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Abstract 

High-performance batteries are poised for electrification of vehicles and therefore mitigate greenhouse 

gas emissions, which, in turn, promote a sustainable future. However, the design of optimized batteries 

is challenging due to the nonlinear governing physics and electrochemistry. Recent advancements have 

demonstrated the potential of deep learning techniques in efficiently designing batteries, particularly in 

optimizing electrodes and electrolytes. This review provides comprehensive concepts and principles of 

deep learning and its application in solving battery-related electrochemical problems, which bridges the 

gap between artificial intelligence and electrochemistry. We also examine the potential challenges and 

opportunities associated with different deep learning approaches, tailoring them to specific battery 

requirements. Ultimately, we aim to inspire future advancements in both fundamental scientific 

understanding and practical engineering in the field of battery technology. Furthermore, we highlight 

the potential challenges and opportunities for different deep learning methods according to the specific 

battery demand to inspire future advancement in fundamental science and practical engineering.  

1. Introduction 

To mitigate greenhouse gas emissions and air pollution, next-generation clean energy and sustainable 

fuels are urgent to be developed (1, 2). Over the past few decades, renewable technologies such as 

hydropower, wind power, solar photovoltaics, and bioenergy have gained increasing significance in the 

quest for green electricity. According to a report, the power generated in the Net Zero Scenario has 

increased from 19.8% to 28.7% between 2010 and 2021, with an ambitious goal of 60.9% in 2030 (3). 

Furthermore, the global electric vehicle stock has experienced significant growth, increasing from 11.3 

million in 2010 to 2020, indicating a trend towards electrification for Net Zero Emission transportation 

(4). Additionally, industry-wide cost estimates for battery packs used in electric vehicles have decreased 

by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around 

US$410 per kWh, with the cost of battery packs used by market-leading BEV (Battery Electric Vehicle) 

manufacturers even lower at US$300 per kWh and declining by 8% annually. (5) These trends indicate a 

major transition towards renewable electricity, and electrochemistry is emerging as a powerful tool for 

energy and sustainability, with applications ranging from energy storage (6-12), carbon capture(13-16), 

green energy generation (17-20), and smart buildings (21-26). Among these technologies, battery plays 

an essential role in storing intermittent solar and wind energy for large-scale electrification (27-29). 

The battery is a complex electrochemical system governed by chemical reactions, charge, and ion 

transport in solid and liquid phases, making it challenging to describe with simple physics formula (30). 
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Additionally, the electrode microstructures and electrolyte environment, including transfer number, 

conductivity, and viscosity, significantly impact the battery's performance in terms of charging and 

discharging rates, cycle life, and energy density. Although researchers have made significant progress in 

material synthesis through experiments and first-principle modeling, accurate and versatile prediction 

tools are urgently needed to explore optimal battery performance and reduce EV market prices under 

various scenarios, crossing large time and length scales and different application conditions. 

The rapid development of deep learning (DL) algorithms has stimulated materials discovery by 

combining accurate first-principle simulations, autonomous synthesis, and testing experiments. (31-44) 

DL models can predict electronic, thermodynamic, and mechanical properties of the battery and its 

materials effectively, given a finite number of training datasets generated from experiments and/or 

simulations. Integrating DL models into traditional experiments and simulations reduces the time and 

cost required for discovering and characterizing new electrode/electrolyte materials and additives for 

high-performance batteries, such as large capacity, high cycle life, strong mechanical strength, and 

improved safety. This contributes to the promising trend of electrification. In this review, we first 

elucidate basic algorithms in DL and then review recent applications of DL in electrode and electrolyte 

design. We aim to bridge the gap between the battery design and artificial intelligence (AI) and inspire 

scientific and technological developments in materials science, computer science, and engineering to 

harness the battery's potential for sustainability. 

 

Figure 1. Overview of deep learning enabled battery design. 

 

2. Basic Principles of Machine Learning and Deep Learning 
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We first present a comprehensive overview of the fundamental principles and key concepts for the 

commonly used machine learning (ML) or DL algorithms. Then we will elaborate on their applications in 

electrode and electrolyte design and compare them with traditional design methods in Sections 3 and 4. 

2.1 Supervised Learning Algorithms 

Supervised learning algorithms aim to fit a function which maps the input features into predictions 

based on a training dataset consisting of input-target pairs. In most cases, we assume the relationship 

between the input features and targets is linear. Say we have a training set of independent input 

features 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁} and target labels 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑁}. The relationship between 𝑿 and 𝒚 is: 

𝑦𝑖 = 𝒘𝑇𝒙𝑖 + 𝜖  for  𝑖 = 1, 2, … , 𝑁, 

where 𝒘 is a vector of parameters and 𝜖 is an unobserved noise term. When 𝒙𝑖 is multi-dimensional and 

𝑦𝑖  is one-dimensional, the method is referred to as Multiple Linear Regression (MLR). In a non-Bayesian 

paradigm, our objective is to estimate 𝒘 in such a way that the error between the predicted values 𝑦̂𝑖 

and the target labels 𝑦𝑖 is minimized. To make sure that the trained model generalizes to other data 

points which do not appear in the training set, we can add penalization terms on 𝒘, leading to a 

Penalized Multiple Linear Regression (PMLR) model. It is worth noting that, for MLR, when we set the 

minimization objective to be the squared loss between the predicted values and the target labels, i.e. 

∑ (𝑦𝑖 − 𝑦̂𝑖)𝑁
𝑖=1 , this is equivalent to maximizing the likelihood function 𝑝(𝑿, 𝒀|𝒘) assuming the noise 𝜖 

follows a Gaussian distribution. For PMLR, this is equivalent to maximizing the posterior function 

𝑝(𝒘|𝑿, 𝒀) ∝ 𝑝(𝑿, 𝒀|𝒘)𝑝(𝒘) where 𝐿1 penalization corresponds to assuming a Laplacian distribution on 

𝑝(𝒘) and 𝐿2 penalization corresponds to assuming a Gaussian distribution on 𝑝(𝒘).  

Another supervised learning algorithm we present here is the Support Vector Machine (SVM). Unlike 

MLR which minimizes the prediction error, SVM aims to find the optimal hyperplane which maximizes 

the margin between the vectors of two classes in a binary classification problem (45). Specifically, fitting 

a SVM involves solving the following optimization problem for all 𝑖 = 1, 2, … , 𝑁: 

𝒘∗, 𝑏∗ = arg min
𝒘,𝑏

‖𝒘‖2
2   subject to   𝑦𝑖(𝒘𝑇𝒙𝑖 − 𝑏) ≥ 1, 

where 𝒘 is the normal vector to the hyperplane and 𝑏 controls the offset of the hyperplane to the 

origin. Besides linear SVM, Guyon et al. (46) applied the kernel trick to SVM to construct nonlinear 

hyperplanes. Furthermore, Drucker et al.(47) proposed Support Vector Regression (SVR), extending SVM 

to regression problems in supervised learning. 

2.2 Probabilistic Algorithms 

As described in Section 2.1, learning a supervised learning model is sometimes equivalent to maximizing 

the likelihood function so that the observed data is most probable. However, this approach often leads 

to excessively complex models and overfitting. To avoid this problem, one common solution is to apply 

Bayesian treatment, which gives us a probabilistic model and automatically determines its complexity 

(48). Briefly speaking, with Bayesian learning, we assign a prior distribution on the model parameters 

and then use the observed data to update this prior. For example, to apply Bayesian treatment on the 

Multiple Linear Regression model in Section 2.1, instead of directly fitting the parameters 𝒘, we 

introduce a prior distribution over 𝒘 and 𝜖: 𝑝(𝒘|𝛼) = 𝒩(0, 𝛼−1𝑰), 𝑝(𝜖|𝛽) = 𝒩(0, 𝛽−1) where 𝛼 and 𝛽 

are precision parameters. Using the observed data 𝒟 = {𝑿, 𝒚}, we can calculate the posterior 
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distribution 𝑝(𝒘|𝒟, 𝛼, 𝛽) ∝ 𝑝(𝒟|𝒘, 𝛼, 𝛽)𝑝(𝒘|𝛼) and make inference on a new data point 𝒙∗ via the 

predictive posterior below: 

𝑝(𝑦∗|𝒙∗, 𝒟, 𝛼, 𝛽) = ∫ 𝑝(𝑦∗|𝒙∗, 𝒟, 𝒘)𝑝(𝒘|𝒟, 𝛼, 𝛽)𝑑𝒘, 

which not only estimates the value of 𝑦∗ but also gives its uncertainty. Such Bayesian treatments can 

also be applied to other types of models such as Logistic Regression and Generalized Linear Models 

(GLM).  

Another type of probabilistic model is the Gaussian Process (GP) which is frequently used for regression 

tasks. By definition, a GP is a collection of random variables, any finite number of which have a joint 

Gaussian distribution (49). The working principle of GP is similar to the Bayesian linear models 

mentioned above, where we first assume a GP prior by specifying the mean (in most cases, we assume 

zero mean) and covariance functions and then fit this prior to the observed data by maximizing the 

marginal likelihood with respect to its parameters. Some commonly used covariance functions include 

squared exponential (SE), Matérn, rational quadratic (RQ), etc. In practice, GP can be effectively utilized 

to incorporate prior information into functions or integrated with DL models to improve their predictive 

performance. (50) 

Additionally, GP is often used as a surrogate model for Bayesian optimization along with an acquisition 

function. To give a concrete example, say we want to learn a function 𝑓: 𝒳 → 𝒴 to the observed data, 

i.e. 𝑦̂ = 𝑓(𝒙), using a supervised learning model with hyperparameters 𝛾. In most cases, 

hyperparameters are specified before training and we need to manually tune them if the model 

performance is unsatisfactory. Here, with Bayesian optimization, we treat 𝛾 as the input to a GP and the 

model performance 𝑠 (e.g. classification accuracy) as its output, i.e. 𝑠(𝛾) ∼ 𝒢𝒫(0, 𝑘(𝛾, 𝛾′)) where 𝑘 is 

the covariance function of GP. After fitting the GP, for each 𝛾, we can sample from this GP to obtain the 

mean performance 𝜇𝑠 = 𝜇(𝛾) and its uncertainty 𝜎𝑠 = 𝜎(𝛾). We then use the acquisition function 𝑔 to 

determine the next set of hyperparameters we want to choose. A common choice of acquisition 

function is the upper confidence bound (UCB) as given below (Some other popular acquisition functions 

include probability of improvement (PI), expected improvement (EI), etc.): 

𝑔(𝛾; 𝜆) = 𝜇𝑠 + 𝜆𝜎𝑠, 

where 𝜆 is an acquisition function parameter that controls the tradeoff between exploration and 

exploitation. Specifically, if 𝜆 is small, then 𝑔(𝛾; 𝜆) will be dominated by 𝜇𝑠, meaning that we favor the 

solutions that have higher model performance. If 𝜆 is large, then 𝑔(𝛾; 𝜆) will be dominated by 𝜎𝑠, 

meaning that we prefer to explore the domains where we are uncertain about the model performance. 

We determine the next set of hyperparameters by maximizing this acquisition function: 

𝛾𝑛𝑒𝑥𝑡 = arg max
𝛾

𝑔(𝛾; 𝜆). 

This process is repeated until we find the best set of hyperparameters 𝛾∗ which yields the best possible 

performance. In most cases, Bayesian optimization is much more efficient than standard 

hyperparameter tuning methods such as grid search. 

2.3 Deep Learning Algorithms 
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An obvious limitation of general machine learning algorithms is that they depend heavily on the 

representations of the given data and usually fail to give useful predictions when the input 𝒙 is intricate, 

such as image, audios, videos, etc.(51) . To address this issue, instead of directly learning a mapping 

from the input space to the output space, it is necessary to learn the representation itself, and this is 

precisely where DL demonstrates its superiority. Over the past few decades, DL models have been 

extensively used in the field of computer vision (52-54), natural language processing (55-57), causal 

inference (58-61), healthcare (62-64), and environmental sciences (65-67). 

2.3.1 Multilayer Perceptrons 

Multilayer perceptrons (MLPs), or feedforward neural networks, are one of the most commonly used DL 

models. It aims to learn a nonlinear functional mapping 𝒚 = 𝑓𝜃(𝒙) which maps an input vector 𝒙 to an 

output representation 𝒚. Here 𝜃 represents the parameters of the neural network. A MLP with 𝐿 layers 

are displayed in Figure 2 below, where the network consists of an input layer, an output layer, and 𝐿 − 2 

hidden layers.  

 

Figure 2. Architecture of a multilayer perceptron 

As shown in Figure 2, the input layer has the same number of units as the dimension of the input vector 

(i.e. 𝐷-dimensional in this case). It takes in the input 𝒙 and passes it to the first hidden layer. Each two 

consecutive hidden layers are connected by a set of weights and biases along with an activation 

function. Specifically, let us denote the 𝑖𝑡ℎ pre-activation and post-activation unit in the 𝑙𝑡ℎ layer as 𝑧𝑖
𝑙  

and 𝑥𝑖
𝑙, respectively. Also, we denote the weights and biases in the 𝑙𝑡ℎ layer as 𝑊𝑖𝑗

𝑙  and 𝑏𝑖
𝑙, respectively. 

We can compute 𝑧𝑖
𝑙  recursively using the following equations: 

𝑧𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ 𝑊𝑖𝑗
𝑙 𝑥𝑗

𝑙

𝑁𝑙

𝑗=1

,   𝑥𝑗
𝑙 = 𝜙(𝑧𝑗

𝑙−1) 

where 𝑁𝑙 is the number of units in the 𝑙𝑡ℎ layer and 𝜙 is a nonlinear activation function. As can be seen 

from the equation above, 𝑊𝑖𝑗
𝑙  and 𝑏𝑖

𝑙 define an affine transformation between the (𝑙 − 1)𝑡ℎ and the 𝑙𝑡ℎ 

layers. In the absence of 𝜙, the whole MLP is just a sequence of affine transformations which is not 

capable of capturing nonlinear functional relationships, underscoring the necessity of nonlinearity. Some 

frequently used nonlinear activations include the Rectified linear units (ReLU), leaky ReLU, hyperbolic 
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tangent (tanh), etc. The selection of the activation function for the output layer is typically dependent 

on the specific task at hand. For instance, the identity function may be used for regression, the sigmoid 

function for binary classification, and the softmax function for multi-class classification. 

The training process of neural networks is similar to that of the supervised machine learning models as 

we have discussed in Section 2.1. For example, we can learn the neural network parameters 𝜃 to 

maximize the likelihood function 𝑝(𝑿, 𝒀|𝜃), which is equivalent to minimizing a squared error for 

regression or a cross-entropy error for classification. The key distinction between training neural 

networks and machine learning models is that the loss surface of neural networks is nonconvex due to 

the presence of nonlinearity, so convergence to the global minimum is not guaranteed. Gradient-based 

methods, including mini-batch gradient descent and stochastic gradient descent, are often used to 

optimize the neural network parameters with respect to the loss function by back-propagating the 

gradients (68).  

2.3.2 Convolutional neural networks 

Convolutional neural networks (CNNs) (69, 70) are a well-established class of DL models, widely 

recognized for their ability to effectively process complex input data with multiple channels (e.g. audios, 

images, videos, etc.). Standard CNNs usually include two types of operations: convolution and pooling. 

An example of 2-D convolution layer is shown in Figure 3 below. 

 

Figure 3. An example of 2-D convolution layer with a kernel size of 2x2 

In the figure depicted above, the input and kernel (or filter) of the convolutional layer are represented 

by 𝑿 and 𝒘, respectively. Notably, the size of the kernel is typically smaller than that of the input, 

resulting in partial connectivity between each output unit and the input units. This design choice 

significantly reduces the computational cost and enables the CNN to extract meaningful features from 

small sub-regions of the input. 

The pooling operation, on the other hand, applies a summary statistic (e.g. maximum, average, etc.) to 

each sub-region of the input by sliding a kernel (or filter) with a certain stride size, resulting in an output 
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with reduced dimensions compared to the input. Pooling introduces local invariance properties to the 

output, including translational and rotational invariance. Translational invariance is achieved because 

the pooling operation is applied independently to each sub-region, allowing it to detect the same 

features regardless of their position within the sub-region. Rotational invariance is a consequence of the 

pooling operation being insensitive to the orientation of the features within the sub-region. These local 

invariance properties make the output more robust to small changes in the input, improving the 

generalization performance of the CNN. 

2.3.3 Recurrent neural networks 

Recurrent neural networks (RNNs) (68, 71) are a family of DL models for processing sequential data such 

as time series and text streams. The hidden units in RNNs are usually referred to as states (denoted as 

variable 𝒉). The computation graph, both before and after unfolding, of a fully recurrent neural network 

(FRNN) is illustrated in Figure 4, where each output unit 𝒐(𝑡) at time step 𝑡 is connected to each input 

unit 𝒙(𝑡). This connectivity enables the network to retain and utilize information from all previous time 

steps, allowing it to capture temporal dependencies and patterns in the input data. The training 

procedure for RNNs is relatively straightforward, as the gradients are propagated backward along the 

unfolded computation graph. This algorithm is commonly known as backpropagation through time 

(BPTT).  

 

Figure 4. Computation graph of a fully recurrent neural network 

One of the significant challenges associated with RNNs is their inability to handle long-term 

dependencies when the unfolded computational graph becomes extremely deep. Specifically, when the 

forward pass of an RNN involves repeatedly multiplying a weight matrix 𝑾 to the state 𝒉 at each time 

step, as depicted in Figure 4, the gradient may either vanish or explode, rendering the RNN difficult to 

train. The vanishing gradient problem occurs when the gradient becomes extremely small, making it 

difficult for the network to learn from past information. On the other hand, the exploding gradient 

problem occurs when the gradient becomes exceedingly large, making the network learning unstable. 

These issues are particularly problematic in deep architectures and can severely limit the performance 

of RNNs. 

Several techniques have been proposed to address the vanishing and exploding gradient problem in 

RNNs. For instance, gradient clipping can prevent the gradient from exploding, while parameter 

regularization can help with the vanishing gradient issue. One of the most notable solutions is the 

introduction of the long short-term memory (LSTM) model by Hochreiter and Schmidhuber (72). The 
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LSTM model allows the RNN to learn whether to remember or forget relevant information using gated 

memory cells, making it particularly well-suited for processing long sequences of data. Another variant 

of the LSTM model is the gated recurrent unit (GRU), which has a simpler structure but performs 

comparably well to LSTM (73, 74).  

Despite these advances, recent developments in machine learning have shown that attention 

mechanisms (75) and transformer architectures (57) outperform RNNs in many cases. Attention 

mechanisms allow for modeling dependencies between different parts of a sequence without regard to 

their distance in the input or output sequences. The transformer architecture, which is based solely on 

attention mechanisms and does not use recurrent connections, has achieved state-of-the-art results in 

many natural language processing and computer vision tasks. Therefore, while RNNs continue to be a 

valuable tool for machine learning applications, attention-based models have emerged as a promising 

alternative for modeling sequential data. 

2.3.4 Deep generative models 

Unlike regression-based models or conventional neural networks that directly estimate the conditional 

probability of the target variable given the input, i.e., 𝑝(𝑦|𝒙), generative models estimate the joint 

distribution 𝑝(𝒙, 𝑦) on both the input and the target variable. One of the most widely used deep 

generative models is the autoencoder (AE) which is a neural network comprising an encoder function 

𝒛 = 𝑓(𝒙) that maps the input 𝒙 into a latent feature 𝒛 and a decoder function 𝒙̂ = 𝑔(𝒛) = 𝑔(𝑓(𝒙)) that 

reconstructs the input 𝒙. In practice, AEs have been successfully applied to many tasks including 

dimensionality reduction, representation learning, and information retrieval.  

An alternative perspective is to regard the latent feature 𝒛 as an unobserved continuous random 

variable with a prior distribution 𝑝(𝒛). The observed variable 𝒙 is then generated from a conditional 

distribution 𝑝(𝒙|𝒛). However, computing the marginal distribution 𝑝(𝒙) = ∫ 𝑝(𝒙|𝒛)𝑝(𝒛)𝑑𝒛 can be 

infeasible, which also makes the posterior of the latent variable 𝑝(𝒛|𝒙) = 𝑝(𝒙|𝒛)𝑝(𝒛)/𝑝(𝒙) 

computationally intractable. Kingma and Welling (76) introduced a variational Bayes approach to 

optimize an approximation of the posterior, 𝑞(𝒛|𝒙) ≈ 𝑝(𝒛|𝒙), resulting in the variational autoencoder 

(VAE) framework. 

Another category of deep generative model is the Generative Adversarial Network (GAN) (77) which 

consists of two models: a generator 𝐺(𝒛; 𝜽𝑔), which maps an input noise variable 𝒛 into the data space, 

and a discriminator 𝐷(𝒙; 𝜽𝑑), which evaluates whether an input 𝒙 comes from real data or from the 

generator by outputting a probability 0 ≤ 𝐷(𝒙) ≤ 1. Here 𝜽𝑔 and 𝜽𝑑 represents the parameters of the 

generator and the discriminator, respectively. The generator and discriminator models are trained 

concurrently in an adversarial game until the generator produces samples that cannot be distinguished 

from real data by the discriminator. Specifically, 𝐷 and 𝐺 are optimized by playing the following minimax 

game with value function 𝑉(𝐺, 𝐷): 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎(𝒙)[log 𝐷(𝒙)] + 𝔼𝒛∼𝑝(𝒛) [log (1 − 𝐷(𝐺(𝒛)))] 

Given arbitrary functions 𝐺 and 𝐷, it is theoretically established that a unique solution exists, where 𝐺 

completely recovers the original data distribution, and 𝐷(𝒙) is universally equal to 1/2. The applications 

of GAN are diverse, including image synthesis, style transfer, image-to-image translation, and text-to-

image generation, etc. 
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3. Deep learning-assisted electrode design 

Developing fast-charging batteries is critical for the electrification of transportation to mitigate carbon 

emissions and climate change. The U.S. Department of Energy has set an ambitious goal of enabling 

electric vehicles to recharge under 10 minutes, covering a distance of 200 miles.(28, 78) This objective 

presents significant challenges and opportunities for scientists and engineers to overcome conventional 

obstacles in different aspects and scales. The main hurdle is balancing the battery's capacity and 

charging rate. Most batteries struggle to maintain high capacity when charged quickly due to the mass 

transport limitation and the ineffective utilization of deep electrode materials. Addressing this issue 

requires rational designs of the electrode microstructures and materials. However, with increasing 

resolutions of electrode design and characterization, more complex datasets are generated, leading to a 

need for advanced analysis techniques to extract detailed insights about samples. As a result, DL models 

become viable tools to assist in the analysis and deduction of complex datasets and parameters space 

and bridge the gap between experimental data and multiphysics modeling. 

3.1 Governing physics and traditional methods  

Within battery systems, the solid-state matrices (or active materials) play a crucial role in facilitating the 

transport of electrons, and the electrolyte is responsible for enabling the flow of ions between the 

positive and negative electrodes. However, the tortuous path of the porous electrode, due to the 

randomly packed particles, can hinder the ionic transport, resulting in elevated resistance and a 

reduction in battery performance. (Figure 5a) Thus, the degree of turning of the ionic path in a porous 

electrode is defined as its tortuosity (τ). This parameter is crucial as it directly impacts capacity under 

high current density. The tortuosity can be mathematically represented as: 

𝜏 = 𝜀
𝐷0

𝐷𝑒𝑓𝑓
 

where the ε is the overall porosity of the porous electrode, D0 is the diffusivity of electrolytes and Deff is 

the effective diffusivity of the ions through the whole porous electrode. In general, an elevated level of 

tortuosity results in increased ion transport resistance, thereby negatively affecting the performance of 

the battery. Conversely, a lower degree of tortuosity promotes faster ion transport, which enhances the 

battery's overall performance and enhances its efficiency.  

In addition to tortuosity, the reaction rate distribution is another essential factor governing 

electrochemical kinetics. The nonlinearity of the Nernst-Planck equation causes a significant gradient in 

ionic concentration and reaction rate along the depth of the electrode. These gradients lead to poor 

utilization of deep (far from the separator) electrode materials when attempting to improve energy and 

power density via thick electrodes. (Figure 5b) This non-uniform distribution is highly dependent on the 

electrode's porous structures. To elucidate this phenomenon, we introduce a physical term called 

"reaction penetration depth" based on John Newman's theory for a one-dimensional (1D) porous 

electrode. (79) This theory simplifies the three-dimensional (3D) partial differential equation groups to a 

1D form. If we solve equations by inserting boundary conditions and physical assumptions, we can get a 

relationship between the reaction penetration depth (PD) and the porosity of the electrode: 

𝑃𝐷 = 𝑎1√
1

1 − 𝜀
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where a1 is the constant related to materials properties (i.e., electronic, and ionic conductivity and size 

of active materials particles) and ε is the porosity of the electrode. The equation indicates that 

increasing the electrode porosity can facilitate deeper reaction penetration, resulting in improved 

specific capacity during high C-rate charging. Figure 5c demonstrates the improvement of penetration 

depth through an increase in average porosity. Varying a1, or the material properties, implies that this 

penetration depth relationship applies to different electrode materials and electrolytes. Hence, it is 

crucial to develop an optimal electrode structure and select suitable materials to balance out the 

gradient distribution of the reaction rate and alleviate the effects of tortuosity. This is necessary to 

enhance the performance of the battery during fast-charging. 

 

Figure 5. Key challenges of ionic transport in porous electrodes under fast-charging. (a) High tortuosity in 

the traditional porous electrode.(80) Copyright 2019, Wiley (b) Non-uniform ions distribution in the 

porous electrode. (81) Copyright 2022, ACS (c) Penetration depth as the function of porosity. 

There are many previous progresses to improve the battery fast-charging performance by designing the 

microstructures and materials. Ramadesigan et al. first tried to solve the gradient issue theoretically by 
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optimizing the local porosity of the electrode along the depth.(82, 83) It has been observed that gradual 

porosity across the electrode in an optimal manner for a specific amount of active material can result in 

a 15%-33% reduction in the ohmic resistance. In lithium-ion battery design, single objective optimization 

such as reducing overall electrode resistance through a graded design has a modest effect of 4-6%. 

Multiple objective optimizations considering resistance and overpotential variance and average, allows 

for a more varied design space to achieve multiple goals. Then, inspired by theoretical progress, Liu et al. 

developed a bilayer electrode with gradual porosity. (84) The research showed that gradual porosity can 

decrease capacity fade by about 8.285% in full cell and 5.29% in half-cell. The increase in porosity 

enhances the conductivity and diffusivity of lithium-ions in the electrode and allows for control of solid 

electrolyte interphase (SEI) formation. Additionally, Zhao et al. introduced a gradient electrode design 

with vertically aligned porous channels that have smaller openings on one end and larger openings on 

the other. (85) It is found that faster kinetics occur in larger openings with more concentrated active 

material near the separator. Similarly, Huang et al. employed the ice templating technique to produce 

thick cathodes (with a thickness of 900 μm) based on LiFePO4. The cathodes were designed to have a 

pore structure gradient and fast ion transport pathways, which enable high energy densities at fast 

rates.(86) Furthermore, Kim et al. also created stratified electrodes with Li[Ni0.6Co0.2Mn0.2]O2, which 

improved the cycle life.(87) 

Low-tortuosity or graded porosity electrodes can also be fabricated by sacrificial template method. 

(Figure 6) The designed pore structures form after the templates in the slurry are removed. Bae et al. 

used co-extrusion to produce templates and thus macro-pore channels, with controlled channel 

spacings. The resulting low-tortuosity electrodes have tunable channel spacing down to ∼15 μm and 

showed 3 times areal capacity under 2C charging rate. (88) Sander et al. utilized magnetic field to align 

the sacrificial templates to create low-tortuous electrodes. The magnetic field can not only align the 

magnetized nylon rod, but also the magnetic emulsion droplets.(89) Billaud applied a similar method 

and showed the enhanced ionic transport in the battery.(90) Zhang et al. also combined the magnetic 

alignment and ice-template method for low-tortuous electrode fabrication. Under 10 mA/cm2, the 

electrodes exhibit an areal capacity of approximately 3.6 mAh/cm2. (91) Although physics-guided 

research has made significant progress, there is still a gap between the optimal structure, particularly in 

varying application scenarios.  
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Figure 6. Low-tortuous electrodes fabrication. (a) Low-tortuous channels in the electrodes and geometric 

control factors.(88) Copyright 2013, Wiley (b) SEM image of the fabricated electrode. (88) Copyright 

2013, Wiley (c, d, e) creating the low-tortuous channels by magnetic field alignment method and ice-

template method. (89-91) Copyright 2016, Springer Nature and 2019, ACS 

3.2 Deep learning method and results 

It is apparent that the future of electrode design is heavily linked to the development of DL, given the 

challenges of identifying optimal structures for diverse application scenarios in complex parameter 

spaces. Employing DL across the materials synthesis, structure design, and characterization can 

significantly enhance design efficiency and accuracy. In this context, we will discuss recent progress in 

DL-assisted electrode optimization and analysis. 

As mentioned earlier, one of the significant challenges in battery design is the slow ionic transport in 

porous electrodes. While progress has been made in designing low-tortuosity batteries through vertical 
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channels and gradient active materials,(88-91) optimal solutions have yet to be found. Although 

topological optimization has been applied to search for suitable electrode structures, time-dependent 

charging problems and the time-consuming nature of solving 3D finite element models remain 

obstacles. (92) To address these issues, Sui et al. drew inspiration from nature and introduced efficient 

vascular channels into the porous electrode to enhance ionic transport and mitigate non-uniform 

reaction rate distribution. (Figure 7) (78) The vertical central channels and gradient branch channels 

reduced tortuosity and increased reaction penetration depth. Given the large number of possible 

vascular channel designs, the researchers developed a DL pipeline to accelerate computation speed. The 

neural network, informed by the geometric factors of the electrode, speeded up computation for all 

possible electrode designs and corresponding charging curves by 84 times, compared to the 

conventional finite element method. Furthermore, the researchers developed an inverse design 

workflow to find the optimal electrode structure from the total library of computed designs under 

different application scenarios, such as varying charging rates. The workflow delivered a customized 

package containing electrode geometric factors, charging curves, charging capacity, energy density, etc. 

With the aid of bio-inspired vascularized design and DL-based prediction, the optimized porous 

electrode demonstrated a 66% improvement in capacity under 3.2C constant current charging. This 

work could potentially inspire advancements in the experimental and theoretical aspects of fast-

charging batteries in the future. 
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Figure 7. Bio-inspired vascularized electrode designed by deep learning. (a) Bio-inspired concept. (b) 

Geometric factors of vascular electrodes. (c) Deep learning optimization loop. (78) Copyright 2022, Wiley 

Besides, GANs and CNNs can also be used to design the microstructure in the electrodes. Niu et al. 

proposed a performance-informed learning framework, called π learning, to generate electrode 

microstructures informed by electrochemical performance. (93) This is achieved by integrating 

generative adversarial neural networks and deep neural networks with physical knowledge to accurately 

predict current density. The framework was demonstrated in two design philosophies, inverse and 

forward design, for solid oxide fuel cell (SOFC) anodes. The results showed that π learning can generate 

electrode microstructures with the globally optimal electrode microstructure. The physical and 

electrochemical insights obtained by prediction can guide the rational design of SOFC electrodes. The 

framework can be easily transferred to the design of other porous electrodes in various electrochemical 

devices, such as fuel cells and batteries. The proposed π learning can be further enhanced by involving 

high-dimensional multi-physics computation to inform the generative model. 
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In addition to electrode design, characterization is a crucial tool for understanding physical mechanisms 

and evolution to advance the design of batteries. The performance of batteries depends on the 

transport of lithium ions and the kinetic process of electrodes, which are influenced by microstructure 

parameters such as porosity and tortuosity. These parameters play a vital role in predicting the fast-

charging performance. Visualizing electrode microstructure during the service process is imperative for 

optimizing electrode structure and diagnosing potential safety issues. Fortunately, significant progress 

has been made in the field of picture processing and complex structure analysis, providing a robust 

framework for electrode microstructure visualization and analysis. (94-97) Yang et al. studied the 

evolution of electrode microstructure in a battery by using a modified U-Net convolutional neural 

network for high-precision segmentation. (98) DL is used to obtain the porosity and thickness of the 

negative and positive electrodes at different states of charge, and the relationship between the 

evolution of porosity and thickness during charging. The method could be extended to measure 

additional microstructural parameters using broad ion beam-SEM/FIB-SEM for 3D models in the future, 

providing an approach to exploring microstructure evolution and aiding in electrode structure 

optimization. Additionally, Gayon-Lombardo presented a method for creating synthetic three-

dimensional microstructures consisting of several material phases using DC-GANs. This approach 

enables the model to represent the statistical and morphological characteristics of actual 

microstructures. The study used two open-source microstructural datasets, and various microstructural 

properties were calculated for the real data and compared to the synthetic structures created by the 

trained generator. The results showed excellent agreement, although the synthetic structures had a 

smaller variance than the training data. (99) Moreover, Petrich et al. developed a classifier that 

distinguishes between three causes for particle separation using the shape of the gap between particles. 

(100) Simulated anode material was used to generate correctly labeled sample data for developing the 

classifier. The classifier was then tested using hand-labeled data from a real electrode, achieving an 

overall accuracy of 73%.  
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Figure 8. Deep learning assist microstructure of electrode design and characterization. (a) π learning for 

electrode microstructure design. (93) Copyright 2023, Wiley (a) Electrode microstructure characterization 

with the help of deep learning. (98) Copyright 2022, Elsevier 

4. Deep learning-assisted electrolyte design 

The electrolyte is another crucial component that significantly affects the performance of batteries, in 

addition to the electrode. In particular, it plays a vital role in facilitating ion transport in rechargeable 

batteries. However, the design of electrolytes for fast-charging batteries poses a significant challenge. 

Unlike solid electrodes, electrolytes are highly disordered, making it difficult to identify the governing 

physical factors and optimize their properties. Additionally, the vast number of possible combinations of 

salts and solvents makes it challenging to achieve desirable performance, because even slight variations 

in composition can lead to noticeable performance degradation. For fast-charging batteries, the need 

for rapid ionic transport throughout electrolyte to compensate for high current density exacerbates this 

challenge. This complex transportation problem is strongly correlated with various physical properties of 

electrolytes, including ionic conductivity, viscosity, diffusivity, and transfer number. Investigating such a 

high-dimensional parameter space is impractical using traditional trial-and-error experimentation. 

Furthermore, since optimal battery design is heavily dependent on application scenarios, identifying 

optimal electrolytes faces more obstacles. 

To tackle this challenge, DL can be useful for accelerating the electrolyte design, both for simulation and 

experiment. Here we first show some cases for DL-accelerated numerical simulations. Among all 

simulations methods, molecular dynamic (MD) is the most popular tool to simulate liquid electrolytes. In 

the electrolyte system, ions lead to a strong local electric field and cause the polarization of the solvent 

molecules, especially for highly concentrated electrolytes. These polarization terms influence the 

electrolyte transport properties a lot and therefore need to be predicted by MD. (101) This prediction 

can be effectively accelerated by implementing NN to learn the atomic polarizabilities and charges (102). 

Such an algorithm is only dependent on connectivity of the atoms within a molecule, so the 

dependencies on the 3D conformation can be avoided. Apart from this, researchers also informed the 

neural networks with the surrounding environment of the atoms or molecules to improve the accuracy 

and speed of the prediction. (Figure 9) (103, 104) These methods offer a widely applicable and 

automated tool to comprehend atomic-level dynamics in material systems, considering the vast 

quantities of molecular dynamics data produced daily in almost all areas of materials design. This 

provides more insights of the electrolyte properties without completely screening the whole parameter 

space or synthesizing all possible electrolyte candidates, even in shortage of some physical interactions. 

To get closer to the cutting-edge battery technologies, highly concentrated electrolyte is more crucial for 

Zinc ion batteries because it can mitigate the hydrogen evolution reaction. Hence, equivalent methods 

have been utilized to examine aqueous Zinc electrolyte, which demonstrates that utilizing neural 

network to learn a functional physical potential is feasible even for extremely disordered systems. (105) 

They confirmed that the computational results accurately reproduce the observed radial distribution 

function and X-ray absorption near edge structure spectrum of zinc-water obtained experimentally. 

There were also other works that demonstrated the implementation of ML in the computational study 

of electrolytes. Nakayama et al. utilized an exhaustive search with a Gaussian process (ES-GP) to gauge 

the coordination energy. (106) This interaction energy will provide physical insights into the ionic 

transport of the electrolyte, which is directly related to the performance of fast-charging Li-ion batteries. 

Moreover, the exhaustive search can also be coupled with linear regression to become an ES-LiR model. 
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(107) By using the melting point as a target property for battery operational temperature windows, ES-

LiR showed the most accurate estimation compared to multiple linear regression (MLR) and the least 

absolute shrinkage and selection operator (LASSO) approaches.  

 

Figure 9. Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. (a) 

Schematics of the graph dynamical networks architecture. (b) CK test comparing the long-time dynamics 

predicted by Koopman models. (104) Copyright 2019, Springer 

Despite the improved accuracy and efficiency of numerical simulation, empirical data plays a crucial role 

in the battery research domain due to the presence of experimental variations that cannot be 

adequately described by physical models. Considering this, researchers have begun utilizing ML 

techniques to facilitate the guidance of electrolyte synthesis experiments. The Cui group at Stanford 

University employs linear regression, random forest, and bagging models to identify key features for 

predicting Coulombic efficiency (CE), by utilizing the elemental composition of electrolytes as model 

features. They finally create fluorine-free solvent-based electrolyte formulations that achieve a 

remarkable CE of 99.70% according to the as-trained ML model. (108) The Viswanathan group presented 

an autonomous method for optimizing battery electrolytes using machine learning and a robot, where 

hundreds of sequential experiments are carried out. (Figure 10) A Bayesian optimization technique is 

employed to explore aqueous electrolyte salt mixtures with excellent electrochemical stability. After 

https://doi.org/10.26434/chemrxiv-2023-jvfqq ORCID: https://orcid.org/0000-0003-2244-8431 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-jvfqq
https://orcid.org/0000-0003-2244-8431
https://creativecommons.org/licenses/by/4.0/


 

 

conducting 140 electrolyte formula tests over a period of 40 hours, an optimal electrolyte, which was 

not intuitive, is finally obtained. (109) An impressive result is that they presented a dataset of 251 

aqueous electrolytes and their conductivities, pH values, and electrochemical reactions on platinum. 

(109) In the year 2022, a comparable methodology was employed to analyze non-aqueous Li-ion 

batteries, resulting in a six-fold increase in time efficiency compared to an arbitrary search conducted by 

the identical automated experiment. (110) In the experimental validation test, it was observed that all 

the pouch cells that were filled with electrolytes developed by the robot showed improved capability of 

fast-charging. (110) Their robotic platform, real-time machine learning optimization, and integration 

with device testing, tailored to the specific requirement, have the potential to optimize other self-

sufficient discovery platforms for energy and sustainability application.  

 

Figure 10. Autonomous optimization loop for electrolytes. (a) Schematics of automated electrolyte 

experiment set-up. (b) optimization routine for sodium and lithium electrolytes. (109, 110) Copyright 

2020, Elsevier and 2022, Springer Nature 

5. Conclusion and outlook 

In conclusion, the application of DL techniques has demonstrated considerable potential to revolutionize 

the field of battery design. By integrating DL algorithms with traditional experiments and simulations, 

researchers can accelerate the discovery and characterization of new electrodes and electrolytes, 

leading to the development of high-performance batteries with improved capacity and cycle life. The 

combination of accurate first-principle simulation, autonomous synthesis, characterizations, and DL 

optimization loop has emerged as a promising approach for enhancing the efficiency of battery design 

and reducing the cost of electric vehicles. Continued exploration of DL algorithms in battery design holds 

significant promise for advancing the field of materials science, computer science, and engineering to 

mitigate the impact of climate change. 
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Nevertheless, there are challenges in the application of DL to battery design. The efficacy and precision 

of DL models hinge heavily on the availability of high-quality and reliable data, which is often proprietary 

and not easily obtainable. Furthermore, these models can occasionally encounter the issue of 

overfitting, where they become excessively tailored to the training data, resulting in poor generalization 

and inaccurate predictions. This challenge is particularly pronounced in battery design, given the 

intricate interplay of various components, making it arduous to encompass all the pertinent variables 

within a single model. It is imperative to go beyond training-based machine learning and extrapolate 

insights from existing designs to new ones with limited data. Last but not least, there is a pressing need 

to expedite not only the research and development phase but also the scaling-up and manufacturing 

processes. 
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