However, we do not believe experimental validation should ever
become a mandatory requirement to benchmark computational methods, as it
introduces hard to compare multi-step processes, and not every computational
group has the resources for wet-lab validation. We encourage the community
to continue to work on refining appropriate benchmarks.
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9. Recent Examples of Prospective Validation

Here, we will present recent examples of the successful validation of virtual
screening and de novo design. Some caution about visibility has to be noted,
as these are mostly academic contributions. Applications in industrial drug
discovery can usually not be published for several years after a project has
been concluded.

In several high-profile works, Virtual Screening using large enumerated on-
demand libraries has repeatedly demonstrated its utility, in particular in earlier
discovery stages.[48, 16, 49] Seumer et al. used a genetic DND algorithm in
conjuction with SAscore in the loop and synthesis planning post-processing
to discover a novel organocatalyst [64]. Grisoni and colleagues demonstrated

Figure 6: Merk et al synthesized compounds 1-3, demonstrating activity against PPAR and
RXR[52, 53]. Yang et al reported activity against p300 for compound 4.[65] All structures
were generated with pretrained SMILES-LSTM CLM models.

successful syntheses by combining CLMs with a simplified retrosynthetic
analysis based on a small number of robust reaction schemes geared towards
lab on a chip technology [51]. Merk and colleagues demonstrated several
examples of using CLMs to prospectively design molecules for nuclear receptor
targets (see also Fig. 6) [52, 53, 66].

It is noteworthy that despite their simplicity, generative SMILES-based
language models[6] using behavioural cloning, fine-tuning, or RL, are cur-
rently one of the most successfully validated de novo design algorithms in
a prospective setting, where actual compounds have been synthesized and
tested [52, 53, 65, 51, 54].
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These successes indicate that it may be time to update our textbook
knowledge on the challenges of synthesis of de novo designed molecules[1].

Despite the importance of these milestone results, currently published
prospective examples are still relatively simple molecules, or relatively close
analogs of well-explored target classes, such as kinases[67]. This should not be
downplayed, given that the generation of close analogues to explore structure-
activity-relationships is routine task in medicinal chemistry, and doing this
successfully with algorithms is a win for the machine.

We also anticipate that with further use, and the publication lag in
industry, we will start to see the results on more ambitious targets and novel
chemical spaces in the next couple of years.

10. Conclusion

Digital Medicinal Chemists now have a variety of increasingly robust
methods at their disposal, which can be productively used with reasonable
effort in the hunt for small molecule ligands and materials. However, to
be most useful, current algorithms still require basic knowledge in ML and
chemoinformatics, as well as some expertise in organic and medicinal chemistry
to run, and should be seen as idea generators or assistants. Also, we currently
do not see a single algorithm emerging that works best across different tasks.
Often different algorithms work similarly well, which is why we currently
recommend practitioners to choose the algorithms they feel most comfortable
with, depending on task constraints.

Despite this progress, more work is needed to faithfully predict the out-
come of reactions, synthesis routes, synthesis execution instructions, and learn
distributions over molecules. Major challenges also still exist the scoring.
Setting up multi-objective scoring functions is still somewhat a dark art, and
requires trial and error to get right. The accurate prediction of biological
properties is still limited both with machine learning, as well as physics-based
approaches, and requires further improvements. Also, the community should
put more effort in providing unified benchmarking methods. Finally, on an
organizational level, to harness automated molecular design, computational
methods need to be incorporated further in the discovery process, which
requires strong collaboration from different groups of medicinal and computa-
tional chemists, machine learning researchers, software engineers, and data
scientists.
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Nevertheless, an increasing data-first culture in medicinal chemistry, as
well as integration with automated experimentation, which will lead to much
improved data, will allow reaction-driven algorithms to become even better,
or even self-improve. This will allow automated molecular design to play
an increasing role in assisting medicinal chemists to discover new drugs to
address unmet clinical need.
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[27] Voršilák, M.; Kolář, M.; Čmelo, I.; Svozil, D. SYBA: Bayesian estimation
of synthetic accessibility of organic compounds. J. Cheminformatics
2020, 12 .

[28] **Liu, C.-H.; Korablyov, M.; Jastrzebski, S.; W lodarczyk-Pruszynski, P.;
Bengio, Y.; Segler, M. RetroGNN: Fast Estimation of Synthesizability for
Virtual Screening and De Novo Design by Learning from Slow Retrosyn-
thesis Software. Journal of Chemical Information and Modeling 2022,
62, 2293–2300, Regression model–based synthesizability score trained on
the output of a synthesis planning algorithm.
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Bjerrum, E. AiZynthFinder: a fast, robust and flexible open-source
software for retrosynthetic planning. Journal of cheminformatics 2020,
12, 70.

[37] Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.;
Jensen, K. F. Using machine learning to predict suitable conditions
for organic reactions. ACS central science 2018, 4, 1465–1476.

[38] Schwaller, P.; Vaucher, A. C.; Laino, T.; Reymond, J.-L. Prediction of
chemical reaction yields using deep learning. Machine learning: science
and technology 2021, 2, 015016.

[39] Schneider, G.; Lee, M.-L.; Stahl, M.; Schneider, P. De novo design of
molecular architectures by evolutionary assembly of drug-derived building
blocks. Journal of computer-aided molecular design 2000, 14, 487–494.

[40] Zabolotna, Y.; Volochnyuk, D. M.; Ryabukhin, S. V.; Gavrylenko, K.;
Horvath, D.; Klimchuk, O.; Oksiuta, O.; Marcou, G.; Varnek, A. Synthi:
a new open-source tool for synthon-based library design. Journal of
Chemical Information and Modeling 2021, 62, 2151–2163.

[41] Polishchuk, P. CReM: chemically reasonable mutations framework for
structure generation. Journal of Cheminformatics 2020, 12, 1–18.

[42] Vinkers, H. M.; de Jonge, M. R.; Daeyaert, F. F.; Heeres, J.; Koy-
mans, L. M.; van Lenthe, J. H.; Lewi, P. J.; Timmerman, H.;
Van Aken, K.; Janssen, P. A. SYNOPSIS: SYNthesize and OPtimize
system in silico. Journal of medicinal chemistry 2003, 46, 2765–2773.

[43] Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.;
Proschak, E.; Weggen, S.; Stark, H.; Schneider, G. DOGS: reaction-
driven de novo design of bioactive compounds. PLoS Comp. Biol. 2012,
8, e1002380.

20

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2 ORCID: https://orcid.org/0000-0001-8008-0546 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2
https://orcid.org/0000-0001-8008-0546
https://creativecommons.org/licenses/by/4.0/


[44] Spiegel, J. O.; Durrant, J. D. AutoGrow4: an open-source genetic al-
gorithm for de novo drug design and lead optimization. Journal of
cheminformatics 2020, 12, 1–16.
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[61] Fialková, V.; Zhao, J.; Papadopoulos, K.; Engkvist, O.; Bjerrum, E. J.;
Kogej, T.; Patronov, A. LibINVENT: reaction-based generative scaffold

22

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2 ORCID: https://orcid.org/0000-0001-8008-0546 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2
https://orcid.org/0000-0001-8008-0546
https://creativecommons.org/licenses/by/4.0/


decoration for in silico library design. Journal of Chemical Information
and Modeling 2021, 62, 2046–2063.

[62] Nguyen, D. H.; Tsuda, K. Generating reaction trees with cascaded
variational autoencoders. The Journal of Chemical Physics 2022, 156,
044117.

[63] Seo, S.; Lim, J.; Kim, W. Y. Molecular Generative Model via Retrosyn-
thetically Prepared Chemical Building Block Assembly. Advanced Science
2023, 2206674.

[64] Seumer, J.; Hansen, J. K. S.; Brøndsted Nielsen, M.; Jensen, J. H.
Computational evolution of new catalysts for the Morita–Baylis–Hillman
reaction. Angewandte Chemie International Edition 2022, e202218565.

[65] Yang, Y.; Zhang, R.; Li, Z.; Mei, L.; Wan, S.; Ding, H.; Chen, Z.;
Xing, J.; Feng, H.; Han, J., et al. Discovery of Highly Potent, Selective,
and Orally Efficacious p300/CBP Histone Acetyltransferases Inhibitors.
J. Med. Chem. 2020,

[66] **Ballarotto, M.; Willems, S.; Stiller, T.; Nawa, F.; Marschner, J. A.;
Grisoni, F.; Merk, D. De Novo Design of Nurr1 Agonists via Fragment-
Augmented Generative Deep Learning in Low-Data Regime. Journal of
Medicinal Chemistry 2023, Prospective Use of Generative Models to
generate active ligands.

[67] Walters, W. P.; Murcko, M. Assessing the impact of generative AI on
medicinal chemistry. Nature biotechnology 2020, 38, 143–145.

23

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2 ORCID: https://orcid.org/0000-0001-8008-0546 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-xw0pq-v2
https://orcid.org/0000-0001-8008-0546
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Chemical Spaces
	A unified view on Virtual Screening and De Novo Design
	Accounting for synthesizability in Virtual Screening and de novo Design
	Synthesizability Scoring
	Synthesis Planning and Synthesis Prediction
	Fragment- and Synthesis-driven molecular construction and generative models
	Benchmarking Synthesis-aware generative models
	Recent Examples of Prospective Validation
	Conclusion
	Acknowledgements
	Conflict of Interest

