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Abstract:

PARP-1 (Poly ADP Ribose polymerase) functions to repair damage to DNA and is implicated in a variety

of diseases including Diabetic Cardiomyopathy (DCM). Unfortunately, there are few treatments for this

disease, and the expenses associated with these drugs present barriers to many. With this project, we

developed a neural network that was able to distinguish between inhibitors and non-inhibitors of PARP-1

in order to uncover more accessible treatments of DCM. We collected confirmed inhibitors of PARP-1

from PubChem, clustered these compounds, and performed attribute selection. This data was used to

develop the neural network which was able to predict inhibitors of PARP-1 with an accuracy of 97% and

an AUROC of 0.98. The model was then run on all FDA drugs, and the top 37 predictions were taken. In

protein ligand docking simulations, the predicted inhibitors had a significantly better binding affinity for

PARP-1 than the control group.
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1 | INTRODUCTION

Type 2 Diabetes and Diabetic Cardiomyopathy

Diabetes Mellitus is a chronic disorder characterized by decreased serum insulin, decreased insulin

sensitivity, hyperglycemia, and a reduction in pancreatic beta cells (1), and is widespread having affected

422 million individuals in 2014 (2). According to the CDC, in 2019, 28.7 million people in the US (8.7%

of the population) had diagnosed diabetes, with about 95 percent of these cases being type 2 diabetes.

Among those with Type 2 Diabetes, Heart Failure is one the most common resulting cardiovascular

complications, as patients with T2D have up to a 74% higher chance of developing Heart failure (3).

Additionally, mortality is quadrupled in T2D patients with heart failure vs patients without (3). This

ventricular dysfunction is referred to by Diabetic Cardiomyopathy (DCM), which is defined by abnormal

myocardial structure and diminished cardiac performance in individuals with diabetes mellitus that lack

other risk factors, such as hypertension and coronary artery disease (4).

PARP-1

Poly ADP-ribose polymerase 1 (PARP-1) is an NAD+ dependent ADP-ribosylating enzyme and its

primary function lies in DNA repair. It can also control the accessibility of DNA for RNA polymerase by

regulating chromatin structure, and can function as a transcription factor by binding on to motifs in

promoter regions (5). This protein has been implicated in a variety of malignant and inflammatory

diseases, including ovarian cancer, breast cancer, cardiovascular disease, asthma, arthritis, and diabetes

(6). In malignant diseases, PARP-1 enables cells lacking methods of homologous recombination, such as

those with BRCA1/2 mutations, to have a method of DNA repair, and thus to avoid cytotoxicity (7). In

inflammatory processes, PARP-1 is known to activate NF-kB in response to lipopolysaccharides or TNF-a

(8).

DCM Pathogenesis

A significant portion of DCM’s pathogenesis is rooted in the over-production of proinflammatory

cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which induce apoptosis in

cardiomyocytes, leading to a reduction in contractility and cardiac dysfunction (9, 10). Additionally, the

hyperglycemia found in individuals with DCM can trigger the formation of reactive oxygen and nitrogen

species, which cause DNA strand breaks and abnormal cell signaling, ultimately resulting in apoptosis.
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The oxidative stress and subsequent DNA damage also results in the overactivation of PARP-1, which

utilizes NAD+ in order to mend single strand breaks. This excessive activation leads to the rapid

depletion of intracellular NAD+ and ATP, resulting in a cellular energy shortage and subsequent apoptosis

(11). In a study conducted to investigate the role of PARP-1 in type-2 diabetes induced cardiac

complications, diabetic rats showed increased PARP-1 activity compared to control animals, and rats that

were treated with 4-aminobenzamide (4-AB), a PARP-1 inhibitor, displayed reduced cardiac and vascular

inflammation, reduced hypertension, and alleviated cardiac ischemia (12).

Inhibition of PARP-1

Inhibitors of PARP-1 generally bind the catalytic pocket or to the PARP-chromatin complex and trap the

enzyme in an ineffective state at the chromatin. Both ways interfere with ADP-ribosylation, with the latter

being much more potent (13). Cancerous cells often are deficient in one of the six major DNA repair

pathways (base excision repair, nucleotide excision repair, single strand break repair, homologous

recombination, non-homologous end joining, and mismatch repair), and thus the inhibition of another

pathway leads to a synthetic lethality. PARP-1 plays a role in the single strand break repair and base

excision repair pathways, and therefore its inhibition is key in treating malignancies. In inflammatory and

metabolic diseases, however, cells are still proficient in homologous recombination, and can thus mend

the double strand breaks which single strand breaks turn into (14). In these types of cells, the inhibition of

PARP-1 prevents the rapid depletion of NAD+ and ATP, avoiding a cellular energy crisis and preventing

cytotoxicity. There are currently no PARP-1 inhibitors that have been approved by the FDA for use in

patients with DCM.

Drug Repurposing and ML

The benefits associated with drug repurposing as opposed to de novo drug development are numerous.

Development times are decreased significantly, with de novo drug discovery and development generally

taking 10 - 17 years, while repurposed drugs are approved within 3 - 12 years (15, 16). Development costs

are brought down as well. The cost of bringing a newly developed drug to market is estimated to be 2-3

billion dollars, compared to the estimated 300 million for a repurposed drug (17). This drop in

development costs result in improved prices for consumers and patients, who according, to the American

Diabetes Association, are burdened with medical expenditures on average of around $16,000, of which

30% can be attributed to the purchasing of prescription medicine (18). Consumers are also presented with

a lower risk of adverse events when using repurposed drugs, as the safety and pharmacokinetics of the
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drug are already known (19). Drug repurposing has become even more practical with the introduction of

machine learning (ML) techniques to the field of drug discovery. ML has been used in a variety of stages

of drug discovery, including target validation, identification of prognostic biomarkers, and the analysis of

pathology data in clinical trials (20), and allows for the narrowing down of compounds for wet lab testing

for a relatively little cost. Thus, the goal of our study was to utilize ML, specifically a deep neural

network, in order to determine which FDA drugs would be able to serve as PARP-1 inhibitors.
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2 | METHODS

2.1 | Data Collection

The activity values and canonical SMILES (standardized line notation that represents the molecular

structure of a chemical compound as a unique string of characters) of 4,786 inhibitors of PARP-1 were

taken from the PubChem Database (22). To ensure the reliability of our analysis, we selected only the top

compounds with activity values less than 80 nM. Activity values are a measure of a substance's efficacy

or potency, and indicate the concentration required to produce a specific biological response. By focusing

on the most active compounds, we aimed to identify potential drug candidates with strong biological

activity. Additionally, the SMILES strings of FDA drugs were taken from the Drugbank Database, and the

SMILES of random compounds were taken from PubChem to form a control group.

Figure 1 - These two graphs depict the distribution of the different activity values of the compounds. 4062

compounds had activity values less than 1.5 μm, while only 725 compounds had activity values greater than 1.5 μm.

2.2 | Fingerprint Clustering

Fingerprint clustering is a common technique in cheminformatics for grouping molecules based on their

structural similarity. By using clustering, we can reduce the complexity of the dataset and create more

robust models that are less sensitive to outliers and noise in the data. To cluster the data retrieved from

PubChem, we utilized the Butina method from RDKit, a python library for cheminformatics (23). It

leverages a user-defined similarity as the only input to the clustering program. This similarity measure is

based on the Tanimoto Index, which can be calculated using the below specific formula. In this study, we

chose a Tanimoto Index score of 0.47, which ensured that clusters with high similarity were obtained. 234
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clusters were formed, with the largest cluster identified containing 318 compounds, and we focused our

modeling efforts on this cluster.

Figure 2 - Tanimoto Coefficient used for finding the Tanimoto Index

2.3 | Descriptors

PaDEL-Descriptor is a software tool that generates a wide range of chemical descriptors for a set of

compounds (24). It uses the Chemistry Development Kit and some additional descriptor categories.

PaDEL was utilized to calculate the molecular descriptors of the clustered compounds. The descriptors

are calculated based on the molecular structure encoded in the SMILES notation and can provide 1,875

features that describe the molecular properties of a compound. Some of the features include molecular

weight, lipophilicity, hydrogen bonding, and topological parameters such as connectivity and branching.

PADEL descriptors were employed to calculate the descriptors for canonical smiles of our largest cluster

of known inhibitors.

2.4 | Feature Selection

Infogain is a popular feature selection algorithm that ranks features based on their ability to discriminate

between classes in a classification problem (25). The algorithm computes the mutual information between

each feature and the class variable, which measures how much information about the class can be inferred

from the feature. Features that have a high mutual information score are deemed to be more informative

and are ranked higher. After the InfoGain attribute evaluator was used on the training set of inhibitors,

FDA drugs, and the control compounds, the number of attributes was decreased from 1,875 to 300.
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Figure 3 - Highest ranked descriptors by the infogain algorithm from WEKA

2.5 | Neural Network Construction

The Neural Network was created in python and works by splitting the data with an 80-20 train validation

split. The 80-20 split is a commonly used method in machine learning to split the dataset into training and

validation sets. The training set, which contains 80% of the data, was used to train the model, while the

validation set, which contains 20% of the data, was used to evaluate the performance of the model. In

order to perform machine learning predictions, we used a multilayer perceptron (aka neural network)

made with Keras, a python library for the development of neural networks (26). The model’s

hyperparameters, namely the number of layers, the number of nodes in each layer, dropout, learning rate,

and batch size, were turned with the Keras-Tuner. The process was conducted with Keras-Tuner’s

Hyperband method, which uses a technique known as successive halving. The Hyperband search method

starts by randomly sampling sets of hyperparameter configurations, training and testing them, and then

discarding ones that perform poorly. Then, the remaining configurations are trained for a larger number of

epochs, again discarding ones that perform poorly. This process is repeated until the best performing

configuration can be selected. In order to prevent overtraining in the model, we employed an epoch stop

early callback, in which if loss did not decrease for 5 epochs, training would end prematurely.
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Figure 4 - Visual representation of the hyperparameters used in the tuning process. This representation is

produced by TensorBoard (27).

Figure 5 - A schematic of our Neural Network, with an input layer, eight hidden layers, a dropout layer,

and then an output layer with a single node.
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2.6 | Protein-Ligand Preparation

Before docking could be performed, structural files of PARP-1 and the ligands to be docked would need

to be obtained and prepped. For PARP-1, a PDB (Protein Data Bank) file of its binding site was

downloaded from the Protein Data Bank Database (28). It was then imported into AutoDock Tools, a

software program used for preparing and setting up molecules for docking simulations in the AutoDock

suite of programs (29). The software was then used to delete the ligand already present in the binding site

(it was olaparib), delete water molecules, add polar hydrogens, add Kollman Charges, and finally convert

the file to the PDBQT format. For the ligands, the first step was obtaining the canonical SMILES for each

of the predicted inhibitors, confirmed inhibitors, and control compounds from the data we had collected in

the first step. Then, using the aforementioned RDKit module, these SMILES were used to get the PDB

files of all the ligands. These ligands were then imported into Autodock Tools, where aromatic carbons

and rotatable bonds were detected, Gasteiger Charges were added, and non-polar hydrogens were merged.

Again, these were all converted to the PDBQT format.

2.7 | Protein-Ligand Docking

AutoDock Vina is a widely-used software program for molecular docking, which is the computational

process of predicting how two molecules will interact with each other in three-dimensional space (30, 31).

AutoDock Vina works by using a combination of empirical scoring functions and advanced algorithms to

generate a large number of possible binding poses (i.e. the different ways that two molecules could

interact with each other). It then evaluates each pose based on a variety of factors, such as the stability of

the complex, and selects the most promising candidates for further analysis. We employed AutoDock

Vina to perform molecular docking of Ligands to the target protein, PARP-1. This was achieved by

inputting the grid box dimensions and the prepared ligand into the target protein, allowing for the

exploration of possible binding conformations between the Ligands and the active site of the PARP-1

protein. The default dimensions predicted by AutoDock Tools were used to obtain the grid box

dimensions.
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Figure 6 - Overview of the methods utilized in this study

3 | RESULTS

3.1 | Multilayer Perceptron Model

Once the model was tuned, it was trained for 5 times independently on the training data that had been split

earlier. The Accuracy vs Epoch graph for all trials can be seen Figure 7. The graph starts at around 0.5

(random guessing) and shows a steady increase in accuracy, indicating that the model is rapidly learning

to distinguish between the inhibitor class and the non-inhibitor class.
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Figure 7 - The Training Accuracy vs Epoch Graph for all 5 trials

After the training period, the model was tested using the validation data. Testing on validation data rather

than training data ensures that the model is not benefitting from overfitting. Table 4 depicts the testing

metrics for the model from each trial, namely the Validation Accuracy, the Matthews Correlation

Coefficient, and the Area Under the ROC (Receiver Operating Characteristic) curve. Accuracy measures

the percentage of correct predictions out of the total predictions. The average accuracy over the 5 trials

was 0.976, indicating a high percentage of correct predictions. Matthews Correlation Coefficient is a

slightly better metric for binary classification methods, as it takes into account false positives, false

negatives, true positives, and true negatives, thus being effective when the classes are imbalanced. The

average MCC was 0.952, indicating a strong correlation between the predicted and observed

classifications. Lastly, the AUC is the area under a plot of the true positive rate against the false positive

rate at various threshold settings. The average AUC over the 5 trials was 0.989, indicating that 98.9%

percent of the time, the model was able to correctly rank the probabilities of the inhibitor samples higher

than the non-inhibitor samples.

Table 1 - Testing Metrics for each of the 5 trials

After the training and testing, the model was used to output prediction scores for a dataset of 2037

FDA-approved drugs with the same 300 descriptors that had been taken previously from InfoGain. Out of

these 2037 compounds, the model had predicted 82 compounds to be inhibitors of PARP-1, with 38

receiving a prediction score greater than 0.9.
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3.2 | Protein-Ligand Docking

The random FDA control group had an average docking score of -7.824 kcal/mol, while the predicted

inhibitors had an average docking score of -10.704 kcal/mol. The t-Test revealed a high magnitude and

negative T stat (-17.68), indicating a substantial difference between the two sets of data, with the

predicted inhibitors outperforming the control group. The calculated p-value (2.96e-32) is very small,

indicating evidence against the null hypothesis and supporting the alternative hypothesis that predicted

inhibitors performed significantly better than the control group. Because of the higher binding affinity of

the predicted inhibitors, they may have greater efficacy as a treatment option. However, it is important to

acknowledge the limitations of our study, as the docking simulations we performed may not perfectly

reflect the actual binding affinity of the protein-ligand complex in a biological system. Future studies

could aim to address this limitation by performing further experimental validation of the predicted

inhibitors to confirm their efficacy in vivo or in clinical trials.

Figure 8 - Docking scores (kcal/mol) for top 35 Predicted Inhibitors, 147 known inhibitors, 147 random
FDA-approved drugs
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Statistic Predicted Inhibitor Control (Random FDA drugs)

Mean -10.704 -7.824

Variance 0.719584 0.5802

T stat -17.68

p-value 2.96E-32

Table 2 - t-Test & statistical analysis of docking results
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IX X

XI XII

XIII XIV
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Figure 7 - Docking of the highest ranked drugs by the model with the PARP-1 catalytic pocket:

(I)Ubrogepant; (II)Sultamicillin; (III)Rimegepant; (IV)Lurasidone; (V)Lonafarnib; (VI)Irinotecan;

(VII)Tecovirimat; (VIII)Ertugliflozin; (IX)Dutasteride; (X)Dolutegravir; (XI)Dolasetron;

(XII)Cobimetinib; (XIII)Cabotegravir; (XIV)Bictegravir; (XV)Avatrombopag; (XVI)Atogepant

Residue Number of Interactions (%) Average Distance

ASN-767 0.67 3.0625

MET-890 0.50 3.13

ARG-878 0.42 3.2

SER-864 0.416 2.9

GLY-863 0.34 2.95

TYR-907 0.33 3.10

HIS-862 0.083 3.08

Table 3 -Residues most frequently contacting inhibitors.

Table 4 -Top 30 performing FDA drugs in Autodock Vina

Docking Score
(kcal/mol)

Name of predicted
Inhibitor

Functions Physiological
Interactions

-12.7 Dutasteride Used for the treatment
of symptomatic benign
prostatic hyperplasia

Inhibits type II 5a
reductase, preventing
5a-dihydrotestosterone
formation

-12.6 Rimegepant Used to treat migraines
in adults

Antagonist of
Calcitonin
Gene-Related peptide
type 1 receptor
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-12.1 Lonafarnib Used to decrease the
mortality associated
with
Hutchinson-Gilford
progeria syndrome

Inhibitor of farnesyl
transferase

-11.9 Bictegravir Used to treat HIV
infections

Antagonist of HIV-1
reverse transcriptase
and integrase

-11.7 Irinotecan Used to treat metastatic
carcinoma of the colon
or rectum

Inhibitor of DNA
topoisomerase I

-11.6 Trospium Used to treat the
symptoms of overactive
bladder

Antagonizes the effect
of acetylcholine on
muscarinic receptors

-11.4 Flecainide Used to manage atrial
fibrillation and
paroxysmal
supraventricular
tachycardias

Inhibitor of fast sodium
channels, delayed
potassium channels,
and ryanodine receptors

-11.3 Edoxaban Used for reducing the
risk of stroke and
systemic embolism

Inhibitor of
Coagulation Factor X

-11.3 Sitagliptin Used for the
management of type 2
diabetes mellitus

Inhibitor of Dipeptidyl
Peptidase 4

-11.3 Eravacycline Used to treat
complicated
intra-abdominal
infections

Inhibitor of 30S
ribosomal protein S4

-11.2 Adapalene Used to treat acne
vulgaris in adolescents
and adults

Agonist of Retinoic
Acid Receptor beta,
gamma, RXR-beta,
RXR-gamma,
RXR-alpha, antagonist
of Toll-like Receptor 2

-11.2 Trifluoperazine Used to treat
depression, anxiety, and
agitation

Antagonist of
Dopaminergic D1 and
D2 receptors

-11.1 Atogepant Used for the
preventative therapy of
episodic migraine
headaches

Antagonist of
Calcitonin gene-related
peptide type 1 receptor
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-11.1 Empagliflozin Used to manage type 2
diabetes mellitus

Inhibitor of
Sodium/glucose
cotransport 2

-11.1 Flupentixol Used to treat
schizophrenia and
depression

Antagonist of
Dopamine D1 and D2
receptors, and
5-hydroxytryptamine
receptor 2A

-10.9 Zuclopenthixol Used for the
management of
schizophrenia

Antagonist of
Dopamine D1, D5, and
D2 receptors

-10.9 Fluphenazine Used to treat patients
requiring long-term
neuroleptic therapy

Antagonist of
Dopamine D1 and D2
receptor

-10.9 Periciazine Used with other
medications to treat
aggressiveness,
impulsiveness, and
hostility associated with
psychiatric conditions

Antagonist of
Dopamine D1 receptor,
and Alpha-2A
Adrenergic Receptor

-10.8 Ubrogepant Used in the acute
treatment of migraine
with or without aura

Antagonist of calcitonin
gene-related peptide
type 1 receptor

-10.8 Dolutegravir Used for the treatment
of HIV-1 infections

Inhibitor of HIV-1
integrase

-10.8 Cabotegravir Used for treatment and
pre-exposure
prophylaxis of HIV-1
infection.

Inhibitor of HIV-1
integrase

-10.7 Lurasidone Used to treat
schizophrenia and
depressive episodes

Antagonist of
Dopamine D2 Receptor
and
5-hydroxytryptamine
receptor 2A

-10.7 Tecovirimat Used to treat smallpox,
monkeypox, and
cowpox

Inhibitor of Envelope
Protein F13

-10.6 Cobimetinib Used to treat
unresectable or
metastatic melanoma

Inhibitor of Dual
specificity
mitogen-activated
protein kinase kinase 1
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-10.5 Dolasetron Used in chemotherapy
and postoperatively to
prevent nausea and
vomiting

Antagonist of
5-hydroxytryptamine
receptor 3A

-10.5 Bicalutamide Used to treat Stage D2
metastatic carcinoma of
the prostate

Antagonist of
Androgen Receptor

-10.4 Ivacaftor Used to treat cystic
fibrosis

Potentiator of Cystic
fibrosis transmembrane
conductance regulator

-10.3 Avatrombopag Used to treat
thrombocytopenia

Agonist of
Thrombopoietin
Receptor

-10.3 Vorapaxar used to reduce
thrombotic
cardiovascular events

Antagonist of
Proteinase-activated
receptor 1

-10.3 Dapagliflozin used in the
management of type 2
diabetes mellitus

Inhibitor/Antagonist of
Sodium/glucose
cotransporter 2
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In Table 6, the deep neural network score ranks the top drug candidates. Each compound is scored by the

model, outputting a number between 0 and 1, with a higher score indicating a higher similarity to the

known inhibitor, and thus a higher probability of being a PARP-1 inhibitor. The model's score serves as a

probability of PARP-1 inhibition. The drug candidate with the highest probability of inhibition, according

to the model, is Lonafarnib, with a prediction score of (0.999964). However, the most reliable approach to

identifying the strongest candidate is to combine the rankings of the protein-ligand docking with the

neural network results. Fenoprofen also achieved a high docking score of -12.1 kcal/mol, indicating its

potential as a PARP-1 inhibitor. Given the high docking score and strong backing from the machine

learning model, Lonafarnib is a promising candidate for PARP-1 inhibition.

Table 5 - Top 20 predicted inhibitors by the Model’s Prediction Score

Compound Name Model Prediction Score Docking Score (kcal/mol)

Lonafarnib 0.999964 -12.1

Ioflupane 0.999133 -10.1

Bictegravir 0.998813 -11.9

Atogepant 0.997899 -11.1

Cobimetinib 0.997713 -10.6

Sultamicillin 0.996654 -10.2

Lurasidone 0.996568 -10.7

Dolutegravir 0.995013 -10.8

Irinotecan 0.992985 -11.7

Avatrombopag 0.992983 -10.3

Dutasteride 0.992951 -12.7

Rimegepant 0.990847 -12.6

Ubrogepant 0.988249 -10.8

Cabotegravir 0.987173 -10.8

Ertugliflozin 0.986705 -10.2

Dolasetron 0.986392 -10.5
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Tecovirimat 0.986151 -10.7

Adapalene 0.984745 -11.2

Empagliflozin 0.983438 -11.1

Bicalutamide 0.975614 -10.5

4 | Discussion

In this study, we revealed the potential ability of 82 FDA-approved to effectively inhibit PARP-1. The

model that was developed achieved an average validation accuracy of 0.976, Matthews Correlation

Coefficient of 0.952, and AUC of 0.989, displaying its ability to accurately distinguish between inhibitors

and non-inhibitors of PARP-1, and to predict compounds that could potentially inhibit the protein. The

efficacy of the model was further corroborated by the excellent performance of the predicted inhibitors in

protein-ligand docking simulations, with the predicted inhibitors performing significantly better than

non-inhibitors.With this, we have efficiently and economically highlighted 82 FDA drugs that could be

implemented in further in vitro and in vivo trials, and eventually, clinical trials.

The practicality of repurposing FDA approved drugs is undeniable. Development times and costs

plummet, making drugs available quicker and more cheap for patients who suffer from PARP-1 related

diseases, such as Diabetic Cardiomyopathy. Additionally, the drugs have already been through the

stringent safety tests of clinical tests, thus ensuring a lower risk of adverse effects, and allowing for a

quick progression of the drug through the FDA pipeline.

In silico research can efficiently and cheaply elucidate promising drug candidates to expedite the creation

of new treatments, and as new technologies emerge and accessible drug data continues to grow, machine

learning and other computational algorithms will continue to improve and advance the pharmaceutical

field.
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