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Abstract 

Biochemical transformations may allow significant improvements in synthetic efficiency of 

complex functional molecules through reduction in the number of synthetic steps or avoidance 

of harsh conditions and/or toxic solvents/reactants. Yet, there is a limited access to biochemical 

reaction data, which reduces the opportunities of finding alternatives and discovering synergies 

with organic synthesis. We propose a workflow to explore the sparse synthetic biological 

domain. Using a molecular graph method we predict feasible biosynthetic reactions. The 

products of biosyntheses are learned from the functional transformations of the literature-

excerpted reactions recorded in KEGG database. Through this approach we expanded the 

KEGG reaction dataset of biochemical transformations by approximately four times. To 

catalyse the novel reactions, we proposed a transformer model that learns from reaction 

SMILES and amino acid sequences of native enzymes and predicts promiscuous enzymes for 

potential substrates. The proposed transformer model calibrates the feasibility of the predicted 

reactions and reduces the search scope for promiscuous enzymes in the pool. A populated 

biological reaction space is eventually visualised in a two-dimensional t-SNE diagram. 

Keywords: bioinformatics; reaction network; synthetic biology, data mining, machine learning 

 

Introduction 

Conventional chemical products development starts from raw materials, such as petrochemical 

feedstocks or bio-based resources. It involves chemical synthesis steps to obtain the desired 

target intermediates (industrial chemicals) and functional molecules.1, 2 In contrast, synthetic 

biology is concerned with molecules that are intermediates at various stages of metabolic 

pathways, and could lead to production of target substances in cell-based bioreactors. Compared 

to organic synthetic paths, the bio-synthetic paths typically have higher redox efficiency and 
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moderate reaction conditions; both factors are desirable from the point of view of reducing 

environmental impact of industrial processes (we do not discuss here the well-known issues of 

complexity of product separation from bio-processes).3, 4 An addition of synthetic biology into 

computer-assisted synthesis planning (CASP) of pharmaceuticals and industrial chemicals 

certainly opens up opportunities for more efficient chemical production.5-7  

Recently we generated a hybrid reaction network to bridge the domains of organic synthesis 

and synthetic biology.5 From the hybrid network, it is clear that the biological reaction space is 

very sparse compared with the organic chemical network, involving only 0.35% of the total 

reactions in the combined dataset. Similarly, Levin et al.8 published a method of merging 

enzymatic and synthetic chemistry to guide CASP. In their work, reaction templates were 

summarised from the reaction transformations, and hybrid synthetic pathways were assembled 

from reaction templates. Among the 171 thousand reaction templates, only 4.6% were from 

enzymatic templates. Both practical implementations of CASP based on both bio-catalytic and 

chemical synthesis were hindered by the limited amounts of the biochemical reactions data. 

 

To enrich the biological reaction dataset, several methods were proposed to predict possible 

biological reactions. Some research groups extracted reaction mechanisms and reproduced 

fragmentations of the reactions, such as ReactPRED,9 BioTransformer,10  and SyGMa.11 Others 

used mechanism-free machine learning methods to learn from past reactions, such as 

GLORYx12 and Litsa et al.’s method.13, 14 Jiang et al.15 learned from enzymatic reaction network 

connectivity, and predicted enzymatic reactions using link prediction. These methods are likely 

to generate metabolites and metabolic reactions which are unseen in prior literature, but with 

low confidence; besides, few of them provide information about the enzymes required. 

Therefore, we propose to learn from the literature-excerpted biological reactions and predict 

novel reactions to expand the biological reaction dataset. The feasibility of the predicted 
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reactions was calibrated with a natual language processing (NLP) transformer to suggest 

promiscuous biocatalysts for the reactions. We hypothesise that by diversifying the biological 

reaction dataset, the potential for synthetic biology to produce molecules of interests would be 

increased. 

 

Novel reaction pathways can be developed/discovered with tailored enzymes, the biocatalysts. 

Enzymes have been developed through rational design or directed evolution. Rational design is 

a top-down method which considers enzyme behaviour and functionality, and makes proteins 

from scratch by predicting their gene sequences that fold to specific structures;16 directed 

evolution is a bottom-up method that screens from multiple experimentally evolved protein 

structures to satisfy specific objectives.17 These two methods are usually combined to accelerate 

enzyme development.18  

 

Apart from conventional approaches, machine learning is also frequently applied to enzyme 

engineering. Most recently, Google’s DeepMind published its open-sourced deep learning 

protein structure prediction tool AlphaFold,19 and then its upgraded version AlphaFold2,20 

which use new neural network architectures to learn from three-dimensional structures of 

proteins and make predictions at a near-experiential precision. A comprehensive discussion of 

machine learning applications in enzyme engineering can be found in a review paper by 

Mazurenko et al.21  

 

Apart from evolving novel enzymes, synthetic biologists also benefit from enzyme promiscuity, 

which is the capability of enzyme’s protein structure to bind non-native substrates and catalyse 

multiple reactions.22, 23 Enzyme promiscuity is efficient in exploring enzyme’s substrate 
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specificity, since at least one third of protein superfamilies are functionally diverse and each 

superfamily is able to catalyse more than one reaction.24 

 

The development of a promiscuous enzyme suggestion model relies on NLP deep learning. NLP 

methods have experienced a period of rapid development over the last few years. Notable 

methods are long short-term memory (LSTM) neural network,25 transformer,26 bidirectional 

encoder representations from transformers (BERT),27 etc. We should note that NLP is 

particularly promising in bioinformatics due to the natural fit to convert enzymes into amino 

acid letters and reactions into machine readable string representations. For reaction prediction, 

Kreutter et al.28 developed an enzymatic transformer, to convert enzymatic reactions into 

reaction SMILES and enzymes into language tokens. The transformer predicts reaction 

products with remarkable accuracy. For biosynthetic planning, Probst et al.29 generalised 

Molecular Transformer,30 a deep learning reaction prediction transformer model, to predict 

biocatalytic reaction outcomes and build pathways. Ofer et al.31 discussed the possibility to use 

the protein sequence, the amino acid chain, as a language and reviewed numbers of protein-

related tasks solved by NLP methods. NLP certainly can provide insights to tackle 

bioinformatics problems. 

 

In this work we propose a workflow to expand the knowledge of biochemical reactions, 

specifically based on data mining from KEGG database, and to build a new layer of information 

on our previous work5 of hybrid chemical and biological reaction network. This starts from 

prediction of novel metabolic reactions from a molecular graph-based method to learn from 

functional transformations of analogue reactions in the reaction dataset and to populate the 

original biological reaction network. To catalyse the novel predicted reactions, instead of 

designing new enzymes, which are case-specific, we use an NLP transformer to learn from 
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enzyme language, amino acid sequences, with no segmentation on amino acid chain, and 

reaction language, reaction SMILES strings, and suggest promiscuous enzymes to bind with 

the substrates in the predicted reactions, and the suggestions are given with binding 

possibilities. The populated biological space would be analysed to investigate its feasibility of 

conducting the proposed bio-chemical transformations. 

 

Methods 

Synthetic biological reaction domain data mining 

All reactions from KEGG32 reaction database were mined. Since enzymes catalyse metabolic 

reactions from both directions, all reactions were assumed to be reversible.15 Therefore, for all 

metabolic reactions, both reaction directions were considered in the local reaction database. The 

reactions record all reaction participants, including substrates, products, cofactors such as ATP 

and NADPH, and free metabolites such as oxygen. 

 

In retrosynthesis planning, a target molecule is broken down by chains of reactions, until all 

intermediates reach their precursors. Cofactors and free metabolites in most cases always exist 

as reaction intermediates, and do not usually contribute to the carbon flow in reaction. 

Therefore, in the local reaction dataset, these molecules were removed from the reaction entries 

for the purpose of reaction prediction and enzyme prediction. However, although these 

molecules are freely available in cell environments, for example NADPH is a coenzyme in 

anabolic reactions as a reducing agent and it is maintained at a stable concentration in a cell by 

pentose phosphate pathway for reduction of bio-active molecules,33 in industrial enzymatic 

processes, cofactors are difficult to recycle and recover, making cofactor-dependent bio-

chemical transformations potentially economically unviable.34 Therefore, cofactors and free 

metabolites need to be re-considered when scaling up the biological reactions taking place in a 
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cell-free bioreactor. A list of cofactors and free metabolites from KEGG database was manually 

curated by Blaβ et al.35 The full lists can be found in Section 1 of Electronic Supplementary 

Information (ESI).    

 

Assembly of a biological reaction network is based on graph theory:36 a network is a 

mathematical representation of pairwise relationships between objects. In a network 𝐺, vertices 

𝑉 representing the objects are connected by edges 𝐸. In the case of edges with orientations 

pointing to one end of the vertices, the graph is defined as directed graph. The mathematical 

representation of the graph 𝐺 with 𝑚 vertices and 𝑛 edges is shown in Eq. 1 and Eq. 2: 

 

Using vertices to represent chemical substances and edges connecting vertices to represent the 

reactions from reactants to products, the synthetic biological reaction network was generated to 

include 18,682 molecules, and 10,900 reactions. Since we assumed all metabolic reactions are 

reversible, the edge in the network have both directions. 

 

Biological reaction prediction 

We propose a graph method to predict biological reactions to explore the biochemical reactions 

domain. The method is target molecule-oriented, i.e. for a target molecule of interests 𝑡, based 

on the existing enzymatic transformations in biological reactions, to predict novel reactions 

from the existing similar functional groups. The diversified reaction space would combine 

literature-excerpted reactions from the database and calibrate predicted reactions for all target 

molecules. The workflow of the proposed method is shown in Figure 1.  

𝐺 = )𝑉(𝐺) = {𝑣!, … , 𝑣" , … , 𝑣#}, 𝐸(𝐺) = 1𝑒!, … , 𝑒$ , … , 𝑒%34 Eq. 1 
𝑒$ = )𝑣&, 𝑣'4, 𝑤ℎ𝑒𝑟𝑒	𝑝, 𝑞 ∈ (1, … ,𝑚)	𝑎𝑛𝑑	𝑗 ∈ (1, … , 𝑛) Eq. 2 
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Figure 1. Schematic diagramme of the developed workflow to predict metabolic reactions and 

diversify the reaction dataset for a target molecule. 

 

For a target molecule 𝑡, the algorithm starts by detecting similar compound, 𝑠", from the KEGG 

molecule database. To find similar compound, a graph method named SIMilar COMPound 

(SIMCOMP) designed by Hattori et al.37, 38 was adopted to compare target molecule, 𝑡, and all 

other KEGG molecules. SIMCOMP is believed to successfully cluster the features of 
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molecules, and especially metabolic molecules.37 In the method, chemical compounds are 

converted into two-dimensional undirected graphs, 𝐺 ∈ (𝑉, 𝐸), where vertices 𝑉 and edges 𝐸 

represent atoms and covalent bonds respectively. The method excludes all hydrogen atoms and 

hydrogen attaching covalent bonds. Due to the various atom environments (i.e. various attached 

covalent bonds and adjacent atoms), 68 atom types are defined with numerical codes for all 

vertex entries: 23 carbon, 18 oxygen, 16 nitrogen, two phosphorus, seven sulphur, four different 

halogens, and one undefined atom types. For example, saturated carbon atom with three 

hydrogen and one single-bond functional group attached is defined as ‘c1a’ carbon atom type, 

whilst unsaturated carbon atom with a double-bond oxygen and two single bonds attaching to 

a non-aromatic ring is defined as ‘c5x’. The 68 atom types in details are discussed in Hattori et 

al.37 

 

By applying SIMCOMP, a dataset of similar compounds, 𝑆, is formed for all 𝑠" ∈ 𝑆, and a 

chemical structure similarity indicator Jaccard coefficient is used to retain the compounds, 𝑠", 

in 𝑆  subject to 𝐽𝐶(,*! ≥ 0.85 . Jaccard coefficient, 𝐽𝐶(,*! , between target a molecule 𝑡  and a 

similar molecule 𝑠" is determined by Eq. 3, which is the ratio between the intersection set and 

the union set of the molecular graphs. The above steps were implemented via a Python script 

to interact with SIMCOMP API.38 The full list of similar compounds for all KEGG molecules 

can be found in Section 2 of ESI. 

 

For each detected similar compound 𝑠" ∈ 𝑆, all reactions 𝐽 that produce the compound 𝑠"  in 

KEGG reaction database are found. For each reaction 𝑗 ∈ 𝐽 , excluding cofactors and free 

metabolites from the reaction participants, one-to-one wiring (reactant 𝑟",$ -to-compound 𝑠" ) 

reactions with only metabolites involved in efficient carbon flux are determined, and defined 

𝐽𝐶(,*! =
𝐺( ∩ 𝐺*!
𝐺( ∪ 𝐺*!

 Eq. 3 
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as a referenced analogue reaction 𝑗. The full list of one-to-one wiring reactions can be found in 

Section 3 of ESI. 

 

Afterwards, for each analogue reaction 𝑗 ∈ 𝐽 under the level of each detected similar compound 

𝑠" ∈ 𝑆, the objective is to predict reaction from an unknown reactant 𝑞",$ to the target product 𝑡 

based on the functional group transformation at the reaction centre of an analogue reaction 𝑗 

from the reactant 𝑟",$  to the similar compound 𝑠"  (or in a reversed direction, given that all 

enzymatic reactions are assumed reversible).  

 

This prediction would be meaningless if the target molecule 𝑡 does not have the same reaction 

transformation at the reaction centre, at which the analogue reaction 𝑗 transforms from the 

reactant 𝑟",$ to the similar compound 𝑠". To exclude such invalid analogue reactions, graphs 𝐺+!,# 

and 𝐺*! of reactant 𝑟",$ and compound 𝑠" are computed respectively, and then maximal common 

subgraph 𝑀𝐶𝑆,$!,# ,,%!  is generated for the two graphs. The functional transformation of the 

analogue reaction takes place in the uncommon area of the reactant 𝑟",$  and the similar 

compound 𝑠", i.e., in the graph of L𝐺*! −𝑀𝐶𝑆,$!,# ,	,%!N. To ensure the validity of the analogue 

reaction 𝑗, the maximal common subgraph 𝑀𝐶𝑆,&,	,%!  between the graphs of the target product 

𝑡 and similar compound 𝑠" is determined, and we check if the functional group is present in the 

maximal common subgraph 𝑀𝐶𝑆,&,,%! , i.e., if L𝐺*! −𝑀𝐶𝑆,$!,# ,	,%!N ∈ 𝑀𝐶𝑆,&,	,%! . The failed 

reactions are removed from the analogue reaction set. 

 

Next, at the graph of target molecule, 𝐺(, the algorithm subtracts the difference between the 

target product 𝑡 and the similar compound 𝑠" L𝐺*! −𝑀𝐶𝑆,$!,# ,	,%!N, and then uses the functional 
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transformation of the analogue reaction L𝐺+!,# −𝑀𝐶𝑆,$!,# ,	,%!N to replace it and to determine the 

reactant, 𝑞",$. Mathematically, the graph of an unknown reactant 𝐺'!,# is computed by Eq. 4. 

 

The graph 𝐺'!,#  is converted to the simplified molecular-input line-entry system (SMILES) 

string of molecule 𝑞",$ for all analogue reactions 𝑗 ∈ 𝐽 under the level of all detected similar 

compounds 𝑠" ∈ 𝑆. Each predicted molecule 𝑞",$ and each predicted reaction “𝑞",$ ↔ 𝑡” (in the 

form of one-to-one wiring), are compared with recorded molecules and reactions in database 

respectively, by their canonical SMILES strings. If the reactions are unique, they are added into 

the predicted database to diversify the metabolic reaction space. 

 

The workflow was repeated for all KEGG molecules as target molecules 𝑡 . All predicted 

metabolic reactions were combined with the literature-excerpted recorded reactions for reaction 

network assembly. Since this method creates new molecules and reactions, in principle, this 

method has the potential to predict an infinite number of reactions by iterating the workflow, 

i.e. using created reactions as analogue reactions, and consistently producing novel reactions. 

However, at this stage, we predicted only from the literature-excerpted reactions (i.e. from the 

first iteration) in KEGG database to avoid uncertainty propagations in further iterations. 

 

The predicted reactions were learned from the reaction rules of analogue reactions, which 

partially ensures the reactivity. However, similar to most reaction prediction tools,9-15 the 

predicted reactions could not be assessed unless they are experimentally screened. Therefore, 

we added another layer of certainty – pairing predicted reactions with potential promiscuous 

𝐺'!,# 	 = 𝐺( − L𝐺*! −𝑀𝐶𝑆,$!,# ,	,%!N + L𝐺+!,# −𝑀𝐶𝑆,$!,# ,	,%!N Eq. 4 
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enzymes to catalyse the reaction. Suggested by a trained transformer model, predicted reactions 

with no suitable enzyme to catalyse them were removed from the reaction dataset.  

 

Practically, search of maximal common subgraph between two graphs is a NP-complete 

problem,39 which means the computational time increases exponentially when the molecular 

complexity increases. Therefore, to reduce computational cost, we set a timeout session of five 

seconds for each search of maximal common subgraph, and discarded the failed search 

molecules for reaction prediction. We also noticed that SIMCOMP compares similarity of 

molecules mainly from their two-dimensional features and, therefore, higher order structure 

differences in molecules (isotopes, stereoisomers and etc.) are hard to differentiate by applying 

SIMCOMP method, whilst enzymatic reactions are stereoisomer specific in most cases. 

However, this stereoisomer uncertainty could be avoided by applying the enzyme pairing 

algorithm below – a trained transformer model would learn the stereoisomer specificity from 

reaction SMILES, and pair with the corresponding enzyme structures, which would remove 

predicted reactions from infeasible stereoisomers. 

 

Enzyme promiscuity prediction 

For the predicted metabolic reactions, enzymes are required to activate and catalyse the 

metabolic transformation of the substrates. Enzymes usually operate on specific reactions, but 

however, research shows enzymes are also promiscuous – one enzyme can bind multiple 

substrates and exhibits broader specificities.40 An example of promiscuous enzyme malonyl-

CoA reductase (MCR)41 catalysing multiple reactions is shown in Figure 2. 
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Figure 2 An example of a promiscuous enzyme malonyl-CoA reductase (MCR) (EC number 

1.2.1.75) catalysing (a) native reaction of malonyl Coenzyme A reduction (KEGG reaction 

R00740) in E.coli and (b) its putative reaction due to enzyme promiscuity to reduce succinyl 

Coenzyme A. 

 

We assumed all enzymes were promiscuous and assigned native enzymes to catalyse the 

predicted reactions with likelihoods by the following the proposed transformer method, inspired 

from NLP, to translate between a reaction language to an enzyme language. 

Reaction language in a transformer  

Molecules have been widely converted to machine readable languages such as SMILES,42 

InChI43 and others. Here we chose SMILES as a language to input into the transformer, since 

(canonical) SMILES fully specifies the structure of a molecule, and via NLP, SMILES language 

has been proven successful in tackling multiple chemistry problems.28, 44 Reaction SMILES 
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uses defined syntax to combine all reactants, reagents (reaction participants not contributing 

carbon flow) and products. Reactants, reagents, and products are split by ‘>’ symbol, whilst 

each molecule in reactants, reagents, and products are split by ‘.’ symbol, see Figure 3a. To 

input the reaction SMILES strings into transformer, hydrogen atoms and atom mappings were 

removed from the SMILES strings, and the strings were split/tokenised atom-wise using the 

regular expression discussed in Schwaller et al.,45 and summarised in Section 4 of ESI. 

 

Figure 3. (a) Conversion of reaction into languages of reaction SMILES, with a reaction 

example of KEGG reaction R03608, catalysed by toluene 2-monooxygenase (EC 1.14.13.243); 

(b) conversion of enzyme into language of amino acid sequences, schematics of tannase protein 

structure drawn by AlphaFold2;20 (c) schematics of transformer model structure, reproduced 

from Vaswani et al.26 

Enzyme language in a transformer 

Enzymes in KEGG database are recorded with their enzyme commission (EC) number, which 

fully specifies the organisms that host the enzyme and the specific enzymatic transformations, 

and uses a topological classification scheme to categorise enzymes/enzymatic transformations 
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into four levels.46 For example, from Figure 2, the EC number of enzyme MCR is 1.2.1.75, 

where ‘1’ at the first level represents the main category of oxidation/reduction reaction, ‘2’ at 

the second level represents the reaction centre of an aldehyde or carbonyl group, ‘1’ at the third 

level represents the acceptors of NAD+ or NADP+, ‘75’ at the fourth level represents the 

malonate semialdehyde forming reaction specifically. The categories of reaction types of the 

first EC level are summarised in Section 5 of ESI. 

 

The binding between substrates and enzymes is a function of the secondary and tertiary 

structures of proteins, i.e. the physiochemical property of constituting amino acids to form the 

peptide chains of the proteins.21 We crawled genes which transcribe and translate into the 

protein of the enzymes from KEGG genes database for all recorded enzymes. KEGG genes 

database also gives the amino acid sequences of the specific gene. One enzyme usually links 

with multiple genes, varied from the cell organism (e.g. human serum albumin (hsa), bacterial, 

etc.), which originally hosts this enzyme. However, the amino acid sequences of the different 

genes are usually close. For example, for MCR – EC 1.2.1.75, two genes are reported: (1) mse: 

Msed_0709, and (2) sto: STK_21710, whilst both genes are linked with identical 357 amino 

acid sequences. For each enzyme, we only included one gene/amino acid sequence to include 

in the dataset. To minimise the biases on the selection from multiple amino acid options to affect 

the model results, the principles to select the gene/amino acid were: to (1) select the reported 

literature sources of the enzyme which were mostly cited, (2) stick to one cell organism if 

possible – hsa. The selected gene names and amino acid sequences chosen for the model are 

given in Section 6 of ESI. 

 

A peptide chain of a protein usually contains 21 types of amino acids, varied from the 

constituting side chain functional groups. ‘X’ denotes unknown amino acid in the peptide. Here 
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we use 22 letters of amino acids to denote the amino acid sequence of enzymes as an enzyme 

language for the transformer model. The specification between the letters and amino acids is 

given in Section 6 of ESI. No segmentation is required for the amino acid sequence – the 

sequence is tokenized letter-wise into the transformer model, see Figure 3b. 

Data Pre-processing 

In this method, a transformer model was trained to predict the correct mapping between 

enzymes and their binding substrate structures. To do this, we collected all one (substrate)-to-

one (product) reactions from KEGG. Note that in this context, reagents are explicitly excluded 

from substrates/products. For example, for the reaction in Figure 2a, NADPH, hydrogen cation 

and NADP+ are regarded as reagents. Also, a great portion of KEGG reactions could not 

produce valid reaction SMILES strings. After filtering these invalid reactions, eventually 3,079 

recorded enzymes and 3,594 linked reactions are included as one-to-one reactions, details 

shown in Section 3 of ESI. This indicates nearly 500 reactions in this reaction set are catalysed 

by promiscuous enzymes. 

 

For all molecules in the reactions, SMILES strings were canonicalised by RDKit to assemble 

the reaction SMILES. To increase the number of reactions in the dataset, for each reaction, all 

molecular canonical SMILES were randomised three times by RDKit to reassemble three 

different reaction SMILES strings. These are reactions containing identical transformations but 

different representations. By adding the randomised reaction SMILES strings, the reaction 

datapoints were quadrupled, and eventually 3,079 enzymes are linked with 14,376 reactions. 

 

The model could not use the full length of all amino acid sequences (maximum length of 1,411), 

since this would significantly increase the requirement for GPUs. Therefore, the amino acid 
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sequences were padded. Most peptide chains of the enzymes have the lengths shorter than 400, 

where the statistics of the peptide chains lengths are shown in Figure S1, ESI. The average 

length of amino acid sequences is 449, whilst the median is 395. The length taken into the model 

input, 600, covers the length of up to 78% of the peptide chains, which is reasonable to retain 

most information. In the enzyme language, we left-padded the first 600 letters of the amino 

acid, and used zero to denote the vacancies from the right-hand side for short sequences. 

 

For both the reaction and enzyme languages, two extra tokens were added to each string – 

‘BOS’ and ‘EOS’, which are the start and finish signals of the two strings to the machine. To 

translate the reaction and enzyme languages into the transformer model, the tokens in both 

languages were converted into numerical indices, based on the one-to-one token-numerical 

index dictionaries of the two languages, shown in Section 4 of ESI. The vectors of numerical 

indices were then able to be processed into the model. 

 

Transformer model structure 

The transformer model is a deep learning neural network that differentiates the weights of each 

part of the input by adopting the mechanism of self-attention.26 It includes the building blocks 

of input/output embedding, positional encoding, encoders and decoders. Details of model 

structure can be found in Vaswani et al.26 and are summarised below. Schematics of the 

transformer model structure are shown in Figure 3c. 

 

The input/output embedding layer intakes token indices in the input/output languages, and 

against each of those indices, an embedding vector is attached. These vectors are initially filled 

with random numbers, and these values are updated while training to capture the intrinsic 

linguistic features of the input/output tokens/indices. Since all tokens/indices in a sentence (i.e. 
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the reaction SMILES and amino acid sequences) are passed into the embedding layer at once, 

the model is not aware of the sequential information of the sentence until positional encoding 

is applied to the embedding vector of each index to capture position by wave frequencies, 

commonly computed by Eq. 5. 

 

In Eq. 5, 𝑝𝑜𝑠 is the position of the index in the sentence, 𝑖 is the index of each of the position 

embedding dimensions, and 𝑑 is the dimension of the embedding layer. 

 

The position encoding of the indices embedding is then fed into multiple encoder and decoder 

units. Each encoder unit consists of a multi-head attention sub-unit and a feed forward sub-unit. 

The multi-head attention sub-unit consists of numbers of parallel scaled-dot attention layers to 

compute three input matrices – keys 𝐾, values 𝑉, and queries 𝑄, and determine the attention of 

each index by Eq. 6, where 𝑑. is the dimension of the key vector 𝐾 to scale the dot product 

𝑄𝐾/.  

 

In Eq. 6, the dot product 𝑄𝐾/ determines the closeness of the keys aligned with the queries. A 

value vector is associated with each key, where the value is multiplied by the softmax 

transformation of the scaled dot product, through which the dot product is normalised, and the 

large components are emphasised. The feed forward unit consists of numbers of deep learning 

neural network layers and computes features of indices, which are then queried by the next 

encoder unit or a decoder unit. 

𝑃𝐸(&1*,2")	 = sin Y
𝑝𝑜𝑠

10000
2"
4
Z Eq. 5 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ^
𝑄𝐾/

_𝑑.
`𝑉 

 
Eq. 6 
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As shown in Figure 3c, a decoder unit is similar to the encoder, but an additional encoder-

decoder attention sub-unit is inserted between the multi-head attention sub-unit and the feed 

forward sub-unit to add related information from features of indices computed from the encoder. 

After a generator unit consisting of a linear layer and a softmax layer, the model eventually 

predicts the amino acid sequence, and gives probability distribution between the actual amino 

acid sequence and the predicted amino acid sequence based on the loss function. The 

transformer model was implemented in PyTorch package at the platform of Google Colab. 

 

Results and Discussion 

Reaction prediction results and visualisation 

All predicted reactions and all recorded reactions producing the target product t are combined 

into the local database. From the 18,682 molecules and 3,079 single-step reactions parsed from 

KEGG database, with one iteration of the reaction prediction workflow, 32,990 reactions were 

predicted, among which 20,568 reactions were either redundant (predicted reactions being 

previously reported within KEGG or Reaxys records), or not able to use the proposed method 

to find suitable enzymes to catalyse. After removing the redundant and invalid reactions, 12,422 

predicted reactions were added into the local reaction database.  

 

The inferred transformations were applied to known substrates, and reaction product molecules 

were inferred with given canonical SMILES strings. By comparing these predicted reaction 

products with existing molecules in KEGG and Reaxys datasets, it is shown that 7,827 

molecules were not found in either.  We know that the molecule datasets that we compiled from 

KEGG and Reaxys are not comprehensive in the coverage of all known molecular space. Some 

of these molecules could be found in other knowledge bases, such as CAS47 and PubChem,48 
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or elsewhere in literature and patents. These reaction products from predicted reactions might 

include some molecules never reported, but they were not de novo designed molecules, i.e. the 

rationally designed molecular structure based on their functionalities.49 The purpose for this 

step was not to design new molecules, but apply generalised bio-catalytic transformations to 

existing metabolic substrates. This may lead to some unknown products or intermediates, 

having potential to be used for drug discovery, or to synthesise some target drug molecules in 

the future. Here we do not claim that this method is recommending new products / substrates 

with a high degree of confidence in their practical usefulness or synthesizability.  

 

An example of predicted reactions is shown in Figure 4a, and the atoms of main reactant and 

product of the reactions are mapped and shown in Figure 4b, by a chemically agnostic attention-

guided reaction mapper, namely, RXNMapper.50 The analogue reaction is the glycosylation of 

4-hydroxymandelonitrile, catalysed by hydroxymandelonitrile glucosyltransferase, to produce 

taxiphyllin, where the glycosyl group in taxiphyllin is transferred from cofactor UDP-glucose. 

The reaction centre of the analogue reaction is an oxygen atom, marked as “O:4” at the analogue 

reaction atom mapping. Similarly, the predicted reaction is the glycosylation of mandelonitrile 

to produce prunasin. The reaction centre and glycosyl group transformation remains identical 

as the analogue reaction, except both the predicted reactant and product are lack of a hydroxyl 

group, marked as ‘O:20H’ at atom mapping, attached to the benzene ring. Although it is 

suspected the electron donation of the conjugated hydroxyl group “O:20H” might slightly affect 

the adjacent atom environment near the reaction centre, the original publication51 of the 

analogue reaction suggests that in this transformations, most functional groups could possibly 

substitute the phenyl group attached to the carbon atom “C:3”, for example, a 3,4-

dihydroxylphenyl group (i.e. the addition of a hydroxyl group on the carbon atom “C:18”). This 

enhances the feasibility of the predicted reaction. 
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Figure 4. An example of a reaction predicted by the workflow described in Figure 1: (a) 

schematics of the analogue reaction, glycosylation of 4-hydroxymandelonitrile, and the 

predicted reaction, glycosylation of mandelonitrile; (b) atom mapping of the main reactant and 

main product of the reactions by RXNMapper;50 (c) the predicted amino acid sequence of the 

catalyst for the predicted reaction by the trained transformer. 

 
The biological reaction space appears to have a complicated structure. To understand the 

comprehension of the biological reaction space with the addition of the predicted reactions, 

biological reactions were visualised by a t-distributed stochastic neighbour embedding (t-SNE) 

(c) Predicted reaction SMILES tokens
BOS N # C C ( O ) c 1 c c c c c 
1 > > N # C [C@H] ( O [C@@H] 1 
O [C@H] ( C O ) [C@@H] ( O ) 
[C@H] ( O ) [C@H] 1 O ) c 1 c c 
c c c 1 EOS

Predicted AASEQ tokens
BOS M A M Q L R S L L L C V L L 
L L L G F A L A N T S A S K T D 
R P I V C A T L N R T D F D S L 
L P F G T A T A S Y Q L E G A A 
K L D R R G P S I W … (528 AAs)

AASEQ tokens of EC 3.2.1.118
BOS M A M Q L R S L L L C V L L 
L L L G F A L A N T S A S K T D 
R P I V C A T L N R T D F D S L 
V P G F T F G T A T A S Y Q L E 
G A A K L D G R G P … (544 AAs)

Levenshtein distance: 47

(b) Atom mapping of analogue reaction (KEGG reaction R02709)

Atom mapping of predicted reaction

Predicted reaction

Hydroxymandelonitrile Glucosyltransferase

EC 2.4.1.178

UDP-glucose UDP

4-Hydroxymandelonitrile Taxiphyllin

(a) Analogue reaction (KEGG reaction R02709)

UDP-glucose UDP

Mandelonitrile Prunasin

A promiscuous enzyme
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diagram,52 which is a non-linear dimensionality reduction technique to convert similarities 

between data to joint probabilities and minimise the KL divergence (Eq. 7) between the 

probability distribution. t-SNE locates reactions into lower dimensional map. Here we chose to 

visualise reactions in two dimensions. 

 

To encode molecules and reactions for visualisation, we evaluated two reaction fingerprints to 

convert molecular structures into numerical representations, which are extended-connectivity 

fingerprints (ECFP),53 and reaction bidirectional encoder representations from transformers 

fingerprint (BERT FP).54 ECFP is a topological molecular fingerprint to convert the circular 

structure of neighbourhood of each non-hydrogen atom into bytes. In this work, the radius of 

the fingerprint was three (ECFP3), which detected the multiple layers of the neighbourhoods 

from the molecule centre, and all molecules were converted into 256 fixed-length bit string to 

reduce the chance for bit collision. To represent the enzymatic transformation via a reaction, 

the ECFP3 of reaction product was subtracted with that of substrate to create 256 bits as the 

reaction fingerprint. BERT FP uses a trained BERT transformer model,54 learned from USPTO 

reaction dataset,55 which covers comprehensive reaction types, to encode reaction SMILES into 

256 numerical values. The KEGG curated reactions were grouped by the first level of 

corresponding enzyme EC numbers, whilst the predicted reactions were grouped by that of most 

recommended enzyme from transformer.  

 

For t-SNE implementation, parameters were set after tuning: perplexity, the number of nearest 

neighbours in the algorithm was set to 30, early exaggeration, which controls the tightness of 

clusters in the space, was set to 12, and learning rate was set to 100.  
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After 1,000 iterations of computing t-SNE from the combined curated reactions and predicted 

reactions dataset, the KL divergences (Eq. 7) for ECFP and BERT FP are 2.58 and 0.82 

respectively. BERT FP better clusters the metabolic reactions space, where the t-SNE biological 

space is shown in Figure 5. That by ECFP, shown in Figure S2 in ESI, resembling a ‘ball’ with 

points approximately equidistant from its nearest neighbours, indicates the failure of 

digitalisation of reactions into ECFP fingerprints. Figure 5a shows most reactions, including 

curated and predicted reactions are well separated at different regions in the two-dimensional 

space, except EC1 and EC2 reactions are partially dispersed into other regions. This is likely 

due to the large coverages of the EC1 and EC2 reactions, which cover oxidation/reduction 

reactions, and reactions transferring functional groups respectively. These reactions have 

possible intersections with other reaction types. Moreover, most predicted reactions are located 

near the regions of their reaction clusters. This assures the feasibilities of predicted reactions. 

 

To better understand the biochemical space, EC1 reactions were zoomed in and clustered based 

on the second level of EC numbers, as shown in Figure 5b. Figure 5b shows that most reaction 

types are still able to be separated into different clusters but with fusion into other reaction 

types. This indicates the BERT FP and t-SNE combined techniques cluster reactions, but are 

not able to interpret reactions into specific levels. Two examples of gathering scatters are shown 

in Figure 5b, which interprets the common rules of the reactions in the corresponding gathering 

scatters – red dots and green crosses: oxidation, and esterification of alcohols respectively, 

falling into the reaction categories of EC1.1 and EC1.8. 
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Figure 5. Two-dimensional t-SNE diagram to visualise biochemical reaction space from KEGG 

curated reactions and predicted reactions using BERT fingerprint. All KEGG curated reactions 

are shown with dot (·), whilst predicted reactions are shown with cross (×). (a) Reactions 

clustered by the first level of EC numbers; (b) ‘zoom in’ of EC1 reactions clustered by the 

second level of EC numbers, with two examples interpreting reaction rules of gathering scatters. 

The codes (for example, ‘c1b’) inside molecules indicate atom environments defined by Hattori 

et al.37 

 

Enzyme promiscuity prediction 

The enzyme promiscuity prediction assigns most suitable enzymes in the database to predicted 

reactions based on a trained transformer model. The model and prediction results are shown 

below.  

 

Transformer model training and assessment 

The reaction – enzyme dataset (quadrupled by randomised SMILES technique, as described 

above) was split into training, validation and test datasets by the ratio of 7:2:1. Since the reaction 

– enzyme pairs were not evenly distributed in terms of its enzyme EC categories (first level of 

EC number), the dataset was deliberately split by its EC categories to include same ratio of 

reaction types into each of training, validation and test datasets. A loss function of pairwise 

Kullback-Leibler (KL) divergence56 was used to measure the probability distribution of the true 

output language encoding 𝑦(+56 and computed one 𝑦&+64, as shown in Eq. 7. 

 

𝐾𝐿)𝑦&+64 , 𝑦(+564 = 𝑦(+56 ∙ log
𝑦(+56
𝑦&+64

 

 

Eq. 7 
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Comparison of validation losses was used to tune the hyperparameters for the transformer 

model, where the training and validation results for different hyperparameter settings are shown 

in Figure 6.  

 

Figure 6. (a) Training and (b) validation KL divergence losses of the transformer model based 

on different parameter settings. The details and results of model settings for the training trials 

are shown in Table S2, ESI. 

  
 

From Figure 6 and Table S2, it is noticed that in most trials, validation loss is consistently lower 

than training loss during training epochs. Some of them are due to the use of dropout, where 

dropout randomly freezes neurons to penalise model variance during model training, and this 

only has effects on the training loss. This is also possibly due to the manual split of training and 

validation data based on EC reaction types, where the validation data is possibly naturally less 

noisy.  

 

The trials #3 and #4 attempted cross entropy as loss function, which both have slight descents 

in the beginning and sudden drops after 500 epochs. The model parameters learned slowly due 

to the use of cross entropy, which fell into certain intervals in the beginning, and were only able 
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to learn properly from 500 epochs. The final validation loss after 2000 epochs for trails #3 and 

#4 are 0.28, and 0.25 respectively. However, for the convenience of visualisation, only first 

1000 epochs are shown in Figure 6. 

 

The final settings for the transformer were chosen from the lowest validation KL divergence 

loss after 1,000 or 2,000 epochs, where some trials were early terminated to save computational 

costs when training and validation losses become stable. Dimension of embedding for the 

indices was 128. Six encoder and decoder units were assembled. In each encoder and decoder 

unit, the number of hidden neurons for multi-head attention was four, and there are four hidden 

layers and the dimension of the feed forward unit in each layer was 128 with dropout rate of 

0.1. Adam optimiser was used to update model parameters with a varied learning rate 

introduced from Vaswani et al.26 The batch size was 16 to minimise GPU memory requirement 

(the length of enzyme sentence could reach max 600 indices, which converts to a large tensor 

after encoding). The training loss and validation loss for the final trained transformer model 

described above are 0.068 and 0.029 respectively, and the model was assessed by the KL 

divergence loss of the test dataset, 0.035, which proves the model accuracy at unseen datapoints. 

It is noticed that with the current model setting, the number of trainable parameters in the model 

is 343,064, with 200,064 from the encoders, 267,136 from the decoders, 6,400 from the 

embeddings, and 1,560 from the final generator, whilst the total number of training data is 

10,063 (70% of 14,376 reactions, quadrupled from randomised reaction SMILES). However, it 

is normal in a transformer model to have training data much less than trainable parameters, for 

example the Molecular Transformer with 65 million trainable parameters and 0.48 million 

datapoints.44 
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The predicted amino acid sequences are compared with the predicted amino acid sequence of 

enzyme by Levenshtein distance.57 The algorithm of Levenshtein distance is described in Eq. 

8, which determines the minimum steps of edits between two strings, and by edits, it means the 

insertion, deletion or substitution of a single character in a string. In Eq. 8, the Levenshtein 

distance 𝑙𝑒𝑣7,8 between two strings 𝑎 and 𝑏 is a function of their terminal character postion 𝑖 

and 𝑗, respectively. 

 

An example of the final transformer model result from the test dataset is shown in Figure 3b, 

which compares the predicted amino acid sequence and the actual amino acid sequence for 

tannase (EC 1.14.13.243), catalysing KEGG reaction R03608 of oxidation of o-cresol to 2,3-

dihydroxytoluene. The predicted amino acid has longer length than the actual one, which are 

340 and 356 respectively, and the Levenshtein distance between the two sequences are 66. The 

comparison between all predicted amino acid sequence and the actual amino acid are shown in 

Section 9 of ESI. The mean and median of Levenshtein distance between the amino acids are 

64.6 and 62 respectively, which indicates in average, approximately 65 edits are required to 

convert a predicted amino acid sequence into the actual one, where the average amino acid 

sequence length is 414. 

 

Transformer model prediction 

To pair a predicted reaction with possible enzymes, a trained transformer computes the 

predicted amino acid sequences, which is compared with all available enzymes in the pool.  

 

𝑙𝑒𝑣7,8(𝑖, 𝑗) =

⎩
⎪
⎨

⎪
⎧max(𝑖, 𝑗) 																																																												𝑖𝑓 min(𝑖, 𝑗) = 0,

min p
𝑙𝑒𝑣7,8(𝑖 − 1, 𝑗) + 1
𝑙𝑒𝑣7,8(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣7,8(𝑖 − 1, 𝑗 − 1) + 197!:8#;
																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Eq. 8 
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A Levenshtein distance threshold of 64.6 - the mean value in test dataset, between the predicted 

sequence and available sequences was used to measure the possibility of enzyme promiscuity. 

For a given predicted reaction, possible promiscuous enzymes below this threshold were sorted 

by Levenshtein distance to rank the likelihood to catalyse the predicted reaction. Reactions with 

no enzyme suggested were removed from the predicted reaction dataset. The transformer model 

prediction for the predicted reaction example of glycosylation of mandelonitrile is shown in 

Figure 4c. From the final trained model, an amino acid sequence with length of 528 is predicted 

for the predicted reaction SMILES. Using the Levenshtein distance to filter the invalid 

enzymes, only enzyme prunasin hydrolase (EC 3.2.1.118) falls into the possible promiscuous 

enzyme list, with Levenshtein distance of 47. Prunasin hydrolase originally also catalyses the 

glycosylation of mandelonitrile, but with a cofactor D-glucose. This suggests that, with an 

identical substrate but slightly putative reaction mechanism, the enzyme could possibly catalyse 

the predicted reaction. 

 

Although the transformer model gives a specific amino acid sequence for a predicted enzyme, 

at this stage it is not suggested to directly evolve an enzyme based on the exact sequence. This 

is due to the model prediction uncertainty, which causes the distance of the predicted amino 

acid sequence from ground truth. To the best of our knowledge, this could only be possible with 

the expansion of synthetic biological reaction data to a much larger size, where a more 

comprehensive transformer could be trained to identify the intrinsic mechanisms between 

reactions and amino acid sequences by attention units of the transformer. However, by 

comparing the Levenshtein distance, this novel approach helps to: (1) calibrate the feasibility 

of predicted reactions, and (2) reduce the search scope for promiscuous enzymes in a pool, and 

therefore increase the efficiency of exploration of the biochemical reactions space. 
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Conclusions 

A workflow was developed to explore the sparse domain of biochemical transformations and 

extends on our previous work5 of hybrid chemical and biological reaction networks. Literature-

excerpted biological reaction data recorded in KEGG database was mined. The biochemical 

reactions database size (specifically, the one substrate-to-one product wiring reactions) was 

amplified four times by predicting possible biochemical reactions from the KEGG reactions. 

From a molecular graph method, a reaction centre was identified for an analogue reaction, and 

the functional transformation at the reaction centre was suggested to valid similar compounds 

to predict not reported reactions.  

 

To catalyse the novel reactions, instead of designing new enzymes, which was believed to be 

uncertain and time-consuming, we focused on enzymatic promiscuity, which expands the 

specificity of the native enzymes to putative substrates. A deep learning transformer model 

translating the languages of reaction SMILES and enzyme amino acid sequences of enzymes 

was trained to learn from the reaction transformations and the protein structures of enzymes, 

and subsequently suggest on promiscuous enzymes to bind with the substrates in the predicted 

reactions. The proposed transformer model helped calibrate the feasibility of the predicted 

reactions and reduce the search scope for promiscuous enzymes in the pool. Eventually, 12,422 

novel reactions were predicted, and promiscuous enzymes were suggested to increase the 

confidence to synthesise these reactions. The populated biological space was also visualised by 

t-SNE to understand reaction clustering. 

 

For future work, the populated biological space would be merged into the hybrid organic 

chemical and synthetic biological reaction network, and we would investigate the added values 
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of the populated biological space to guide synthetic route planning of valuable pharmaceutical 

molecules. 
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S1 Cofactors and free metabolites in KEGG database  

The cofactors and free metabolites are adopted from Blaβ et al.1 A full list of these molecules 

can be found in ‘Cofactors and free metabolites’ spreadsheet of the Excel file ‘SI.xlsx’. These 

molecules were manually curated from Kyoto Encyclopaedia of Genes and Genomes database 

(KEGG) database. In total, it has 34 cofactors and 123 free metabolites (157 in total). The 

corresponding Reaxys molecule IDs are also listed in the table if these molecules can be found 

through Reaxys web interface. 

 

S2 KEGG molecule similar compounds 

Using SIMCOMP method,2, 3 all similar compounds with a chemical structure similarity 

indicator Jaccard coefficient JC ≥ 0.85 for KEGG molecules were recorded, and the full list 

can be found in ‘Similar compounds of KEGG mols’ spreadsheet of the Excel file ‘SI.xlsx’. All 

molecules were given by their KEGG IDs and SMILES strings. 

 

S3 KEGG One-to-one wiring reactions 

The full list of 3,594 one-to-one wiring reactions with 3,079 recorded enzymes is shown in the 

‘One-to-one wiring reactions’ spreadsheet of ‘SI.xlsx’. All reactions are given with their 

reaction IDs/SMILES, reactants IDs/SMILES and products IDs/SMILES. All enzymes were 

given with their EC numbers, whilst the details of enzymes including their name, class names, 

pathways and etc. are shown in ‘Enzyme details’ spreadsheet of ‘SI.xlsx’. In the columns of 

‘KEGG reaction’, the enzymes catalysing more than one enzyme are identified as promiscuous 

enzymes in KEGG Enzyme database. 
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S4 Reaction SMILES tokenisation rules 

The tokenisation of reaction SMILES follows the atom-wise rules to split reaction SMILES 

strings into tokens. The patterns used to split strings are discussed in Schwaller et al.,4 and it is 

listed as follows:  

“(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-

9])”. 

 

An example of tokenisation of reactions can be found in Figure 3a. 

 

The one-to-one token-numerical index dictionaries of reaction SMILES, and enzyme amino 

acid sequences are shown in ‘SMILES token dictionary’ and ‘AASeq token dictionary’ 

spreadsheets of ‘SI.xlsx’. 

 

S5 First level of EC classification 

Following the enzyme commission (EC) nomenclature rules5, all enzymes can be specified by 

four levels, based on the reactions catalysed respectively. The first level of the EC number 

represents the major types of the reactions catalysed, and is categorised into seven classes 

(summarised in  

Table S1). 

 
Table S1 Summary of first level of EC classification. 
Class Name Summary Typical reaction 

EC1 Oxido/ 

reductases 

Catalyzation of oxidation/reduction 

reactions, transfer of electrons. 

A+BH→AH+B, 

A→AO 
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EC2 Transferases Transfer of functional groups (generally 

a glycosyl group or a methyl group) from 

a donor compound to an acceptor 

compound. 

A+BC→AB+C 

EC3 Hydrolases Hydrolysis of C-O, C-N, C-C and some 

other bonds to form two products from 

one substrate. 

AB→AH+BOH 

EC4 Lyases Non-hydrolytic cleavage of C-O, C-N, 

C-C and some other bonds. Addition or 

removal of functional groups from 

substrates. 

RCOCOOH→RCOH, 

A-X+B-Y→X=Y+A-B 

EC5 Isomerases Geometric or structural changes 

(isomerization) within one molecule. 

ABC→CBA 

EC6 Ligases Combine two molecules by hydrolysis of 

a diphosphate or triphosphate bond. 

A+B+ATP→AB 

EC7 Translocases Assisting movements of molecules 

through membranes. 

N/A 

 
 

S6 Selected genes and amino acid sequences 

The protein amino acid sequences of the enzymes are crawled from KEGG genes database. The 

selected genes and their respective amino acid sequences of the peptide chains translated from 

the genes are shown in ‘Amino acid sequences’ spreadsheet of ‘SI.xlsx’. The lengths of the 

given peptide chains are also given in the last column of the spreadsheet. Statistics of the peptide 

chains lengths are show in Figure S1. The average length of amino acid sequences is 449, whilst 
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the median is 395. The length taken into the model input, 600, covers the length of up to 78% 

of the peptide chains, which is reasonable to retain most information.  

 
Figure S1 Statistics of amino acid lengths of the peptide chains, grouped by the seven first 
level of enzyme EC numbers. 
 
The 21 amino acid types are differentiated from their side chain functional groups. The letter 

denotations of amino acid types in the amino acid sequences are shown as follows:  

 

A: alanine, C: cysteine, D: aspartic acid, E: glutamic acid, F: phenylalanine, G: glycine, H: 

histidine, I: isoleucine, K: lysine, L: leucine, M: methionine, N: asparagine, P: proline, Q: 

glutamine, R: arginine, S: serine, T: threonine, V: valine, W: tryptophan, Y: tyrosine, X: 

unknown amino acid, O (or 0): vacancy. 

 

S7 t-SNE visualisation of the biological reaction space 

The t-SNE visualisation of the biological reactions by extended-connectivity fingerprints is 

shown in Figure S2. The visualisation resembles a ‘ball’ with points approximately equidistant 
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from its nearest neighbours, which indicates the failure of digitalisation of reactions into ECFP 

fingerprints. 

 

 
Figure S2 Two-dimensional t-SNE diagram to visualise biological reaction space from 
KEGG curated reactions using ECFP3 fingerprint. 
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S8 Transformer Model Result 

The details of transformer model setting trials for the purpose of hyperparameter tunings, and their corresponding training and validation loss after 

1000 epochs and test set KL divergence loss are shown in Table S2. 

Table S2 Transformer model setting trials details 
Trials Dimension of 

embeddings 

Dimension of 

feedforward 

units 

Dropout Number of 

hidden neurons 

for multihead 

attenton 

Number of 

hidden layers 

Batch 

size  

Loss function Training 

loss 

Validation 

Loss 

1 32 32 0 4 4 16 KL divergence 1.50 1.03 

2 64 32 0 4 4 16 KL divergence 1.20 0.80 

3 128 64 0 4 4 16 Cross entropy 1.12 0.48 

4 128 64 0.1 4 4 16 Cross entropy 1.45 0.34 

5 128 64 0.1 4 4 16 KL divergence 0.068 0.029 

6 128 64 0.2 4 4 16 KL divergence 0.90 0.08 

7 128 64 0 4 4 16 KL divergence 0.85 0.15 
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The transformer model predicted amino acid sequences from the test dataset are compared with 

the actual amino acid sequences of the enzymes in ‘model amino acid sequences’ spreadsheet 

of ‘SI.xlsx’, where Levenshtein distances between sequences are also given. 
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