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ABSTRACT: The borylation of aryl and heteroaryl C–H bonds is valuable for the site-selective functionalization of C–H bonds 
in complex molecules. Iridium catalysts ligated by bipyridine ligands catalyze the borylation of the aryl C–H bonds that are 
most acidic and least sterically hindered, but predicting the site of borylation in molecules containing multiple arenes is dif-
ficult. To address this challenge, we report a hybrid computational model that predicts the Site of Borylation (SoBo) in com-
plex molecules. The SoBo model combines density functional theory, semi-empirical quantum mechanics, cheminformatics, 
linear regression, and machine learning to predict site selectivity and to extrapolate these predictions to new chemical space. 
Experimental validation of SoBo showed that the model predicts the major site of borylation of pharmaceutical intermediates 
with higher accuracy than prior machine-learning models or human experts, demonstrating that SoBo will be useful to guide 
experiments for the borylation of specific C(sp2)–H bonds during pharmaceutical development.

INTRODUCTION 

The selective functionalization of C–H bonds in complex 
molecules is an emerging approach to increase the potency 
of lead compounds and to facilitate studies of structure-ac-
tivity relationships during pharmaceutical development.1 
While reactions are being developed that occur with re-
markable chemoselectivity for C–H bonds over classic func-
tional groups, site selectivity is challenging to achieve and 
difficult to predict because of the ubiquity of C–H bonds and 
the effects of competing chemical phenomena on relative 
rates (Figure 1A)2. While heuristic guidelines can help pre-
dict site selectivity, they are frequently limited to cases in 
which single factors dictate the reaction outcome. When 
multiple factors control reactivity and they oppose one an-
other, then more sophisticated tools are necessary. How-
ever, methods to predict site selectivity have rarely been the 
target of modeling research, and experimental validation of 
the model’s predictions with synthetically relevant exam-
ples are rarely reported. 

One class of reaction that enables the functionalization of 
C–H bonds in medicinally active compounds is the undi-
rected borylation of C–H bonds. The borylation of C–H 
bonds has been shown to occur on a wide range of sub-
strates and does not require functional groups that 

coordinate the catalyst to direct site selectivity. The boryla-
tion of C–H bonds is especially valuable because the result-
ing C–B bond can be converted reliably to C–O, C–N, C–X, 
and C–C bonds. Given the utility of the borylation of C–H 
bonds, an ability to predict the site of arene borylation in 
complex structures would enable the application of this re-
action to discovery research.  

The site selectivity of the borylation of aryl C–H bonds can 
be high and predicted by simple rules, but the site selectiv-
ity for reaction of a molecule with multiple aromatic rings 
can be more difficult to predict. The borylation of aryl and 
heteroaryl C–H bonds is commonly accomplished by an irid-
ium catalyst ligated by bidentate pyridyl ligands, such as bi-
pyridine or phenanthroline, with stoichiometric amounts of 
pinacol diborane (B2pin2). These reactions proceed by oxi-
dative addition of a C–H bond, which is typically irreversi-
ble.3 Therefore, the oxidative addition step controls site se-
lectivity,4 and this step occurs most rapidly at the most ste-
rically accessible and acidic C–H bond. A series of heuristic 
guidelines to predict the site selectivity of borylation of var-
ious heteroarenes have been deduced from experimental 
studies on small heteroarenes; these guidelines indicate 
that borylation alpha to a basic nitrogen atom in a het-
eroarene is disfavored, that borylation of heteroarenes is 
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Figure	1. (A) Sample compounds synthesized via late-stage C–H functionalization of pharmaceutical intermediates. (B) Site selec-
tivity of the borylation of C–H bonds has been rationalized in simple arenes by heuristic guidelines. (C) A hybrid computational 
model enables accurate prediction of the site of borylation in complex, multi-arene substrates relevant to medicinal chemistry.

faster than that of arenes, and that borylation of 5-mem-
bered heteroarenes is faster than that of 6-membered het-
eroarenes (Figure 1B). However, it is unclear how these 
competing relative rates influence site selectivity in more 
complex cases, including cases in which the substrate con-
tains multiple aromatic rings, because the relative rates of 
borylation of multiply substituted arenes and heteroarenes 
are not well established, and the interplay between compet-
ing steric and electronic factors are difficult to assess. Thus, 
a more refined approach that builds on our current under-
standing of the factors influencing the site or sites of the 
borylation of C–H bonds is needed.5 

Several computational approaches can be envisioned to 
predict site selectivity.6 Density functional theory (DFT) has 
been used to rationalize experimental trends.7,8 Several 
groups have developed automated tools for generation of 
transition states (e.g., AARON8,9), but high computational 
costs and requisite specialized expertise continue to limit 
the generality and scalability of this approach. More effi-
cient approaches to predict reaction outcomes have been 
developed, such as hand-coded rules,10–14 semi-empirical 
quantum chemical methods,15 QSSR,6 and related machine-
learning models.16–23 Although machine-learning methods 
can reveal reaction trends from experimental data, includ-
ing regio-,24 stereo-,25 and chemoselectivity,26 accurate pre-
dictions by these methods generally require large amounts 
of data over a broad scope of reactants and reaction condi-
tions. This requirement limits the application of machine 
learning to synthetic chemistry because experimental data 
are typically available in small quantities and with varying 
levels of quality. In addition, accurate predictions for 

examples outside the training set, such as novel chemical 
structures, remains an outstanding challenge.  

Here, we show that combining machine learning with 
multiple additional computational disciplines into a hybrid 
model, termed SoBo (Site of Borylation), enables us to pre-
dict with high accuracy the aryl or heteroaryl C–H bond at 
which borylation occurs (Figure 1C). We determined site se-
lectivities by calculating the barriers to the oxidative addi-
tion of all possible C–H bonds to a catalytically relevant irid-
ium catalyst, but to avoid computationally demanding and 
labor-intensive calculations of the transition-state struc-
tures for many possible reactions, we developed a stream-
lined, multi-modal predictive system. This system combines 
kallisto27 to dock the arenes at iridium, a semi-empirical 
quantum mechanical (SQM) method to generate approxi-
mate transition-state energies,28,29 and two regression mod-
els to refine the predicted transition-state energies to 
achieve high accuracy. These regression models combine 
heuristics with machine learning as a function of the confi-
dence of the model on a new substrate, thereby adapting the 
model to new substrates and enabling accurate predictions 
with small amounts of training data. High-quality experi-
mental and computational data were used to train the mod-
els, and the precision of SoBo was demonstrated by predict-
ing with high accuracy the site of borylation of complex mol-
ecules containing multiple aromatic units. This model out-
performed predictions made by either expert synthetic 
chemists or previously reported machine-learning models, 
and these predictions are obtained within several minutes 
on a standard desktop computer using a command-line 
script easily accessible to synthetic chemists (command line 
interface available at https://pypi.org/project/sobo). 
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RESULTS AND DISCUSSION 

Data	 collection. High-quality training data were col-
lected to develop a predictive model for arene borylation. 
From the rich body of published work on this reaction,4,30 
86 examples of arene borylations catalyzed by iridium li-
gated by bipyridine or phenanthroline ligands were se-
lected.31 Among these examples, few gave products from 
borylation at more than one C–H bond. However, such ex-
amples are necessary to benchmark model performance be-
cause they allow for the direct calculation of relative transi-
tion-state energies leading to isomeric products. Thus, we 
conducted reactions of 15 additional substrates that un-
dergo borylation at two positions to augment the literature 
examples, and experimentally determined the ratio of prod-
ucts formed (Figure 2A). The subsequent combined dataset 
of 101 examples comprised the training and testing set for 
model development.  

This dataset primarily consists of simple arenes, but the 
envisioned application of a predictive model is the boryla-
tion of substrates containing multiple aromatic subunits. To 
test the feasibility of this type of extrapolation – training a 
model on isolated arenes to predict the reactivity of sub-
strates containing multiple substituted arenes – we as-
sessed the site selectivity of borylation of a series of arenes 
in separate reactants and within one reactant. These exper-
iments were designed to test if the site selectivity of boryla-
tion in one arene is affected by the presence of another 
arene in the same molecule. To this end, we compare the site 
selectivity of arenes as distinct units and those of arenes 
tethered as one molecule.  

Figure 2B demonstrates that the relative reactivity of two 
arenes in the same reaction vessel mimics the relative reac-
tivity of one substrate that contains both arenes. For exam-
ple, the borylation of N-methyl pyrrole occurs to a greater 
extent than that of toluene in both intermolecular (84:16) 
and intramolecular (85:15) competition experiments. 
Within each arene, the site selectivity is conserved, both for 
the borylation of N-methyl pyrrole (C2:C3 selectivity; 88:12 
intermolecular; 89:11 intramolecular) and of toluene 
(C3:C4 selectivity; 63:17 intermolecular; 67:13 intramolec-
ular). Good agreement between intramolecular and inter-
molecular reactivity was observed for several competition 
experiments (see Supporting Information sections C.2 and 
C.3 for details), demonstrating that the rate of functionali-
zation of one C–H bond is independent of the rate of func-
tionalization of another. As a result, a model trained on the 
reactions of isolated arenes could predict the site selectivity 
for reactions of a substrate containing multiple arenes.		

Hybrid	computational	workflow. The workflow for the 
computational model was developed by combining several 
distinct predictive methodologies to exploit the capabilities 
and compensate for the deficiencies of each approach. We 
termed this model SoBo for Site of Borylation, and the work-
flow by which it predicts the site of borylation is shown in 
Figure 3. In Step 1, a user provides a substrate of interest in 
the form of a Simplified Molecular Input Line Entry System 
(SMILES)32 string. Three-dimensional coordinates were 
constructed from this one-dimensional representation us-
ing RDKit.33 In Step 2, the transition state for the oxidative 

 

Figure	2.	(A) An experimental training set of arenes that un-
dergo borylation at two positions augments a literature-based 
dataset. Product distributions are normalized to 100, and the 
major site of borylation is highlighted. (B) An intermolecular 
competition experiment mirrors the selectivity of the boryla-
tion of two arenes in the same molecule, demonstrating the fea-
sibility of training a model on isolated arenes to predict the re-
activity of a substrate containing multiple arenes. 

addition of the C–H bond in benzene to the iridium catalyst 
ligated by tert-butyl bipyridine was calculated by DFT 
(B3LYP34,35 D3(BJ)36/LACVP**/PB(THF)). The benzene in 
this structure was replaced by a heteroarene or substituted 
arene of interest using kallisto27, and the structure of the 
transition state for addition of the C–H bond was optimized 
using a constrained semi-empirical quantum mechanical 
(SQM) method (GFN2-xTB). Exchanging arenes for benzene 
in DFT-optimized structures provides an approach to gen-
erate the initial structures for calculations of the transition 
state containing a substituted arene, enabling relatively ac-
curate transition-state structures to be calculated in orders
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Figure	3.	Computational workflow to train SoBo to predict the site of borylation. Starting from a molecular representation (1), three-
dimensional structures are generated and activation barriers for the oxidative addition of each substrate C–H bond to the iridium 
catalyst are calculated (2). Next, a partial least squares regressor (3a) and sterimol-based steric approximator (3b) are trained to 
predict site selectivity. These regressors are combined (3c), and the absolute energy barriers for oxidative addition of all C–H bonds 
are adjusted (4). The workflow outputs Boltzmann weights in percentages as calculated from activation barriers at standard condi-
tions. 

of magnitude less time by SQM than by DFT (ca. minutes vs. 
hours), and obviating the need for user intervention when 
identifying the transition state. In this way, kallisto lever-
ages the accuracy of DFT with the efficiency of SQM. We re-
peated this calculation for each aryl C–H bond in the mole-
cule of interest. The resulting relative transition-state bar-
riers alone did not accurately predict the product distribu-
tion. Thus, we layered additional computations involving 
machine learning and linear regression to calculate finer 

differences between the barriers for addition of various C–
H bonds. 

To improve the accuracy of the energies predicted by 
SQM, we applied two regression models (Step 3). In Step 3a, 
extended connectivity molecular fingerprints (ECFP)37 
were constructed from the various aryl C–H bonds of the 
substrate. This representation was used to train a series of 
machine-learning models, and the 10-fold, cross-validated 
predictive performance was analyzed by the mean absolute 
error (MAE) and root mean squared error (RMSE). We 
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defined two dummy regressors as computational baselines, 
one that predicts the mean (mean regressor) and one that 
predicts the median (median regressor). A series of ma-
chine-learning architectures, such as random forest, Bayes-
ian ridge, k-nearest neighbors, kernel ridge regression, 
Gaussian processes, and partial least squares (PLS) regres-
sion, with different kinds of feature preprocessing, were im-
plemented using scikit learn.38 

The most accurate model was a PLS regression model (n	
components = 13) with a polynomial combination feature 
preprocessing (degree = 2), with MAE = 3.1 kJmol−1 and 
RMSE = 4.7 kJmol−1. Both the mean regressor (MAE = 6.4 
kJmol−1, RMSE = 6.5 kJmol−1) and median regressor (MAE = 
6.5 kJmol−1, RMSE = 9.0 kJmol−1) predicted the relative en-
ergy barriers of the oxidative addition of different C–H 
bonds in a molecule, derived from experimental ratios of 
borylation, with approximately half the accuracy of the re-
gressor trained using chemically meaningful data. While 
this PLS regressor is more accurate than the baseline mod-
els, it alone does not provide sufficient accuracy for syn-
thetic purposes. In addition, fingerprint-based models are 
unable to extrapolate beyond the scope of chemical space 
represented by the encoded fingerprints. Thus, we com-
bined PLS regression with additional computational ap-
proaches to create a more accurate and robust predictor. 

To augment the energies from SQM calculations and pre-
dictions from the PLS model, we introduced a Neighbor Pen-
alty (NP, Step 3b), to capture the deactivating effect of large 
substituents ortho to C–H bonds. For each C–H bond, Ster-
imol descriptors were calculated for all ortho substituents 
(L, Bmin, and Bmax).39 These descriptors were fit to hybrid 
DFT energies in a multivariate regression model (coefficient 
of determination, R2 = 0.76, see Supporting Information sec-
tion A.2 for details). This approach represents a quantifica-
tion of the experimental trend that borylation frequently oc-
curs at the most sterically accessible C–H bond. The result-
ing intuitive regression model, termed Neighbor Penalty 
(NP), complements the less-readily interpretable, finger-
print-based PLS model.  

To combine the two correlation models (Step 3c), we cal-
culated the binary Rogers–Tanimoto similarity40 scores for 
the C–H bond of interest against all C–H bonds in the train-
ing set used to construct the PLS model. The similarity score 
was used to construct a mixing function between the PLS 
and NP regressors. By this mixing function, the PLS predic-
tion is weighted more heavily when the environment of a C–
H bond is like those in the training set, but the NP prediction 
is prioritized when the C–H bond is in a position less like 
those in the training set. This dynamic mixing enables ML 
predictions to be used when they are most applicable, and 
NP predictions, which are more extrapolative, to be used 
when the C–H bond is in a chemical environment that lies 
outside the chemical space of the training set. This approach 
effectively quantifies the trustworthiness of the model’s 
predictions and adapts the model architecture to each sub-
strate of interest. This adaptation allows for the extrapola-
tion of predictions to new chemical space that is not repre-
sented by the training data, thereby circumventing a com-
mon challenge of models based purely on ML. 

Finally, in Step 4, the predictions from regression models 
were combined with the lowest SQM-calculated barrier to 
generate absolute activation barriers, which were used to 
calculate Boltzmann populations for the isomeric products. 
The SQM barrier value is necessary to allow a reproduction 
of absolute barriers, but the relative energy barriers and, 
thus, intramolecular regioselectivity are calculated from the 
PLS and NP models. The absolute barrier is critical for de-
termining intermolecular selectivity (i.e.,	competition reac-
tions), and for detecting cases in which the barrier to C–H 
activation is prohibitively high. 

Across the training set, we obtained an accuracy of 97.1% 
for the site selectivity of arene borylation. This entire work-
flow uses open-source software, and the prediction of site 
selectivity for a new substrate using SoBo is complete 
within minutes on a high-performance computing cluster. 
More information on computational techniques is available 
in the SI, and all code and data are available on GitHub.41 

Results	of	SoBo	on	simple	arenes. Figure 4 shows the 
SoBo predictions and experimental product ratios for sam-
ple substrates from the original data set, depicted as prod-
uct ratios out of 100, with the major site of borylation high-
lighted by a circle. In each case, the predictions agree well 
with the experimental outcome. The entire list of predicted 
and reported sites of borylation are available on GitHub.41 
Having trained a model to predict the site of arene boryla-
tion for members of a dataset comprising mostly substrates 
containing a single aromatic unit, we next investigated the 
ability of the model to accurately predict the reactivity of 
more complex, polyaromatic systems that are chemically 
distinct from the training set. In particular, we sought to cre-
ate a predictive model for the late-stage borylation of com-
pounds relevant to pharmaceutical programs. Thus, we 
tested the workflow on molecules that represent the chem-
ical space of pharmaceuticals. 

 

Figure	4. Comparison of SoBo predictions and experimental 
results from model training. Starting materials are shown along 
with the relative ratio of borylation at various positions, 
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normalized out of 100. The major site of borylation is indicated 
by a colored circle. 

Experimental	 validation	 with	 pharmaceutically‐re‐
lated	substrates. We assembled an out-of-sample valida-
tion set of compounds from the AstraZeneca collection that 
contain at least two aromatic rings, possess a range of func-
tional groups, and are publicly available. These molecules 
differ significantly from the ones used to develop the model, 
which consist predominantly of substrates containing a sin-
gle arene. The higher level of structural complexity and sub-
stitution pattern in the validation set evaluates the ability of 
SoBo to extrapolate to new chemical space. To ensure rigor-
ous validation, no modification to the model was allowed 
during the work with this validation set. 

Figure 5 shows the results of this validation with experi-
mental data obtained under the standard reaction condi-
tions used to obtain the dataset on small arenes. Despite the 
number of potentially reactive C–H bonds in each com-
pound, one product was observed in all but one cases. In 
every case, SoBo correctly predicted the major site of 
borylation. The model quantitatively predicted the major 
product (entries 4 and 5) and correctly identified both the 
major and minor products when two products formed (en-
try 3). In some cases, the model predicted a minor isomer 
that was not observed (entries 1, 2, and 6). These data 
demonstrate the accuracy of the model for synthetic appli-
cations, and future work will expand the model to predict 
when no reaction or side reactions will be observed during 
arene borylation. 

 

 

Figure	5. Experimental validation using intermediates from medicinal chemistry programs compares SoBo predictions and experi-
mentally determined sites of borylation. Product distributions are normalized out of 100 with the major site of borylation highlighted 
with a circle. 

Comparison	to	other	approaches	to	predict	site	selec‐
tivity.	To understand the extent to which SoBo can augment 
human intuition, a series of alternative approaches to pre-
dict reaction outcomes were tested against the validation 
set. A reported computational model for predicting site se-
lectivity of arene borylation is a multi-task Weisfeiler–Leh-
man neural network (WLN),16 which predicts site selectivity 
for a range of C–H functionalization reactions, including 
borylation and electrophilic aromatic substitutions. The 
WLN model was trained using reactions that primarily fol-
low an electrophilic aromatic substitution mechanism, 
which results in different site selectivity than does a model 
based on the iridium-catalyzed borylation of C–H bonds. For 
this reason, the WLN model incorrectly predicted the major 
site of borylation for all six substrates in our validation set, 

resulting in an accuracy of predicting the major product of 
0% for compounds 1–6 . This result highlights the im-
portance of pairing computational models with mechanisti-
cally sound approaches to achieve high predictive power.  

An alternative predictor for the site selectivity of arene 
borylation is human knowledge and intuition.42 To assess 
the predictive power of chemists relative to computational 
models, 15 chemists from AstraZeneca and UC Berkeley 
predicted the site at which borylation occurred in the mole-
cules of the validation set. Each chemist classified them-
selves as an expert in the borylation of C–H bonds (5–6 re-
spondents) or an experienced synthetic chemist lacking 
specific expertise in borylation (7–10 respondents). Each 
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Figure	6. (A) Comparison of various predictor systems, such as general computational models (WLN), human chemists at various 
levels of familiarity with C–H borylation, and SoBo at predicting the major site of arene and heteroarene borylation across the vali-
dation set. (B) Predicted major sites of borylation made by all chemists surveyed, normalized out of 100, with experimental sites of 
borylation highlighted with a circle. 

respondent was allowed to specify one or more sites of 
borylation, or no reaction, and could consult the literature 
to inform their predictions. 

The ability of these chemists to predict the major site of 
borylation of molecules in the validation set was compared 
to that of the SoBo model (Figure 6A). In general, the experts 
in borylation predicted the major site of reaction more ac-
curately than did general synthetic chemists, but they did so 
less accurately than did the SoBo model. The chemists accu-
rately predicted the major products for some of the sub-
strates (> 80% for 5 and 6), but they did so less accurately 
for other substrates (< 40% for 1 and 2). While the predic-
tions of some chemists were more accurate than those of 
others, none of the chemists correctly predicted the major 

product for all six molecules, while SoBo predicted the ma-
jor site of borylation for each. In some cases, the chemists 
incorrectly predicted the borylation product when the reac-
tion occurred ortho to a functional group (1 and 2), high-
lighting the difficulty of balancing the effect of steric and 
electronic influences on selectivity. 

We also compared the precision of the two approaches by 
the distribution of predicted sites of reaction. The distribu-
tion of predictions made by all chemists is shown in Figure 
6B, with the major site of borylation (and SoBo’s prediction) 
highlighted by a blue circle. In general, the chemists pre-
dicted a wider range of site selectivities than did SoBo. 
Across the validation set, the chemists predicted boryla-
tions to occur at 16 of the 34 aromatic C–H bonds (47%), 
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while SoBo predicted borylations to occur at only 10 of the 
C–H bonds (29%). This comparison indicates that a compu-
tational approach can yield predictions of both higher accu-
racy and a greater level of precision than human knowledge 
alone. While the human chemists surveyed herein cannot 
speak for all possible experimentalists, their responses il-
lustrate the difficulty of predicting the site of arene boryla-
tion in complex systems, even for chemists highly experi-
enced with this transformation. The precision and accuracy 
of SoBo is high enough to guide those seeking to conduct the 
borylation of specific C–H bonds in complex substrates. 

 

CONCLUSION 

The value of late-stage functionalization of C–H bonds re-
lies on accurate predictions of site selectivity and the degree 
of selectivity. We have shown that a predictive model, cre-
ated by combining a series of computational tools to lever-
age the strengths and supplement the weaknesses of each, 
identifies the site of borylation of arenes and heteroarenes 
catalyzed by iridium complexes ligated by bipyridine lig-
ands. DFT was used to create approximate transition-state 
geometries, SQM was used to optimize these structures for 
new substrates, and ML, in combination with cheminfor-
matics, refined the predictions of site selectivities. By com-
paring the similarity of a new substrate to the training data, 
the model calculates the applicability of machine-learned 
predictions and supplements these predictions with those 
arising from empirical-based rules derived from mechanis-
tic understanding. This mixing results in a model (SoBo) 
that can adapt to new substrates and make meaningful pre-
dictions from data-limited sources. SoBo accurately pre-
dicted the major site of borylation of substrates in the train-
ing set (97.1%) and out-of-sample validation set (100%), 
demonstrating the strong ability of the model to extrapolate 
to new chemical space and to be valuable for designing ex-
periments for late-stage functionalizations of C–H bonds in 
pharmaceutically relevant molecules. SoBo proved to be 
more accurate than a collection of expert chemists or prior 
machine-learning models, and should complement chemi-
cal intuition during synthetic planning. Future efforts will 
expand predictive models to capture reactivity trends, us-
ing mechanistic information to predict catalyst poisoning 
and side reactivity.  

The prediction of site selectivity for a new substrate using 
SoBo requires no specialized computational experience and 
is complete within minutes on a high-performance compu-
ting cluster; a user simply enters the substrate as a SMILES 
string to a submission script, and the fully automated work-
flow returns the predicted likelihood of borylation at each 
aryl C–H position, as is described in the GitHub repository.43 
The computational approach developed herein can be ap-
plied to any reaction for which the transition state of the 
product-determining step is well defined and, therefore, 
constitutes a general platform to predict the outcome of 
many different chemical reactions.  
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scripts that enable the creation of the PLS machine-learning 
model, and the final fitted model itself. The validation set is 
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different substituted aromatic rings that have more than two 
possible C–H positions and made sure that no iridium-cata-
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Code availability 
The workflow implementation is shared in a separate GitHub 
repository.43 This workflow was implemented in python using 
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AUTHOR INFORMATION 
Author Contributions 
All authors conceptualized the project and designed experi-
ments. 
Notes 
The authors declare no competing financial interest. 
	

ACKNOWLEDGMENT  
We thank the NIH (1R35GM130387) for support of this work 
at UC Berkeley. E.C. is a fellow of the AstraZeneca postdoc pro-
gramme. M.E. was supported in part by an NIH Kirschstein-
NRSA postdoctoral fellowship (F32-GM134579). G.G. was sup-
ported in part by a Pfizer La Jolla Academic Industrial Relations 
(AIR) Diversity Research Fellowship. This work was supported 
by an NIH instrumentation grant S10OD024998 for an NMR 
spectrometer. 

REFERENCES 
(1) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, 

M. J. Late-Stage C–H Functionalization Offers New Opportunities in 
Drug Discovery. Nat.	 Rev.	 Chem. 2021, 5 (8), 522–545. 
https://doi.org/10.1038/s41570-021-00300-6. 

(2) Nippa, D. F.; Hohler, R.; Stepan, A. F.; Grether, U.; Konrad, 
D. B.; Martin, R. E. Late-Stage Functionalization and Its Impact on 
Modern Drug Discovery: Medicinal Chemistry and Chemical Biol-
ogy Highlights. CHIMIA 2022, 76 (3), 258–258. 
https://doi.org/10.2533/chimia.2022.258. 

(3) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; 
Miyaura, N.; Hartwig, J. F. Mechanism of the Mild Functionalization 
of Arenes by Diboron Reagents Catalyzed by Iridium Complexes. 
Intermediacy and Chemistry of Bipyridine-Ligated Iridium 

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2 ORCID: https://orcid.org/0000-0002-4979-6420 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2
https://orcid.org/0000-0002-4979-6420
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Trisboryl Complexes. J.	 Am.	 Chem.	 Soc. 2005, 127 (41), 14263–
14278. https://doi.org/10.1021/ja053433g. 

(4) Larsen, M. A.; Hartwig, J. F. Iridium-Catalyzed C–H 
Borylation of Heteroarenes: Scope, Regioselectivity, Application to 
Late-Stage Functionalization, and Mechanism. J.	 Am.	 Chem.	 Soc. 
2014, 136 (11), 4287–4299. https://doi.org/10.1021/ja412563e. 

(5) During preparation of this manuscript, a related study 
was disclosed: Nippa, D. F.; Atz, K.; Hohler, R.; Müller, A. T.; Marx, 
A.; Bartelmus, C.; Wuitschik, G.; Marzuoli, I.; Jost, V.; Wolfard, J.; 
Binder, M.; Stepan, A. F.; Konrad, D. B.; Grether, U.; Martin, R. E.; 
Schneider, G. Enabling Late-Stage Drug Diversification by High-
Throughput Experimentation with Geometric Deep Learning. 
ChemRxiv November 15, 2022. 
https://doi.org/10.26434/chemrxiv-2022-gkxm6-v2. 

(6) Zahrt, A. F.; Athavale, S. V.; Denmark, S. E. Quantitative 
Structure–Selectivity Relationships in Enantioselective Catalysis: 
Past, Present, and Future. Chem.	Rev. 2020, 120 (3), 1620–1689. 
https://doi.org/10.1021/acs.chemrev.9b00425. 

(7) Andersson, T.; Broo, A.; Evertsson, E. Prediction of Drug 
Candidates’ Sensitivity Toward Autoxidation: Computational Esti-
mation of C-H Dissociation Energies of Carbon-Centered Radicals. 
J.	 Pharm.	 Sci. 2014, 103 (7), 1949–1955. 
https://doi.org/10.1002/jps.23986. 

(8) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Non-
covalent Interactions in Organocatalysis and the Prospect of Com-
putational Catalyst Design. Acc.	 Chem.	Res. 2016, 49 (5), 1061–
1069. https://doi.org/10.1021/acs.accounts.6b00096. 

(9) Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. 
AARON: An Automated Reaction Optimizer for New Catalysts. J.	
Chem.	 Theory	 Comput. 2018, 14 (10), 5249–5261. 
https://doi.org/10.1021/acs.jctc.8b00578. 

(10) Salatin, T. D.; Jorgensen, W. L. Computer-Assisted Mech-
anistic Evaluation of Organic Reactions. 1. Overview. J.	Org.	Chem. 
1980, 45 (11), 2043–2051. 
https://doi.org/10.1021/jo01299a001. 

(11) Gasteiger, J.; Hutchings, M. G.; Christoph, B.; Gann, L.; 
Hiller, C.; Löw, P.; Marsili, M.; Saller, H.; Yuki, K. A New Treatment 
of Chemical Reactivity: Development of EROS, an Expert System for 
Reaction Prediction and Synthesis Design. In Organic	Synthesis,	Re‐
actions	and	Mechanisms; Topics in Current Chemistry; Springer: 
Berlin, Heidelberg, 1987; pp 19–73. https://doi.org/10.1007/3-
540-16904-0_14. 

(12) Ugi, I.; Bauer, J.; Bley, K.; Dengler, A.; Dietz, A.; Fontain, E.; 
Gruber, B.; Herges, R.; Knauer, M.; Reitsam, K.; Stein, N. Computer-
Assisted Solution of Chemical Problems—The Historical Develop-
ment and the Present State of the Art of a New Discipline of Chem-
istry. Angew.	 Chem.	 Int.	 Ed.	 Engl. 1993, 32 (2), 201–227. 
https://doi.org/10.1002/anie.199302011. 

(13) Satoh, H.; Funatsu, K. SOPHIA, a Knowledge Base-Guided 
Reaction Prediction System - Utilization of a Knowledge Base De-
rived from a Reaction Database. J.	Chem.	Inf.	Comput.	Sci. 1995, 35 
(1), 34–44. https://doi.org/10.1021/ci00023a005. 

(14) Socorro, I. M.; Taylor, K.; Goodman, J. M. ROBIA:  A Reac-
tion Prediction Program. Org.	 Lett. 2005, 7 (16), 3541–3544. 
https://doi.org/10.1021/ol0512738. 

(15) Ree, N.; Göller, A. H.; Jensen, J. H. RegioSQM20: Improved 
Prediction of the Regioselectivity of Electrophilic Aromatic Substi-
tutions. J.	 Cheminformatics 2021, 13 (1), 10. 
https://doi.org/10.1186/s13321-021-00490-7. 

(16) Struble, T. J.; Coley, C. W.; Jensen, K. F. Multitask Predic-
tion of Site Selectivity in Aromatic C–H Functionalization Reac-
tions. React.	 Chem.	 Eng. 2020, 5 (5), 896–902. 
https://doi.org/10.1039/D0RE00071J. 

(17) Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P.-O. 
Organic Reactivity from Mechanism to Machine Learning. Nat.	Rev.	
Chem. 2021, 5 (4), 240–255. https://doi.org/10.1038/s41570-
021-00260-x. 

(18) Ree, N.; Göller, A. H.; Jensen, J. H. RegioML: Predicting the 
Regioselectivity of Electrophilic Aromatic Substitution Reactions 
Using Machine Learning. Digit.	 Discov. 2022, 1 (2), 108–114. 
https://doi.org/10.1039/D1DD00032B. 

(19) Dotson, J. J.; van Dijk, L.; Timmerman, J. C.; Grosslight, S.; 
Walroth, R. C.; Gosselin, F.; Püntener, K.; Mack, K. A.; Sigman, M. S. 
Data-Driven Multi-Objective Optimization Tactics for Catalytic 
Asymmetric Reactions Using Bisphosphine Ligands. J.	Am.	Chem.	
Soc. 2023, 145 (1), 110–121. 
https://doi.org/10.1021/jacs.2c08513. 

(20) Hoque, A.; Sunoj, R. B. Deep Learning for Enantioselectiv-
ity Predictions in Catalytic Asymmetric β-C–H Bond Activation Re-
actions. Digit.	 Discov. 2022, 1 (6), 926–940. 
https://doi.org/10.1039/D2DD00084A. 

(21) Boni, Y. T.; Cammarota, R. C.; Liao, K.; Sigman, M. S.; Da-
vies, H. M. L. Leveraging Regio- and Stereoselective C(Sp3)–H Func-
tionalization of Silyl Ethers to Train a Logistic Regression Classifi-
cation Model for Predicting Site-Selectivity Bias. J.	Am.	Chem.	Soc. 
2022, 144 (34), 15549–15561. 
https://doi.org/10.1021/jacs.2c04383. 

(22) Qiu, J.; Xie, J.; Su, S.; Gao, Y.; Meng, H.; Yang, Y.; Liao, K. 
Selective Functionalization of Hindered Meta-C–H Bond of o-Al-
kylaryl Ketones Promoted by Automation and Deep Learning. 
Chem 2022, 8 (12), 3275–3287. 
https://doi.org/10.1016/j.chempr.2022.08.015. 

(23) Xu, L.-C.; Frey, J.; Hou, X.; Zhang, S.-Q.; Li, Y.-Y.; Oliveira, J. 
C. A.; Li, S.-W.; Ackermann, L.; Hong, X. Enantioselectivity Predic-
tion of Pallada-Electrocatalysed C–H Activation Using Transition 
State Knowledge in Machine Learning. Nat.	Synth. 2023, 2 (4), 321–
330. https://doi.org/10.1038/s44160-022-00233-y. 

(24) Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong, X. Predicting Regiose-
lectivity in Radical C−H Functionalization of Heterocycles through 
Machine Learning. Angew.	Chem.	 Int.	Ed. 2020, 59 (32), 13253–
13259. https://doi.org/10.1002/anie.202000959. 

(25) Moon, S.; Chatterjee, S.; Seeberger, P. H.; Gilmore, K. Pre-
dicting Glycosylation Stereoselectivity Using Machine Learning. 
Chem.	 Sci. 2021, 12 (8), 2931–2939. 
https://doi.org/10.1039/D0SC06222G. 

(26) Jorner, K.; Brinck, T.; Norrby, P.-O.; Buttar, D. Machine 
Learning Meets Mechanistic Modelling for Accurate Prediction of 
Experimental Activation Energies. Chem.	Sci. 2021, 12 (3), 1163–
1175. https://doi.org/10.1039/D0SC04896H. 

(27) Caldeweyher, E. Kallisto: A Command-Line Interface to 
Simplify Computational Modelling and the Generation of Atomic 
Features. J.	 Open	 Source	 Softw. 2021, 6 (60), 3050. 
https://doi.org/10.21105/joss.03050. 

(28) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; 
Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended Tight-Bind-
ing Quantum Chemistry Methods. WIREs	Comput.	Mol.	Sci. 2021, 11 
(2), e1493. https://doi.org/10.1002/wcms.1493. 

(29) Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and 
Efficient Implicit Solvation Model for Fast Semiempirical Methods. 
J.	 Chem.	 Theory	 Comput. 2021, 17 (7), 4250–4261. 
https://doi.org/10.1021/acs.jctc.1c00471. 

(30) Wright, J. S.; Scott, P. J. H.; Steel, P. G. Iridium-Catalysed 
C−H Borylation of Heteroarenes: Balancing Steric and Electronic 
Regiocontrol. Angew.	 Chem.	 Int.	 Ed. 2021, 60 (6), 2796–2821. 
https://doi.org/10.1002/anie.202001520. 

(31) Caldeweyher, E. ICB_db_regioselectivity: A Database of 
Real Compounds and Their Regioselective Products., 2022. 
https://github.com/C-H-activation/ICB_db_regioselectivity (ac-
cessed 2023-04-26). 

(32) Daylight	 Theory:	 SMILES. https://www.day-
light.com/dayhtml/doc/theory/theory.smiles.html (accessed 
2023-04-26). 

(33) Landrum, G. A. RDKit: Open-Source Cheminformatics 
Software, 2023. https://github.com/rdkit/rdkit (accessed 2023-
04-26). 

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2 ORCID: https://orcid.org/0000-0002-4979-6420 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2
https://orcid.org/0000-0002-4979-6420
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

(34) Becke, A. D. Density-functional Thermochemistry. III. 
The Role of Exact Exchange. J.	Chem.	Phys. 1993, 98 (7), 5648–
5652. https://doi.org/10.1063/1.464913. 

(35) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. 
J. Ab Initio Calculation of Vibrational Absorption and Circular Di-
chroism Spectra Using Density Functional Force Fields. J.	 Phys.	
Chem. 1994, 98 (45), 11623–11627. 
https://doi.org/10.1021/j100096a001. 

(36) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent 
and Accurate Ab Initio Parametrization of Density Functional Dis-
persion Correction (DFT-D) for the 94 Elements H-Pu. J.	 Chem.	
Phys. 2010, 132 (15), 154104. 
https://doi.org/10.1063/1.3382344. 

(37) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. 
J.	 Chem.	 Inf.	 Model. 2010, 50 (5), 742–754. 
https://doi.org/10.1021/ci100050t. 

(38) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; 
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Du-
bourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; 
Perrot, M.; Duchesnay, É. Scikit-Learn: Machine Learning in Python. 
J.	Mach.	Learn.	Res. 2011, 12 (85), 2825–2830. 

(39) Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. Conforma-
tional Effects on Physical-Organic Descriptors: The Case of Ster-
imol Steric Parameters. ACS	 Catal. 2019, 9 (3), 2313–2323. 
https://doi.org/10.1021/acscatal.8b04043. 

(40) Hassan, M.; Brown, R. D.; Varma-O’Brien, S.; Rogers, D. 
Cheminformatics Analysis and Learning in a Data Pipelining Envi-
ronment. Mol.	 Divers. 2006, 10 (3), 283–299. 
https://doi.org/10.1007/s11030-006-9041-5. 

(41) Caldeweyher, E. ICB-Ml-Training: Machine Learning 
Training Set for the Iridium-Catalyzed Borylation., 2022. 
https://github.com/C-H-activation/ICB-ml-training (accessed 
2023-04-26). 

(42) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; 
Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian 

Reaction Optimization as a Tool for Chemical Synthesis. Nature 
2021, 590 (7844), 89–96. https://doi.org/10.1038/s41586-021-
03213-y. 

(43) Caldeweyher, E. ICB-Workflow: Iridium-Catalyzed 
Borylation Dask Workflow., 2022. https://github.com/C-H-activa-
tion/ICB-workflow (accessed 2023-04-26). 

(44) Caldeweyher, Eike. ICB-Validation, 2022. 
https://github.com/C-H-activation/ICB-validation (accessed 
2023-04-26). 

(45) Dask Development Team. Dask:	Library	for	dynamic	task	
scheduling. https://dask.org (accessed 2023-04-26). 

(46) Yoo, A. B.; Jette, M. A.; Grondona, M. SLURM: Simple Linux 
Utility for Resource Management. In Job	Scheduling	Strategies	for	
Parallel	Processing; Feitelson, D., Rudolph, L., Schwiegelshohn, U., 
Eds.; Lecture Notes in Computer Science; Springer: Berlin, Heidel-
berg, 2003; pp 44–60. https://doi.org/10.1007/10968987_3. 

(47) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, 
R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; 
Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, 
M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-
Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; 
Gohlke, C.; Oliphant, T. E. Array Programming with NumPy. Nature 
2020, 585 (7825), 357–362. https://doi.org/10.1038/s41586-
020-2649-2. 

(48) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; 
Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, 
W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; 
Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. 
J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; 
Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; 
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P. SciPy 
1.0: Fundamental Algorithms for Scientific Computing in Python. 
Nat.	 Methods 2020, 17 (3), 261–272. 
https://doi.org/10.1038/s41592-019-0686-2. 

 

Insert Table of Contents artwork here 

 

 

 

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2 ORCID: https://orcid.org/0000-0002-4979-6420 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-7qw68-v2
https://orcid.org/0000-0002-4979-6420
https://creativecommons.org/licenses/by-nc-nd/4.0/

