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ABSTRACT: Bicyclo[2.1.1]hexanes (BCHs) are becoming ever 
more important in drug design and development as bridged scaf-
folds that provide underexplored chemical space, but are difficult 
to access. Here a novel silver-catalyzed dearomative [2π+2σ] cy-
cloaddition strategy for the synthesis of indoline fused BCHs from 
N-unprotected indoles and bicyclobutane precursors is described. 
This strain-release dearomative cycloaddition operates under mild 
conditions, tolerates a wide range of functional groups and is capa-
ble of forming BCHs bearing three quaternary carbon centers with 
up to 99% yield, a longstanding challenge in the field. In addition, 
a scale-up experiment and the synthetic transformations of the cy-
cloadducts further highlighted the synthetic utility. 

To improve the odds of drug development success through chemi-
cal synthesis, a new trend has emerged to increase the fraction of 
sp3 (Fsp3)-hybridized carbons of potential drug candidates (so-
called Escape-from-Flatland concept).1 To realize this concept, 
both the bioisosteric substitution of aromatic ring with a saturated 
analogue2 and dearomatisation strategy,3 based on decades of sci-
entific research, proved to be effective (Scheme 1a, left).  

In this context, the preparation of bridged bicyclic molecules as 
benzene bioisosteres has flourished. For example, bicyclo[1.1.1]-
pentane (BCP)4,5 and bicyclo[3.1.1]heptane (BCHep)6 derivatives 
have been successfully employed as para- and meta-substituted 
benzene mimetics, respectively. Besides these, substituted bicy-
clo[2.1.1]hexanes (BCHs) are emerging three-dimensional (3D) bi-
oisosteres for ortho- and meta-substituted benzenes.2b,7 Conse-
quently, considerable effort has been devoted to the development 
of efficient methods for the synthesis of these rigid bridge rings.7-

11 Among those methods for synthesizing BCHs, the most common 
and well-known process is intramolecular crossed [2+2] cycload-
dition of 1,5-dienes.8b-e Alternatively, the intermolecular [2π+2σ] 
cycloaddition of 2π-components and bicyclo[1.1.0]butanes 
(BCBs)9 is also an efficient method for making BCHs7b,10 and het-
ero-BCHs.11 In 1966, Blanchard has done pioneering works on the 
intermolecular BCB-alkene cycloadditions enabled by cleavage of 
the strained central C−C bond of BCB via thermolysis.10a More re-
cently, in 2006 Wipf has described the merit of intramolecular ther-
mal conversions of BCBs with alkenes for the synthesis of complex 
tricyclic compounds.10c Apart from thermally induced cycloaddi-
tions of BCBs, the applicability of these [2π+2σ] cycloadditions 
has been greatly expanded in the past two years with the use of 

other novel strategies, including Glorius10d and Brown’s10e photo-
cycloaddition protocols enabled by triplet energy transfer, 
Procter's7b SmI2-catalysed redox reaction, and Li10f and Wang’s10g 
pyridine-boryl radical catalysis. Moreover, oxygenophilic Lewis 
acid catalyzed [3+2] reactions of BCBs with ketenes, imines and 
aldehydes are reported by Studer,10h Leitch,11a and Glorius11d re-
spectively (Scheme 1b). Despite the significant advances made in 
this area for the synthesis of BCH derivatives, such intermolecular 
cycloadditions of BCBs have been mainly restricted to general al-
kenes and electron-deficient two-atom components. The corre-
sponding reactions with electron-rich two-atom components are 
relatively rare.10e,f Therefore, discovery of new catalytic system for 
the cycloadditions of BCBs with electron-rich 2C synthons for fur-
ther enrichment of the structural diversity of the valuable BCH 
products are still highly desirable.  

Indole and indoline derivatives are ubiquitous structural motifs 
found in an array of bioactive natural compounds (e.g., MK-0524, 
paspaline, polyveoline and other cyclopenta[b]indole/indoline al-
kaloids).12 Moveover, the 2D aromatic heterocycle indole repre-
sents a privileged structure of numerous synthetic drug molecules. 
Recently, dearomative transformation of indoles, such as the 
dearomative 1,3-dipolar cycloadditions,13  gained more and more 
research interest. Because it offers new possibilities to go from 2D 
aromatic rings to more architecturally more complex 3D structures.  

Along these lines and on the basis of our experience in strained 
rings chemistry,14 we envisioned that the combination of cycload-
ditions of BCBs with dearomatisation strategy would further ex-
pand sp3-rich chemical space for drug discovery (Scheme 1a, right). 
Herein we report a silver catalyzed dearomative [2π+2σ] cycload-
ditions of indoles with bicyclobutanes that forms fused BCHs 
(Scheme 1d). Several points are noteworthy: (1) the reaction yields 
fused BCHs with three quaternary carbon centers under mild reac-
tion conditions. These structures would otherwise be difficult to ac-
cess; (2) despite the fact that the [2π+2σ] cycloadditions of BCBs 
with alkenes have been disclosed, the dearomative variants are 
rarely investigated,9j and 10d,i due to severe challenges associated 
with breaking the increased stabilization conferred by aromaticity. 
As a rare example, Glorius and co-workers reported an elegant pho-
tochemical [2π+2σ]-cycloadditions of indoles with monosubsti-
tuted BCBs in the last year. However, the substrate scope was lim-
ited to N-protected indoles bearing an electron-withdrawing group 
at the C2 or C3 position (Scheme 1c);10d (3) BCBs easily undergo 
silver catalyzed rearrangements to corresponding dienes by cleav-
age of the C–C edge bonds in BCBs. 
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Scheme 1. Dearomative [2π+2σ] Cyloadditions of BCBs and its scientific context 
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By contrast, direct activation of the central bond of BCBs by car-
bophilic silver catalysis is still scarce;15 (4) Besides these, the other 
problem that needs to be solved is how to suppress the side reac-
tions including the competitive bicyclobutane-to-cyclobutene 
isomerization11a and the ring opening of BCBs.16 

Optimization studies began with the cycloaddition of 1,3-disub-
stituted BCB ester 1a with 2-methyl-1H-indole 2a. Upon screening 
a series of reaction parameters, the desired [2π+2σ]-cycloadduct 
3aa was generated in 82% isolated yield when 1a (1.0 equiv) and 
2a (2.0 equiv) were treated with 5 mol% AgOTf in CHCl3 at 0 oC 
(Table 1, entry 1). The evaluation of ratios of the starting materials 
showed that the use of onefold excess of 2a proved efficient for this 
transformation (entry1 versus entries 2−3). The reactions with 
commonly used Brønsted and oxygenophilic Lewis acids including 
TfOH, NHTf2, Ga(OTf)3, Sc(OTf)3, FeCl3, AlCl3 and others failed 
to give the cycloadduct 3aa or afforded desired product with poor 
yield (<8% NMR yield) (not shown; see the Supporting Infor-
mation for the complete set of optimization data). The survey of 
silver salts revealed that the utilization of AgBF4, AgSbF6, AgClO4 
and AgSO3CH3 all gave inferior outcomes (entries 4−7). The sol-
vent also had a substantial effect on the product distribution but no 
improvement over CHCl3 was seen (entries 8−9). Lowering the 
temperature to 0 oC (entry 9 versus 10) was crucial to suppress the 
competitive side reactions, such as the decomposition of BCB 1a 
into cyclobutene 4a and the nucleophilic opening of BCB. 

With the optimal reaction conditions determined, we first inves-
tigated the scope of BCBs 1 for this dearomative [2π+2σ] cloaddi-
tions (Table 2). This protocol is amenable to a variety of 1,3-disub-
stituted BCB esters, including methyl (1a), ethyl (1b), tert-butyl 
(1c), benzyl (1d) and phenyl (1e) esters. Apart from BCB esters, 
Weinreb amide derived BCB 1f, which provides a potential handle 
for further downstream modifications, was compatible, giving the 
corresponding pentasubstituted BCHs in reasonable yield. As ex-
pected, ketones (1g-1i), which have stronger electron-withdrawing 
property than esters and amides, resulted in higher activity (90-99% 
yield) for the [2π+2σ] cloadditions. The reaction with monosubsti-
tuted BCB (1r and 1s) did not afford the cyclized products. Subse-
quently, an array of substituents at the aromatic ring of BCB esters  

 

Table 1. Selected Examples of the Optimization of the 
Dearomative [2π+2σ] Cyloadditionsa  

 

entry deviation from standard conditions 

 

yield (%)b 

3aa 4a 

1 none 84 <2 

2 1a (2.0 equiv), 2a (1.0 equiv) 69 2 

3c 1a (1.2 equiv), 2a (1.0 equiv) 56 0 

4c,d AgBF4 instead of AgOTf 48 8 

5c,d AgSbF6 instead of AgOTf 25 4 

6c,d AgClO4 instead of AgOTf 34 2 

7c,d AgSO3CH3 instead of AgOTf 0 0 

8c,d AgBF4 instead of AgOTf in CH2Cl2  38 5 

9c,d AgBF4 instead of AgOTf in toluene 25 3 

10c,d,e AgBF4 instead of AgOTf in toluene 14 7 
a The reactions were performed with 1a (1.0 equiv), 2a (2.0 
equiv) and AgOTf (5 mol%) in CHCl3 at 0 °C for 48 h. b NMR 
yield with CH2Br2 as an internal standard. c Reaction time: 12 h. 
d 1a (1.2 equiv) and 2a (1.0 equiv) were used. e run at 25 °C. 

 
have been examined. The reaction of para-substituted phenyl bicy-
clo[1.1.0]butanes with different substituents on the aryl ring, in-
cluding alkyl (1j), bromo (1l), fluoro (1m) and trifluoromethyloxy 
(1k) which are popular in drugs and in agrochemicals, proceeded 
with good efficiency (3ja−3ma); Furthermore, BCBs with substit-
uents at the meta-position of the aryl ring were tolerated under the 
current conditions, resulting in the formation of the aimed fused 
BCHs in moderate to good yields (3na−3qa). 
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Table 2. Survey the Scope of BCBsa  
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The scope and generality of this dearomative [2π+2σ] cload-
ditions in terms of indole substitution with representative BCBs 
(1a and 1i) is summarized in Table 3. This method is amenable 
to a series of 2-methyl-1H-indoles bearing different R1 substit-
uents, including chloro (2b and 2e), alkyl (2c, 2g and 2h), 
bromo (2d) and fluoro (2f) groups at the C4−C6 positions of 
indoles, and led to the corresponding fused BCHs in moderate 
to excellent yields (54−85%) as single cis-fused diastereomers. 
The structure of the products 3ab and 3ac were established by 
X-ray crystallographic analysis.17 The stereochemistry of other 
C2,C3-fused indoline products, which are widely present as 
core structures in a large number of natural products and bio-
logically active molecules,12 were then assigned accordingly. 
Moreover, this efficient dearomatization reaction was not lim-
ited to 2-methyl-1H-indole 2a, its derivatives 2i–n with a vari-
ety of functional groups on R2 moieties, including an alkyl (as 
in 3ai and 3aj), an alkene (as in 3ak), an ester (as in 3al), a silyl 
ether (as in 3am) and an acetal (as in 3an) were also compatible 
with our catalytic system. Again, the utilization of a BCB ke-
tone cycloaddition partner offers a higher yield (92%) to syn-
thesize functionalized BCHs (3id and 3im). 

The reaction proved to be easily scalable and was performed 
on a preparative scale (1.0 mmol) almost without loss in effi-
ciency, furnishing highly decorated BCH 3ia with two quater-
nary carbon centers at the bridgehead positions in 90% yield 
(Scheme 2A). The rich functionalities in the BCHs provide 
many opportunities for further synthetic transformations. Re-
duction of the ester group in 3aa using LiAlH4 provided the pri-
mary alcohol 5 in 88% yield. 3aa can undergo addition reaction 
with Grignard reagent to give tertiary alcohol 6. Hydrolysis of  

Table 3. Survey the Scope of Indolesa  

3

For footnotes a-b, see Table 2. 

 

ester group of 3aa afforded the free carboxylic acid 7. Besides, 
aldehyde formation by the addition of LiAlH4 to Weinreb amide 
3fa gave 8 in 90% yield (Scheme 2B). Moreover, the silyl group 
in 3am could be removed with TBAF to give the primary alco-
hol 9.  Notably, polycyclic pyrrolizidinone derivative 10 and 
pyrrolizidine alkaloid 1118 featuring a bridged ring system can 
be synthesized through intramolecular Ley oxidation and 
Mitsunobu reaction, respectively (Scheme 2C). 

Scheme 2. Scale-Up Synthesis and Synthetic Transfor-
mations 
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To interrogate the mechanism, an array of control experi-
ments were conducted. The aimed reaction did not occur when 
1,2-dimethylindole 2o was employed and 1a decomposed 
(Scheme 3A). When indole 2a was treated with BCB 1a and 
AgOTf in the presence of BHT or 1,1-diphenylethylene,  
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Scheme 3. Mechanistic Experiments 

 

the cycloaddition was not completely inhibited, implying that a 
radical process is not involved in the transformation (Scheme 
3B). To rule out the possibility of cycloadduct formation via the 
intermediacy of cyclobutene, 2a and 4a were subjected to the 
current reaction conditions. However, the desired BCH product 
3aa was not observed, thereby confirming that the reaction was 
not proceeding via the cyclobutene intermediate (Scheme 3C). 
When deuterium-labeled indole 2a-[D] was used, the monodeu-
terated product 3aa with 72% deuteration at 3-position was ob-
tained (Scheme 3D). Though the exact mechanism remains un-
clear at the current stage, preliminary mechanistic experiments 
reveal that a concerted [2π+2σ] pathway enabled by silver ca-
talysis or an indoline C3-Ag intermediate may be involved.19 

In summary, we have developed a platform for dearomative 
[2π+2σ] cycloaddition of N-unprotected 2-substituted indoles 
and bicyclobutanes via silver catalysis. The reaction proceeds 
under mild conditions with high functional group tolerance and 
broad substrate scope. The potential synthetic utility and prac-
ticality of the approach were also highlighted by the scale-up 
experiment and the synthetic transformation of the product into 
other less accessible indoline fused BCHs bearing three quater-
nary carbon centers, including polycyclic pyrrolizidine alka-
loids and functionalized cyclopenta[b]indolines. Given the 
novel reactivity of this cycloaddition and the high demand for 
strained bicyclic scaffolds as bioisosteres, we envision that this 
methodology will have a positive impact in both synthetic and 
medicinal chemistry. Further studies of the mechanism and syn-
thetic applications of this new process are underway. 
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