
Quantum Dynamics Simulations of the 2D Spectroscopy for Exciton Polaritons
M. Elious Mondal,1, a) Eric Koessler,1 Justin Provazza,2 A. Nickolas Vamivakas,3, 4 Steven T. Cundiff,5 Todd D.
Krauss,1, 3, b) and Pengfei Huo1, 3, c)
1)Department of Chemistry, University of Rochester, Rochester, New York, 14627,
USA
2)Quantum Simulation Technologies, Inc., Boston, MA 02135, USA
3)The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, NY 14627,
USA
4)Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627,
USA
5)Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-
linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density
matrix (PLDM) approach to model the exciton dynamics with an explicit propagation of the phonon bath
environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics.
Through simulating both linear and polariton 2-dimensional electronic spectra (2DES), we systematically
investigate how light-matter coupling strength and cavity loss rate influence the optical response signal. Our
results confirm the polaron decoupling effect, which is the reduced exciton-phonon coupling among polariton
states due to the strong light-matter interactions. We further demonstrate that the polariton coherence time
can be significantly prolonged compared to the electronic coherence outside the cavity.

I. INTRODUCTION

Coupling molecular excitations to a quantized radia-
tion field inside an optical cavity produces a set of light-
matter hybrid states known as polaritons. These polari-
ton states, which are a hybridization of matter excita-
tion and photonic excitation, have shown great promise
in changing the reactivities of molecules1–5. In particu-
lar, the light-matter interaction has been shown to effec-
tively reduce the coupling between excitons and phonons,
which is commonly referred to as the polaron decou-
pling effect.6,7 This polaron decoupling effect results in
an enhanced charge transfer rate constant,6 reduction of
the homogeneous linewidth of spectra,8,9 and causes bal-
listic exciton-polariton transport.10–12 In particular, the
exciton-polariton coherence lifetime should be prolonged
due to reduced coupling with the phonon bath.9

Linear13 and non-linear spectroscopy9,14,15 are pow-
erful measurements that provide a fundamental un-
derstanding of the photophysics of polariton systems.
Recent theoretical progress16–18 has focused on sim-
ulating the polariton 2-dimensional electronic spectra
(2DES) spectra, such as an analytic expression based
on the non-Hermitian Hamiltonian,17 or based on the
Heisenberg-Langevin equation.18 Nevertheless, there is
a lack of general theoretical approaches that can accu-
rately simulate exciton-polariton spectra beyond pertur-
bative methods,18 with an accurate description of the
non-Markovian exciton-phonon coupling and the cavity
loss dynamics.

In this paper, we combine the partial linearized density
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matrix (PLDM) approach19–22 with a stochastic Lind-
blad dynamics to simulate polaritonic spectroscopy in
lossy cavities. To include the cavity loss dynamics, we de-
velop stochastic Lindbald dynamics, which exactly repro-
duce the Lindblad dynamics when averaged over an en-
semble of trajectories. With this combined approach, we
simulate the linear and non-linear spectra of a monomer
and dimer coupled to a single-mode cavity. With simu-
lated linear and 2DES spectra of the polariton, we sys-
tematically investigated the influence of the light-matter
coupling strength and cavity loss rate on the optical sig-
nals. In particular, we demonstrate that the polariton
coherence (interpreted from the off-diagonal peak of the
2DES spectra) can be significantly prolonged by increas-
ing the light-matter coupling strength, providing a theo-
retical verification of the polaron decoupling effect.9

II. THEORY AND METHOD

In this section, we provide a brief overview of linear and
non-linear spectroscopy using the Liouville pathways that
contribute to the response signals. We then briefly review
how the PLDM approach computes response functions
for any operator dynamics. We further use Lindbald dy-
namics to describe the effect of cavity loss and develop a
new trajectory-based approach to combine Lindbald dy-
namics with the PLDM approach, in order to provide a
systematic way to incorporate cavity loss in polariton dy-
namics simulations for calculating linear and non-linear
spectra.
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A. Linear and Non-linear spectroscopy

The linear absorption can be written as a dipole-
dipole auto-correlation function with the ensemble av-
eraging done over the ground state density matrix of the
ensemble.23 For linear absorption spectroscopy, the laser
strength is much weaker than the internal interaction en-
ergies of the system such that we can treat it as a pertur-
bation. The linear response of a system to the external
radiation field, in the impulsive limit, is expressed as

R(1)(t1) = −iTr[µ̂(t1)[µ̂(t0), ρ̂
(g)]]. (1)

where t0 is the time of interaction between the first laser
and the system, where t1 is the time when the sys-
tem emits the response signal. Further, µ̂(t1) is the
dipole operator in the interaction picture, ρ̂(g) repre-
sents the initial density matrix of the system in the
equilibrium ground state at t = −∞, (ρ̂(g) = ρ̂(−∞)).
The frequency domain spectra can be computed from a
smoothed Fourier transform of R(1)(t) as follows

R(1)(ω) =

∫ T

0

R(1)(t)eiωt cos

(
πt

2T

)
dt, (2)

where T is the maximum time of the recorded time-
domain spectra and cos(πt/2T ) is a smoothing function.
The linear spectra are often limited in the amount of in-
formation that can be extracted for a given system, such
as its inability to distinguish different broadening mecha-
nisms arising due to homogeneous or inhomogeneous dis-
tributions of frequencies.

Non-linear spectroscopy, on the other hand, provides
much more detailed information that is not available in
linear spectra.23–30 More detailed dynamical information
can be extracted (compared to the linear spectra) by
perturbing the system multiple times with consecutive
laser pulses. Each additional laser pulse adds a higher-
order non-linear perturbation to the overall density ma-
trix, which can be interpreted from a specific pathway in
the Liouville space. For a general two-dimensional spec-
troscopy experiment, three laser pulses are used with dif-
ferent time delays and thus, in the impulsive limit, the
3rd order response can be calculated from a four-point
correlation function

R(3)(t1, t2, t3) = −iTr[µ̂(t3)[µ̂(t2), [µ̂(t1), [µ̂(t0), ρ̂
(g)]]]].

(3)
Here, the factor of −i comes from (−i)3 in the third order
of perturbative expansion. Here, t1 and t2 are the time
of interaction between the system and the second and
third laser pulses, respectively, whereas t4 is the time at
which the system produces the non-linear response sig-
nal. Further, R(3) can be decomposed into 8 different
Liouville pathways, each representing a separate Feyn-
man diagram and giving rise to a non-linear response
signal. Each of the response signals is also accompanied
by a phase factor that makes it possible to have an inde-
pendent spatial direction of detection for each diagram.

These Liouville pathways (Feynman diagrams) can be
categorized as either rephasing or non-rephasing signals,
based on the phase accumulated by the signal after the
application of the third laser pulse. These signals can be
further partitioned into three physical processes, namely,
stimulated emission (SE), ground-state bleaching (GSB),
and excited-state absorption (ESA). For notation pur-
poses, we only write the first four Liouville pathways in
Eq. 4a - Eq. 4d

R
(3)
1 (t1, t2, t3) = −iTr[µ̂(t3)µ̂(t0)ρ̂

(g)µ̂(t1)µ̂(t2)], (4a)

R
(3)
2 (t1, t2, t3) = −iTr[µ̂(t3)µ̂(t1)ρ̂

(g)µ̂(t0)µ̂(t2)], (4b)

R
(3)
3 (t1, t2, t3) = −iTr[µ̂(t3)µ̂(t2)ρ̂

(g)µ̂(t0)µ̂(t1)], (4c)

R
(3)
4 (t1, t2, t3) = −iTr[µ̂(t3)µ̂(t2)µ̂(t1)µ̂(t0)ρ̂

(g)], (4d)

while the remaining four pathways are just the complex
conjugates of the listed four (which can be verified by
expanding Eq. 3 and using the cyclic property of the
trace of matrix multiplications).

In purely-absorptive 2D experiments, the signal is cal-
culated by adding the rephasing and non-rephasing sig-
nals as follows

R(3)
rep(t1, t2, t3) = R

(3)
2 +R

(3)
3 +R

(3)∗
1 , (5a)

R(3)
nrp(t1, t2, t3) = R

(3)
1 +R

(3)
4 +R

(3)∗
2 . (5b)

In Eq. 5a and Eq. 5b, we arrange the terms on the
right-hand side in the order of SE, GSB, and ESA, re-
spectively. Note that the formalism we present below can
be used to calculate all possible non-linear spectroscopy
experiments and is not limited to just Eq. 5a and Eq. 5b.
Usually, 2D spectra are represented as the imaginary part
of a t2 varying series of Fourier transformed t1 and t3
axes. Because of the rephasing and non-rephasing, the
signals are generated in different quadrants of the fre-
quency domain. As such, the 2D Fourier transform is
calculated by

R(3)
rep(ω1, t2, ω3) =

∫ T1

0

∫ T3

0

R(3)
repe

iω3t3−iω1t1S1S3dt1dt3,

(6a)

R(3)
nrp(ω1, t2, ω3) =

∫ T1

0

∫ T3

0

R(3)
nrpe

iω3t3+iω1t1S1S3dt1dt3,

(6b)

where the smoothing function Si is

Si = cos

(
πti
2Ti

)
.

With Eq. 6a and Eq. 6b, we can now represent the con-
ventional purely-absorptive 2D spectra as

R(3)(ω1, t2, ω3) = − Im(R(3)
rep +R(3)

nrp). (7)
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B. PLDM Approach for Dynamics Propagation

The diabatic Hamiltonian of a system under the influ-
ence of a nuclear bath can be expressed as

Ĥ =
P̂ 2

2M
+

N∑
a

Vaa(R̂) |a⟩⟨a|+ 1

2

N∑
b ̸=a

Vab(R̂) |a⟩⟨b| (8)

where R̂ and P̂ are the nuclear position and momenta,
respectively, of the bath coordinates, M is the mass of
the bath particles, and {|a⟩, |b⟩} are the quantum DOFs
of the system (e.g. the electronic excitation and pho-
tonic exciton of the molecule-cavity hybrid system). As
the total number of states increases, quantum dynamics
simulations can become expensive due to the exponen-
tial scaling19,31–33 of the calculation with the number of
degrees of freedom. Over the years, there has been an
enormous development of many semi-classical19,34 mixed
quantum-classical35–37, and quantum master equation
approaches38–42, each with their own strengths and short-
comings. Quantum master equation approaches are often
based on perturbative approaches which are restricted to
weak system-bath couplings and often fail to account for
non-Markovian effects from bath feedback to the quan-
tum subsystem DOFs. Semi-classical approaches, on the
other hand, have been shown to accurately treat non-
Markovian feedback from the nuclear bath to the quan-
tum subsystem and can accurately treat a wide range of
system-bath couplings.19,34

Here, we use the PLDM approach19–22 to compute op-
tical spectra. The time evolution of the matrix element
of the operator Ô is given by〈

nt, Rt +
∆t

2

∣∣∣Ô(t)
∣∣∣n′

t, Rt −
∆t

2

〉
(9)

=
∑
n0,n′

0

∫
dR0dP1dx

FdpFdxBdpBO
n0n

′
0

W (R0, P1)e
iPt∆t

×GF
0G

B
0

1

2
(xF

n0
− ipFn0

)(xB
n′
0
+ ipBn′

0
)

× 1

2
(xF

nt
(t) + ipFnt

(t))(xB
n′
t
(t)− ipBn′

t
(t)).

In the above expression, xF
a and pFa are the Meyer-

Miller-Stock-Thoss (MMST) mapping variables43–45 as-
sociated with the state |a⟩ for the forward propaga-
tion, and xB

a and pBa are the corresponding mapping
variables for the backward propagation. Furthermore,

GF
0 = exp

[
− 1

2

∑
a(p

F
a
2
+ xF

a
2
)
]
is a Gaussian function of

the mapping variables, with an analogous expression19,20

for GB
0 . These Gaussian terms arise due to the coher-

ent state representation of the mapping variables used in
PLDM.19–21,46 Further, R and P denote the mean posi-
tion of the bath and the momentum, and ∆ is the path
difference between the forward and the backward nuclear
paths.

The initial nuclear phase space variables are sampled
from the Wigner distribution

O
n0n

′
0

W (R0, P1) =∫
dZ0

〈
n0, R0 +

Z0

2

∣∣∣Ô∣∣∣n′
0, R0 −

Z0

2

〉
e−iP1Z0 . (10)

The nuclear phase space variables (R, P ) evolve accord-
ing to the mean force from the forward and backward
mapping variables,

F(R) = −1

2
∇R

{
H(R,xF,pF) +H(R,xB,pB)

}
. (11)

With the MMST diabatic mapping, the Hamiltonian
(Eq. 8) is expressed (without the zero-point energy cor-
rection) in terms of mapping variables (x,p),

H(R) =
P 2

2M
+

1

2

∑
a

Vaa(R)(x2
a + p2a − 1)

+
1

2

∑
b̸=a

Vab(R)(xaxb + papb).

(12)

To summarize, the equation of motion for the coupled
electronic and nuclear DOFs is

∂R

∂t
= P,

∂P

∂t
= F , (13a)

∂xa

∂t
=

∂H
∂pa

=
1

ℏ
∑
b

Vab(R)pb, (13b)

∂pa
∂t

= − ∂H
∂xa

= −1

ℏ
∑
b

Vab(R)xb, (13c)

where the equations of motion for the mapping variables
are identical for both the forward and backward vari-
ables, xa = {xF

a , xB
a } and pa = {pFa , pBa }.

C. L-PLDM (Lindblad-PLDM) Dynamics

We aim to seamlessly incorporate cavity loss dynamics
with the polariton dynamics simulation using PLDM. We
begin with a general discussion of the Lindblad dynamics
and then develop a new trajectory-based approach that
can incorporate Lindblad loss dynamics with PLDM.
The Hamiltonian Ĥ (Eq. 8) could interact with an ad-

ditional dissipative environment, such as the photonic
bath (far field, non-cavity modes) that causes cavity loss.
We denote the total Hamiltonian as

ĤT = ĤS + ĤE + ĤI, (14)

where ĤE =
∑

j ℏωj(b̂
†
j b̂j + 1

2 ) accounts for the envi-

ronmental DOF (far field, non-cavity modes), and the

interactions between ĤS and ĤE though the interaction

term ĤI = (â† + â) ⊗
∑

j ℏgj(b̂
†
j + b̂j) that accounts for

the interactions between the cavity mode (see Eq. 36)
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described by {â†, â} and the far-field modes {b̂†j , b̂j}. A

detailed discussion of cavity loss (and the expression of

ĤE and ĤI) can be found in Appendix D of Ref. 47. De-
noting the total density operator ρ̂T associated with the
total Hamiltonian ĤT, we can trace out the environmen-
tal DOF and have the system part of the reduced density
operator as

ρ̂S = TrE[ρ̂T], (15)

as well as the reduced density operator for the quantum
subsystem

ρ̂ = TrETrR[ρ̂T] = TrR[ρ̂S]. (16)

For simplicity, in the following of the paper, we denote
the system part of the Hamiltonian (which includes ex-
citonic, photonic, and nuclear DOFs) as

Ĥ ≡ ĤS. (17)

In the Markovian regime of system-environment inter-
actions, the dynamics of ρ̂ can be described using the
Lindblad master equation

∂ρ̂

∂t
= LĤ [ρ̂] + LL̂[ρ̂], (18)

where LĤ [ρ̂] propagates the reduced density matrix dy-

namics corresponding to the system Hamiltonian Ĥ
(Eq. 8). The dynamics governed by LĤ [ρ̂], which includes
the quantum subsystem, as well as interactions with non-
Markovian phonons, can be simulated using PLDM using
Eq. 9 and the corresponding EOMs in Eq. 13. The dis-
sipator LL̂ accounts for the cavity loss channel causing
the system to relax

LL̂[ρ̂] = Γ
(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
, (19)

where Γ is the rate of relaxation of the jump opera-
tor which quantifies the coupling strength of the sys-
tem to the environment, and {Â, B̂} = ÂB̂ + B̂Â is
the anti-commutator. For multiple relaxation channels,
each associated with a decay rate Γφ and jump oper-

ator L̂φ, Eq. 19 needs to be generalized to LL̂[ρ̂] =∑
φ Γφ(L̂φρ̂L̂

†
φ − 1

2{L̂
†
φL̂φ, ρ̂}) for each loss channel φ.

In the context of the present work, we are mainly inter-
ested in jump operators that decay the population from
state |1⟩ to state |0⟩, of the form

L̂ = |0⟩⟨1| , (20)

where for multiple decay channels, one should sum the
dissipators of each jump operator. A detailed example of
L̂ for describing cavity loss can be found in Eq. 43 and
Eq. 44.

To incorporate Lindblad decay dynamics into the
PLDM method, we develop the following approach,

which we refer to as the L-PLDM method, with a simi-
lar procedure documented in the work of L-MFE (Lind-
blad mean-field Ehrenfest) in Ref. 47. The current ap-
proach follows the original idea used in 47, of match-
ing the exact time evolution of the density matrix gov-
erned by the Lindblad dissipator, with a deterministic
change of the magnitude of the electronic expansion co-
efficients (in terms of mapping variables), but stochastic
changes of the phases for these coefficients. The primary
difference between MFE and PLDM, however, is that
the PLDM method effectively uses the outer product of
two separate coefficients (for forward and backward map-
ping variables, see Eq. 9) to calculate the estimator of
the density matrix instead of a single set of coefficients
in Ehrenfest dynamics. The use of two separate coeffi-
cients (associated with the forward and backward paths
of mapping DOFs) allows for the possibility of popula-
tions being complex instead of purely non-negative and
real. The L-MFE approach does not work correctly for
complex populations, and thus a modified method for
PLDM must be used.
Similar to the L-MFE approach, the propagation of the

forward and backward variables are split into a PLDM
quantum dynamics propagation step and a Lindblad de-
cay step which can be evaluated separately.47 For the
Lindblad decay step, the real mapping variables at time
t can be combined into complex mapping variables (co-
herent state variables) as follows

zFa (t) =
1√
2
(xF

a (t) + ipFa (t)), (21a)

zBa (t) =
1√
2
(xB

a (t) + ipBa (t)). (21b)

The forward and backward coefficients for state |a⟩ at
time t, ZF

a (t) and ZB
a (t), based on the PLDM expression

in Eq. 9 (see the 3rd line of the expression) are calculated
by weighting the current complex mapping variables with
the initial value of the mapping variables for the initially
focused states n0 and n′

0 as follows

ZF
a (t) = zFa (t)z

F*
n0

(0), (22a)

ZB
a (t) = zBa (t)z

B*
n′
0
(0). (22b)

Using Eq. 22, the reduced density matrix estimator ele-
ments for the quantum subsystem ρ̂ at time t are given
by averaging over the whole ensemble of trajectories ac-
cording to the PLDM approach [c.f. Eq. 9] as follows

ρab(t) =
1

Ntraj

Ntraj∑
ξ=1

ZF
a,ξ(t)ZB*

b,ξ (t), (23)

where Ntraj is the number of trajectories and ξ is the
index of a trajectory. To incorporate Lindblad decay, the
time-evolved coefficients after a time step dt are written
as the product of the previous coefficient times a complex
random number

ZF
a,ξ(t+ dt) = ηFa,ξZF

a,ξ(t),

ZB
a,ξ(t+ dt) = ηBa,ξZB

a,ξ(t),
(24)
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where {η} are complex random numbers sampled at each
time step. The time-evolved density matrix estimator
can now be written as

ρab(t+ dt) =
1

Ntraj

Ntraj∑
ξ=1

ηFa,ξZF
a,ξ(t) · ηB*

b,ξZB*
b,ξ (t). (25)

The joint probability distribution of these random vari-
ables is chosen such that the expectation value of the
propagated density matrix estimator obeys the exact
time evolution of the initial density matrix estimator as
follows

⟨ρab(t+ dt)⟩ = eLL̂dt[ρ̂(t)]ab, (26)

where ⟨ρab(t+ dt)⟩ is the formal expectation value of the
density matrix estimator element which can be calculated
by integrating over the joint probability distribution of
the random variables {η}. For jump operators of the
form in Eq. 20, it can be shown that the following ex-
pressions of the random variables for states |1⟩ and |0⟩
satisfy Eq. 26

ηF1,ξ = ηB1,ξ = e−Γdt/2, (27a)

ηF0,ξ = ηB*
0,ξ = 1 + (2r − 1)

√√√√3(1− e−Γdt)
ZF

1,ξ(t)ZB*
1,ξ(t)

ZF
0,ξ(t)ZB*

0,ξ(t)
,

(27b)

where r ∈ [0, 1] is a random number sampled from the
standard uniform distribution at each time step for each
trajectory. A brief derivation of the approach described
in Eqs. 27a and 27b is provided in Appendix A. Note
that while Eqs. 27a and 27b preserve the trace of the
expectation value of the density matrix estimator among
the ensemble of trajectories, the trace of an individual
trajectory’s density matrix estimator may not be con-
served due to the nature of the sampling. Furthermore,
unlike the L-MFE approach, which has a fully determin-
istic change in the coefficient magnitudes, the change in
the magnitude of the ground-state coefficient in Eq. 27b is
stochastic, which was necessary to deal with the potential
complex population estimators for each individual trajec-
tory (ZF

a,ξ(t)ZB*
b,ξ (t) in Eq. 23) that arise in the PLDM

method. The propagated forward mapping variables can
be recovered as follows

xF
a,ξ(t+ dt) =

√
2Re

[
ZF

a,ξ(t+ dt)

zF*n0,ξ
(0)

]
, (28a)

pFa,ξ(t+ dt) =
√
2 Im

[
ZF

a,ξ(t+ dt)

zF*n0,ξ
(0)

]
, (28b)

and likewise for the backward mapping variables.
The Lindblad decay procedure described above is com-

bined with the regular propagation of the mapping vari-
ables by PLDM. The overall propagation of the density

matrix estimator during a time step (similar to the previ-
ous work as described in Ref. 47) can thus be summarized
as

ρ̂(t+ dt) = L[ρ̂] = eLL̂dt/2eLĤdteLL̂dt/2ρ̂(t), (29)

where eLL̂ is the decay dynamics propagation outlined
above (in Eq. 28 and Eq. 27) and eLĤ is the PLDM
propagation based on the system Hamiltonian. In the
scheme of Eq. 29, we have used the symmetrized Trotter
decomposition to reduce the error of using a finite dt.
This stochastic approach is briefly compared to Lindblad
dynamics in Appendix B.

III. MODEL SYSTEMS

In this work, we investigate an excitonic monomer and
an excitonic dimer coupled to a resonant optical cavity.
The excitonic part is described by a Frenkel excitonic
Hamiltonian. We perform spectroscopy simulations for
both monomers and dimers placed outside and inside the
cavity and compare the changes induced by coupling to
the cavity.
The exciton Hamiltonian is given by

Ĥex =
∑
m

(ϵ̄+ ϵm) |m⟩⟨m|+
∑
mn

Jmn |m⟩⟨n| , (30)

where ϵ̄ is the reference exciton energy, ϵm is the on-
site excitation energy for site m, and Jmn is the di-
abatic coupling between site m and n. The diabatic
states are represented in the exciton basis where |m⟩ ≡
|g1, g2, ..., em, gm+1, ..., gN ⟩ represents the exciton local-
ized on the mth monomer

|m⟩ =
( ⊗

n̸=m

|gn⟩
)
⊗ |em⟩. (31)

Each of the individual sites has their own individual
phonon bath

ĤR =
1

2

∑
m,ν

(
P̂ 2
m,ν + ω2

m,νR̂
2
m,ν

)
, (32)

where the mass for each nuclear mode is set to beMν = 1.
Further, Ĥex and ĤR are coupled through the exciton-
phonon coupling

Ĥex−R =
∑
m

∑
ν

cm,νR̂m,ν ⊗ |m⟩⟨m| . (33)

These coupling constants are sampled from the Debye
spectral density

Jm(ω) =
π

2

∑
ν

c2m,ν

ωm,ν
δ(ω − ωm,ν) =

2λω0ω

ω2
0 + ω2

, (34)

where λ is the reorganization energy and ω0 is the cutoff
frequency of the bath. Here, we assume that each site
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m has identical phonon baths and associated spectral
density.

When coupling this exciton system to a cavity, the
total Hamiltonian is described at the Jaynes-Cummings
(JC) level of theory as

Ĥ = Ĥex + Ĥex−R + ĤR + Ĥph + Ĥex−ph, (35)

where the photonic Hamiltonian is expressed as

Ĥph = ℏωc(â
†â+

1

2
), (36)

where â† and â are the creation and annihilation
operators, respectively, for the cavity field. The
exciton-photon interaction (due to the coupling between
molecules and the cavity mode) is given by

Ĥex−ph =
∑
m

ℏgc(m) ·
(
|G⟩⟨m| â† + |m⟩⟨G| â

)
, (37)

under the rotating wave approximation, and the collec-
tive ground state |G⟩ is defined as

|G⟩ =
⊗
j

|gj⟩. (38)

The photon-matter coupling strength is given by

gc(m) = µm

√
ℏωc

2Vϵ0
, (39)

where V is the cavity volume, ϵ0 is the cavity permittivity,
and µm is the transition dipole moment associated with
site m. The total dipole operator for the matter

µ̂ =
∑
m

µm(|G⟩⟨m|+ |m⟩⟨G|) (40)

is responsible for the optical spectra. Here, we assume
that the transition dipole direction always aligns with the
cavity field polarization direction, and we also assume
that there are no permanent dipoles. Further, we intro-
duce the following short-hand notation for the exciton-
Fock state

|G, k⟩ ≡ |G⟩ ⊗ |k⟩, |m, k′⟩ ≡ |m⟩ ⊗ |k′⟩, (41)

where |k⟩ and |k′⟩ are the Fock states (eigenstates of Ĥph

in Eq. 36). The light-matter Hamiltonian in Eq. 35 is in

the form of Ĥ in Eq. 8, where the quantum subsystem is
{|a⟩, |b⟩} = {|G, k⟩, |m, k′⟩}. The exciton-photon-nuclear
dynamics will be propagated using the PLDM approach
(Eq. 13), and the cavity loss dynamics are accounted for
by using the algorithm in Eq. 28. The polariton states of
the molecule-cavity hybrid system are defined as

(Ĥex + Ĥph + Ĥex−ph)|Φα⟩ = Eα|Φα⟩, (42)

where the |Φα⟩ is the polariton state, with the polari-
ton energy Eα. Note that here we have not considered

any bath degrees of freedom (ĤR or Ĥex−R) inside the
definition of the polariton state and polariton energies,
as opposed to the previous work that explicitly considers
them inside the polariton definitions.48,49

The lifetime of the cavity mode is finite, due to the
coupling between the cavity mode and the far-field pho-
ton modes outside the cavity. The detailed discussions
for molecular cavity QED with cavity loss are provided
in Appendix D of Ref. 47. Here, we use the following
Lindblad jump operator47,50 to model this process

L̂ = â⊗ Îex =
[ ∞∑
k=1

√
k|k − 1⟩⟨k|

]
⊗ Îex, (43)

where |k⟩ is the vacuum’s Fock state (eigenvector

of Eq. 36), and Îex = |G⟩⟨G| +
∑

m |m⟩⟨m| +∑
m̸=n |m,n⟩⟨m,n| is the identity operator for the elec-

tronic exciton subspace up to double excitation. The
decay rate associated with L̂ is denoted as Γ. Note that
the jump operator in Eq. 43, in principle, includes all
possible transitions between Fock states |n+ 1⟩ and |n⟩.
In a practical simulation, one can choose to include the
physically relevant decay channels. In the model calcu-
lation presented in this paper, we will only consider one
decay channel (see Eq. 44). The system Lindblad jump
operator in this subspace of Fock states can be written
as

L̂ = |G, 0⟩⟨G, 1|+
√
2|G, 1⟩⟨G, 2|+

∑
m

|m, 0⟩⟨m, 1|. (44)

The cavity loss rate from the Fock state |k = 1⟩ to
the Fock state |k = 0⟩ is Γ, and the effective loss
rate from the Fock state |k = 2⟩ to the Fock state

|k = 1⟩ is 2Γ due to
√
k in â (see Eq. 43 and

the second term in Eq. 44). For the L-PLDM im-
plementation (algorithm in Eq. 27-Eq. 28), we treat
each of the term in Eq. 44 as the separate loss chan-
nel as LL̂[ρ̂] =

∑
φ Γφ(L̂φρ̂L̂

†
φ − 1

2{L̂
†
φL̂φ, ρ̂}), where

L̂φ ∈ {|G, 0⟩⟨G, 1|, |G, 1⟩⟨G, 2|, |m, 0⟩⟨m, 1|}. For the
|G, 0⟩⟨G, 1| and each |m, 0⟩⟨m, 1| channel, the loss rate
is Γ. For the |G, 1⟩⟨G, 2| channel, the loss rate is 2Γ.
Even with the current simple model system, one can

clearly understand the recently discovered polaron decou-
pling effect6,7,9 when coupling the molecular system with
the photonic DOF. For a monomer coupled to a single
mode cavity, under the resonant condition, ϵ̄+ ϵm = ℏωc,
the light-matter interaction term in Eq. 37 causes the
light-matter hybridization between the |G⟩ ⊗ |1⟩ with
|m⟩ ⊗ |0⟩, resulting in the following polariton states

|±⟩ = 1√
2
[|G⟩ ⊗ |1⟩ ± |m⟩ ⊗ |0⟩]. (45)

Note that since the exciton-phonon coupling is carried
only through Eq. 33, and the phonon DOFs in Eq. 32
do not couple directly to the photonic DOFs in Eq. 36,
the effective phononic coupling to the polariton state is
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reduced. For example

⟨±|Ĥex−R|±⟩ = ±1

2

∑
ν

cm,νR̂m,ν , (46)

which is only half of the magnitude of ⟨m|Ĥex−R|m⟩ =∑
ν cm,νRm,ν . This effective reduction of the coupling for

the phonon inside the cavity is referred to as the polaron
decoupling effect.6,9 A detailed discussion of the polaron
decoupling effect under the collective coupling regime can
be found in Ref. 7.

| ⟩0

| ⟩1

Γ

⊗
µ!µ"

µ! µ"

⟩|g"g!

⟩|e"e!

⟩|g"e!
⟩|e"g!

𝐽"!

𝑔#

2Γ

2𝑔# | ⟩2

µ ⊗

| ⟩g

| ⟩e

| ⟩0

| ⟩1

Γ

𝑔#
(a) (b)

FIG. 1. Schematic illustration of the model system used in
this work, with the energy level diagram for (a) the monomer
coupled to the cavity and (b) the dimer coupled to the cavity.

Fig. 1 presents the schematic illustration of the model
system considered in this work. Fig. 1(a) presents a
model excitonic system coupled to cavity excitation,
where the matter has onsite energy of ϵ̄ and a transi-
tion dipole µ. The matter couples to the cavity mode
with coupling strength gc (for monomer m = 1, and for
the dimer, the coupling strength gc(m) depends on the
transition dipole magnitude µm, see Eq. 39). The cavity
mode has a loss rate of Γ for the decay of Fock states.
Fig. 1(b) presents a molecular dimer coupled to a single
cavity mode. Individual monomers in the dimer system
have asymmetry in their energies (ϵ1 ̸= ϵ2) and their
transition dipoles (µ1 ̸= µ2). Local excitons (|e1, g2⟩ and
|g1, e2⟩) are coupled with strength J12. In addition, the
cavity has been tuned to the lower exciton. To complete
the double excitation manifold required for the 2DES
simulation, we also include the second excited Fock state,
|g1, g2, 2⟩. This state couples to |g1, e2, 1⟩ and |e1, g2, 1⟩
through Eq. 37 with strength

√
2gc(m). The cavity loss

will cause the decay of |g1, g2, 2⟩ to |g1, g2, 1⟩ according

to L̂ in Eq. 44, with a decay rate of 2Γ.

IV. THE PLDM ALGORITHM FOR POLARITON 2DES
SPECTRA

To simulate the 2DES spectra for the polaritonic
system, we follow the previous procedure outlined in
Ref. 19. Furthermore, we explicitly compute the con-
tribution from individual Liouville pathways (Feynman
diagrams) through Eq. 4a to Eq. 4d. The quantum
DOFs, which are described as the exciton-Fock states

{|a⟩, |b⟩} ≡ {|G⟩ ⊗ |k⟩, |m⟩ ⊗ |k′⟩} where |k⟩ and |k′⟩ are
the Fock states (eigenstates of ĤPh in Eq. 36). The nu-
clear DOFs are sampled from the initial Wigner distri-
bution based on Eq. 10. The total initial condition for
the molecule-cavity hybrid system (the system reduced
density operator, see Eq. 15) is

ρ̂S(0) = ρ̂(0) ⊗ ρ̂R = |G, 0⟩⟨G, 0| ⊗ 1

Q
e−βĤR , (47)

where ρ̂(0) is the initial state for the exciton-photonic
subsystem (the quantum subsystem), and ρ̂R is the ther-

mal initial condition for the phonon, Q = TrR[e
−βĤR ] is

the phonon bath partition function, and β = 1/kBT with
T as the temperature and kB as the Boltzmann factor.
For each of these initial conditions, we generate a tra-

jectory by following the steps below,

1. For ρ̂(0) = |G, 0⟩⟨G, 0|, apply the first dipole op-
erator µ̂ (Eq. 40) to obtain ρ̃(1) ≡ µ̂(t0)ρ̂

(0). For
example, if µ̂(t0) = µm(|G⟩⟨m| + |m⟩⟨G|), then
ρ̃(1) = µm|m, 0⟩⟨G, 0|. Use the focused initial
condition19,46 to assign initial values of the map-
ping variables according to the matrix of ρ̃(1) ≡
µ̂(t0)ρ̂

(0). For example, if ρ̃(1) = |a⟩⟨b|, then

xF
a = 1, pFa = 1, xB

b = 1, pBb = −1. (48)

and all other mapping variables are set to zero. If
ρ̃(1) =

∑
a,b rab|a⟩⟨b| (which is always real), then

one applies the focused initial condition for each
pair of {a, b} and weight the contribution with rab.

2. For each non-zero element in ρ̃(1), perform the L-
PLDM dynamics propagation using Eq. 29 for a
duration of t1.

3. At t = t1, according to each Liouville pathway

R
(3)
1 (t1, t2, t3) (Eq. 4a) to R

(3)
4 (t1, t2, t3) (Eq. 4d),

apply the second dipole operator µ̂(t1) on ρ̃(1)(t1)

to get ρ̃(2)(t2) (note for R
(3)
1 and R

(3)
3 , µ̂(t1) act

from the right-hand side, and for R
(3)
2 and R

(3)
4 ,

µ̂(t1) act from the left-hand side). The other four
Liouville pathways are just the complex conjugate
(c.c.) of Eq. 4a-Eq. 4d and can be simply obtained
by taking c.c. of the L-PLDM results of Eq. 4a-
Eq. 4d.

4. Perform Monte-Carlo importance sampling as de-
scribed in Ref. 19 to evaluate ρ̃(2)(t2), with the fol-
lowing procedure

(a) Expand ρ̃(2)(t2) as

ρ̃(2) =
∑
ab

rabe
iθab |a⟩⟨b| . (49)

(b) Generate the cumulative distribution function
(CDF),

dab =
rab∑
ij rij

. (50)
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(c) Sample a uniform random number, ζ ∈ [0, 1].

(d) Find the index, K ≡ ab, for which,

dK−1 < ζ ≤ dK , (51)

where K − 1 is the previous index of K
when generating the CDF. (For example, for
a 3-level system, the CDF will be made of
[d00, d01, ...d22]. If K ≡ 02, the relation
(Eq. 51) will be d01 < ζ ≤ d02).

(e) With K = ab, set

ρ̃(2) = |a⟩⟨b| , (52)

and use the focused initial condition to sample
the mapping variables (as described in step 3).
The nuclear DOFs remains the same at this
step.

(f) The trajectory is weighted by the phase eiθab

after the time t2.

5. For each t2, repeat the steps 3 and 4 for t3 time
units to get ρ̃(3)(t3).

6. At t3, apply the final dipole operator and multiply
all the previous three weights. The final third-order
response is obtained by taking a trace and multi-
plying by −i.

These steps are calculated for each of the Liouville
pathways (Eq. 4a to Eq. 4d). To demonstrate the de-
tails of the procedure, we present a concrete example of

the evolution of the density matrix for R
(3)
1 (Eq. 4a) in

Fig. 2. The estimator for R
(3)
1 after step (6) is expressed

as

R
(3)
1 (t3, t2, t1) = (−i)3TrexTrph[µ̂3ρ̃

(3)(t3)], (53)

where Trex and Trph represent the trace over the excitonic
and photonic DOFs, separately. The above procedure
can either be terminated after acting µ̂(t2) to get the 1st
order non-linear spectra (e.g. transient absorption spec-
tra) or can also be continued with further perturbations
to get the nth order spectra. The advantage of the PLDM
algorithm is its scalability, where (1) each trajectory can
be propagated independently, and (2) for each trajectory,
any particular branch (t1, t2, t3) can be propagated inde-
pendently of any other branch (t1′ , t2′ , t3′). Thus, the
algorithm is highly parallelizable, and the scaling of the
non-linear spectroscopy computation can be efficiently
controlled in high-performance computing facilities.

V. COMPUTATIONAL DETAILS

A. Model parameters

For the monomer (Fig. 1a), we used ϵ̄ =
10, 000 cm−1 (which is 1.24 eV). The monomeric site

FIG. 2. Schematic illustration of the 2DES simulation algo-
rithm, with one possible path (see Eq. 4 for all possible paths).
The color gradients imply the magnitude of the density ma-
trix elements. L indicates the overall time evolution by the
L-PLDM approach (see Eq. 29), and µiρ̃

(i) (or ρ̃(i)µi) indi-
cate the dipole operator acting on the density matrix from
the left-hand (right hand) side at time t = ti.

coupled to a phonon bath, discretized by Nν = 100 inde-
pendent bath modes, with index ν ∈ [1, 100], has param-
eters sampled from Eq. 34 using the procedure outlined
in Ref. 46 (or more generally, Ref. 51)

cν = 2

√
λ
tan−1(ωmaxτc)

πNνων
, (54a)

ων =
1

τc
tan

(
ν

Nν
tan−1(ωmaxτc)

)
, (54b)

where ωmax ≫ ω0 is the maximum frequency while
discretizing the bath frequencies. Here, we choose
ωmax = 5 ω0. The bath parameters are ω0 = τ−1

c =
18 cm−1 (which is 2.2 meV) and λ = 50 cm−1 (which
is 6.2 meV). The characteristic phonon frequency ω0

leads to a bath correlation function decay timescale of
τc = 300 fs. The cavity coupling strength, gc, is varied
from 50 cm−1 (which is 6.2 meV) to 1000 cm−1 (which
is 124 meV) for linear spectra (Fig. 3). For 2DES in
Fig. 5, gc is varied between 100 cm−1 (12 meV) and
500 cm−1 (62 meV). The cavity loss rate Γ is varied be-
tween 0 meV and 500 meV for linear spectra (Fig. 3)
and between 0 meV and 20 meV (which is 161 cm−1) for
2DES in Fig. 5. The cavity quality factor is defined as
Q = ωc/Γ. For the resonant case, ωc = ϵ̄, and Q = 62
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FIG. 3. Linear absorption spectra of a monomer outside the cavity (black) and inside the cavity (red), with (a) varying the
cavity loss rates Γ and a fixed light-matter coupling strength gc ≈ 456 cm−1, and (b) varying cavity coupling strength ℏgc and
a fixed cavity loss rate of Γ = 10meV.

for Γ = 20 meV.
For the dimer (Fig. 6 and Fig. 7), we used the mean

onsite energy ϵ̄ = 10, 000 cm−1 (1.24 eV) and ϵ1 − ϵ2 =
100 cm−1. The ratio of dipoles for individual monomeric
sites is taken to be µ1/µ2 = −5, and so is the light-
matter coupling constant gc(1)/gc(2) = −5. We use 100
discretized bath modes for each site from Eq. 34 with ω0

=200 cm−1 (which is 24.8 meV) and λ=200 cm−1. The
characteristic phonon frequency ω0 gives a bath correla-
tion decay timescale of τc = 50 fs. The coupling strength,
gc, is varied between 100 cm−1 (which is 12 meV) and
500 cm−1 (which is 62 meV) for Fig. 6. In Fig. 7,
gc = 500 cm−1 and Γ = 10 meV is used.

The initial nuclear condition ρ̂R (see Eq. 47) is de-
scribed by its Wigner transform for the PLDM approach,
with the following analytic expression

[ρ̂R]W(R0, P1) = (55)∏
ν

2 tanh

(
βℏων

2

)
exp

[
− tanh

(
βℏων

2

)(
ω2
νR

2
0

ℏ2
+

P 2
1

ℏ2ω2
ν

)]
.

The initial nuclear configurations (R0, P1) are sampled
from the Gaussian random distribution, with width ac-
cording to Eq. 55.

B. Simulation Details

All the simulations are performed under room temper-
ature T = 300 K. For the monomer, the linear spectra in
Fig. 3 were computed using Eq. 2, which is a smoothed
Fourier transform of the response function R(1)(t) in
Eq. 1. We obtain R(1)(t) (Eq. 1) by performing the L-
PLDM simulation using 105 trajectories, with the dy-
namics governed in Eq. 29. The initial nuclear configu-
rations are sampled from Eq. 10, and the initial mapping

variables are chosen based on the focused initial condi-
tion (see Eq. 48). The total simulation time is 300 fs for
the R(1)(t), which guarantees a converged R(1)(ω).
The 2DES spectra in Fig. 5, Fig. 6, and Fig. 6 are cal-

culated with 104 trajectories, although convergence be-
gins to appear with only 103 trajectories. The color bar
corresponds to 2DES signal intensities normalized with
respect to the maximum peak intensity for the 2DES at
t2 = 0 fs for each simulation. The monomer 2DES calcu-
lation involves T1 = T3 = 300 fs with a nuclear time step
of 1 fs and 120 electronic time steps for each nuclear time
step. For the 2DES intensity plot in Fig. 8 we used 103

trajectories. This calculation involved T1 = T3 = 50 fs
with a nuclear time step of 0.5 fs and 60 electronic steps
per nuclear time step. In Fig. 8, all peak intensities are
calculated by selecting a small region ∆ω = ±10 cm−1

around the off-diagonal peak location and integrating the
intensity of the region, then normalized with respect to
the integrated value at t2 = 0 fs.

VI. RESULTS AND DISCUSSION

We present the computed linear absorption and purely
absorptive-2DES of a monomer and an asymmetric dimer
coupled to a single-mode cavity. We investigate the effect
of light-matter coupling and cavity loss on the photophys-
ical properties of exciton-polaritons.

A. Linear spectra

Fig. 3 presents the linear absorption spectra of a
monomer coupled to the cavity by either varying cavity
loss rate, Γ (Fig. 3a), or by varying the light-matter cou-
pling strength, gc (Fig. 3b). The black curve in all panels
represents the bare monomer molecular absorption spec-
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tra, with the broadening coming from couplings to col-
lective bath-mode fluctuations. The red curves represent
the spectra of a monomer coupled to a cavity mode.

In Fig. 3a, we fix the light-matter coupling gc = 57 meV
(≈ 456 cm−1), while varying the cavity loss Γ. For
Γ = 0 meV (top panel), we observe a Rabi splitting of the
monomer peak into upper and lower polaritons. The two
polariton peaks (red curves) have a reduced line width
compared to that of the bare monomer, hinting at the
effective decoupling of polariton states from the phonon
bath,6,9 due to the fact that the photonic DOF is not
directly coupled to the phonon (nuclear bath), see Eq. 46.
Further, as we continue to increase the cavity loss, we see
essentially the same splitting, but with extra broadening
relative to the no-loss cavity case. This is expected as the
cavity loss rate adds another relaxation channel, i.e., the
loss can also be thought of as an additional set of bath
modes now attached to the upper and lower polariton
states. At a very high loss rate (Γ ≫ gc), we start to
see that two polariton peaks begin to merge into one,
indicating that the strong-coupling condition is no longer
fulfilled.

Fig. 3b presents the linear spectra for a fixed cavity loss
rate Γ = 10 meV, with an increase in coupling strength
gc. The Rabi splitting of upper and lower polaritons in-
creases. When gc = 50 cm−1 or 100 cm−1, the strong
coupling condition that gc ≫ Γ, κ is not fulfilled and
there is no apparent Rabi splitting. As the gc increases,
the Rabi splitting appears. The broadening of individ-
ual polariton peaks is the same in all the above cases,
which is expected from the fixed cavity loss rate (which
is equivalent to fixing the photon loss bath parameters
that couples to the cavity mode qc, and hence the same
distribution of frequencies).

We note that in Fig. 3a, there is a slight contraction
of the Rabi splitting when we increase the cavity loss
Γ, for example, when we increase Γ from 50 meV to 100
meV. This contraction is caused by cavity loss. When ex-
plicitly considering the cavity loss rate Γ and the matter
loss rate κ, the Jaynes-Cummings model Hamiltonian in
the {|G, 1⟩, |e, 0⟩} subspace is expressed as52–54 (without
including the field zero-point energy ℏωc/2)

ĤJC =

[
EG + ℏωc − iκ2 ℏgc

ℏgc Ee − iΓ2

]
. (56)

Under the resonant condition that EG+ℏωc = Ee, and di-
rectly diagonalizing the above Hamiltonian, one obtains
the following complex eigenvalues52,53

E± = Ee − i
κ+ Γ

4
±
√
ℏ2g2c −

(κ− Γ

4

)2

, (57)

with the real part corresponding to the eigenenergy and
the imaginary part corresponding to the loss/broadening.
For the model system investigated here, κ = 175 cm−1

(from directly fitting the numerical value of R(1)(ω), the
black curve in Fig. 3 to a gaussian), and for Γ = 100 meV
(806 cm−1), the Rabi splitting is reduced (see Eq. 57),

causing the peak of the upper and lower polariton to
shift from ±456 cm−1 to ±428 cm−1, which is in semi-
quantitative agreement with our numerical results. In
fact, the agreement between the analytic answer from
Eq. 57 and the simulated spectra are incredibly good,
across all cavity loss Γ we explored.

FIG. 4. A comparison between the L-PLDM simulated linear
spectra (red solid lines) with the analytic expression in Eq. 58
(black dotted lines), for the same model system presented
in Fig. 3. The coupling strength gc ≈ 456 cm−1 is fixed,
whereas the cavity loss rate Γ varies. The analytic curve in
Eq. 58 is obtained with peaks from the real part of Eq. 57 and
Lorentzian broadening of the width given by the imaginary
part of Eq. 57.

In Fig. 4, we present a direct comparison between the
simulated linear spectra (red) with the polariton absorp-
tion modeled by the analytic expression (black dashed)
composed of adding two Lorentzian lineshapes for the |+⟩
and |−⟩ polaritons as follows

R(1)(ω) ∝
∑
α=±

|µαG|2 ·
1

π
· σα

(ℏω − ℏωα)2 + σ2
α

, (58)

with the polariton frequency ωα = (Re[Eα] − EG)/ℏ
taken from the real part of Eq. 57, and the width σα =
Im[Eα] = (κ + Γ)/4 taken from the imaginary part of
Eq. 57. For a large cavity loss rate Γ, the term inside
the square root becomes negative so that the real solu-
tion no longer exists and the two polariton peaks merge
into one. Also, the width of the polariton peak, based on
Eq. 57, is (κ+ Γ)/4. As the cavity loss rate Γ increases,
the width of the polariton peak will also increase. Un-
der the Γ = 0 limit, the polariton peak has a width of
κ/4, two times smaller than the original exciton width
κ/2, indicating the polaron decoupling effect from the
light-matter interaction7,9 (see Eq. 46 and discussions).
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FIG. 5. Purely absorptive polaritonic 2DES for a monomer coupled to the cavity. (A) The molecule-cavity hybrid system is
kept under a fixed light-matter coupling strength ℏgc = 57 meV with various cavity loss rates, with (a)-(c)Γ = 0 meV, (d)-
(f)Γ = 10 meV and (g)-(i)Γ = 20 meV. The 2DES spectra are presented at different waiting times t2 for t2 = 0 fs (left column),
t2 = 20 fs (middle), and t2 = 80 fs (right column). (B) The hybrid system is kept under a fixed cavity loss of Γ = 10 meV, and
with various light-matter coupling strengths of (a)-(c)ℏgc = 0 meV, (d)-(f)ℏgc = 10 meV and (g)-(i)ℏgc = 20 meV.

B. Purely absorptive 2D polariton spectra of monomer in
cavity

Fig. 5 presents the purely absorptive 2DES polariton
spectra (see Sec. IV) of a monomer coupled to a single-
mode cavity. Fig. 5A represents the polariton 2DES spec-
tra with various cavity loss rates Γ and with a fixed cou-
pling strength of gc = 57 meV. Fig. 5B presents the po-
lariton 2DES spectra with various coupling strengths gc
at a fixed cavity loss rate of Γ = 10 meV. For all 2DES
plots, the horizontal and vertical dotted lines indicate
the polariton peak locations ±gc along the emission and
excitation axes. Note that the actual peak position will
be shifted with different cavity loss rates, as indicated by
Eq. 57 and Fig. 3.

In Fig. 5A, panels (a)-(c) provides the 2D spectra of
monomers coupled to a cavity with no cavity loss. We
observe the Rabi splitting of the lower and upper po-
lariton diagonal peaks at t2 = 0 fs. These peaks are
also stretched along the diagonal, indicating the inhomo-
geneous distribution caused by the low-frequency bath
modes (see Eq. 32) coupled to the exciton (Eq. 33), and
also both upper and lower polaritons (Eq. 46). The char-
acteristic off-diagonal coherence peaks in the 2D spec-
tra are direct indications of the coupling between the

exciton and the cavity, described in Eq. 37. With an
increase in waiting time t2, the off-diagonal coherence
peaks oscillate and the diagonals slowly become more
homogeneously broadened (along the anti-diagonal direc-
tion) due to spectral diffusion, which arises mainly due
to the decay of bath correlation and the loss of the ini-
tial memory of the system (commonly referred to as the
circularisation), making the excitation axis ω1 more in-
dependent of the emission axis ω3.

With an increase in cavity loss to Γ = 10 meV in panels
(d)-(f) or to Γ = 20 meV in panels (g)-(i), one observes
two prominent features in the 2D spectra. (1) Both the
diagonal and the off-diagonal peaks become more homo-
geneous (further broadened along the anti-diagonal direc-
tion), even at t2 = 0 fs. This is purely due to the effect
of the Lindblad treatment for the cavity loss, which adds
a homogeneous dephasing channel for the decay of the
coherences in the reduced system density matrix, thus
homogenizing the peaks. The homogeneous nature of the
photonic bath is a direct result of Markovian treatment
via Lindbladian, which is equivalent to a bath described
by a very high cutoff frequency. (2) The second laser
pulse puts most of the ensemble in the population state
(see Fig. S2 in the Supplemental Materials), and so a de-
cay in signal intensity along t2 can be mostly attributed
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to excited population decay. Now, the addition of an ex-
tra loss channel from the cavity causes the populations
to decay proportional to e−Γdt (Lindblad-type decay).
Therefore, with an increase in the cavity loss rate Γ, one
observes a faster decay of the signal intensity at a given
t2. This is obvious when comparing panel (e) for Γ = 10
meV or panel (h) for Γ = 20 meV to panel (b) for Γ = 0.

Fig. 5B presents the polariton 2DES spectra when
varying the light-matter coupling strength gc at a fixed
cavity loss rate Γ = 10 meV. With an increase in gc, the
separation between the lower and upper polariton peaks
increases, just like those in the linear spectra as presented
in Fig. 3b. As a result of Rabi splitting, the overlap be-
tween the diagonal and cross peaks decreases, making it
easier to track the behavior of individual peaks.

C. Enhancing Polariton Coherence through Polaron
Decoupling

In Fig. 6, we present the purely absorptive 2D polariton
spectra (Eq. 7) of a coupled dimer inside a lossless cavity
for various coupling strengths gc, from gc = 100 cm−1 for
panels (a)-(c), to gc = 200 cm−1 for panels (d)-(f), and
to gc = 500 cm−1 for panels (g)-(i). The cavity loss rate
is set to be Γ = 0 for clarity. The detailed model param-
eters for the phonon bath are provided in Sec. VA. In
short, a very fast phonon bath relaxation time τc = 50 fs
combined with large reorganization energy λ = 200 cm−1

causes the bath correlation function to decay before the
bath coordinates relax to the excited-state minima. This
causes the system to dephase very quickly, as can also
be confirmed by the coherence dynamics of the reduced
density matrix (and confirmed with Fig. 8a-b). Further,
the bath parameter regime (ω0 = 200 cm−1) causes ho-
mogeneous broadening of the individual polariton peaks.
The large reorganization of the phonon bath also causes
a large spread of 2D lineshapes and a large shift of po-
lariton peaks from the eigenvalue in Eq. 57. For gc = 500
cm−1 and Γ = 10 meV, the t2 = 0 fs 2DES result is pro-
vided in the panel (l) of Fig. 7, which is similar to Fig. 6g,
except with a lower intensity for the signal. Additional
2DES results for various Γ and t2 are provided in Fig. S5
of the Supporting Information.

In Fig. 7, we present the signal decomposition of for the
case of gc = 500 cm−1 and Γ = 10 meV with the aim of
providing an intuitive understanding of the origin of dif-
ferent peaks in Fig. 6. These pathways can be classified as
ground state bleaching (GSB), stimulated emission (SE),
and excited state absorption (ES), each with rephasing
and non-rephasing contributions. The contribution for
each term is provided in Eq. 5 and the discussion below.
The Feynman diagrams for these Liouville pathways are
provided in Fig. S2 of the Supporting Information. In
Fig. 7, we only present the signal from GSB (panels a-c)
and SE (panels d-f). The excited state absorption (ES)
signals are much weaker compared to GSB and SE, and
do not make a significant contribution to the totally ab-

FIG. 6. Purely absorptive 2DES of the exciton dimer
coupled to the cavity, with (a)-(c) gc = 100cm−1, (d)-
(f) gc = 200cm−1, (g)-(i) gc = 500cm−1 for a lossless cavity
(Γ =0meV).

sorptive signal. The ES results are provided in Fig. S4 of
the Supporting Information.
Decomposing the purely absorptive signal into individ-

ual contributions allows us to estimate the contributions
of individual energy transfer processes in the molecule-
cavity hybrid system. Because we have two exciton states
for the system, hybridizing with the photonic excitation
results in three polariton states, which we denote as |+⟩
(upper polariton), |D⟩ (middle polariton), and |−⟩ (lower
polariton) states. The detailed expressions of these three
polaritons are provided Sec. I of the Supporting Infor-
mation, where the middle polariton state has a relatively
small contribution of the photonic excitation, hence is
denoted as the “dark” state |D⟩. The molecular transi-
tion dipoles between |G⟩ and these polariton states are
also provided in the Supporting Information, Sec. I.
For the GSB (panels a-c) and SE pathways (d-f), we

only observe peaks at upper and lower polariton frequen-
cies and also at the coherence position between upper
and lower polaritons. This can be directly understood
by looking at the dipole matrix elements of this partic-
ular system (see Supporting Information, Sec. I), where
there are large transition dipoles from the ground state
to |±⟩ polaritons. The middle polariton (dark state |D⟩)
is not visible in the 2D signal, because the transition
dipole from the ground state to the middle polariton is
very small. In fact, µGD = ⟨D|µ̂|G⟩ is ≈ 35 times smaller
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FIG. 7. Signal decomposition of the purely absorptive 2DES
spectra of the exciton dimer coupled to the cavity, with the
cavity loss rate Γ = 10meV and the light-matter coupling
strength ℏgc = 500cm−1. The signal is decomposed into the
GSB (a-c) and SE (d-f) contribution with their rephasing (a,
d, g) and non rephasing (b, e, f) components for t2 = 0 fs.
The excited state absorption signal (see Fig. S4 of the Sup-
plemental Materials) is much weaker compared to the GSB
and SE components.

than the corresponding transition dipoles to the upper
polariton µ+G or the lower polariton µ−G. Since the GSB
and SE pathways are only involved in transitions between
the ground and first excitation manifold, we do not ob-
serve the signatures of the dark state due to its very low
transition amplitude (|µGD|2 ∝ (1/35)2 = 0.0008). In
Fig. S3 of the Supporting Information, we further present
the contribution of different polariton states to the GSB
and SE peaks, based on the magnitude of |µαG|2 (where
|α⟩ ∈ {|+⟩, |D⟩, |−⟩}. The full results of t2 > 0 spectra
are presented in Fig. S5 of the Supporting Information.
With a finite cavity loss (Γ = 10 meV), one can expect a
similar trend as shown in Fig. 5A. The 2DES peaks will
be more homogeneously broadened and the peak inten-
sity will be lost at a faster rate, with an increased loss
rate, as shown in Fig. S5 of the Supporting Information.

Fig. 8a and Fig. 8b present intensities of the lower di-
agonal and upper cross-peaks as a function of t2, with
Γ = 0 meV, and various light-matter coupling strengths
gc. The orange curve corresponds to the 2DES peak in-
tensities of a molecular system outside the cavity (or
gc = 0). As we can see, there is no apparent coherent
oscillation in the system due to the large reorganization
of the phonon bath that causes fast decoherence. When
coupling to the cavity, we see that with an increase in the
light-matter coupling, the coherence oscillations become
more prominent and last for more than 200 fs at room

temperature. This is caused by the polaron decoupling
mechanism,7,9 as explained by Eq. 46. This is because
by coupling to the photonic DOFs, the effective coupling
between the polariton state and the phonon (nuclei) is
reduced.6,7,9 Therefore, coupling molecules to an optical
cavity can provide a way to prolong the coherence of the
hybrid system compared to the bare molecules. Simi-
lar enhanced electronic coherence has been experimen-
tally observed by collectively coupling organic molecules
with the optical cavity.9 Again, the characteristic phonon
frequency ω0 = 200 cm−1 used in this model is much
smaller than the Rabi splitting created in this case, so
the oscillation observed in Fig. 8b is less likely due to
the vibrational coherence as often observed in natural
light-harvesting systems.55–57

Fig. 8c and Fig. 8d present the intensities of the lower
diagonal and upper cross peaks, respectively, as a func-
tion of t2 with the light-matter coupling strength of
ℏgc = 500 cm−1 (62 meV) for various cavity loss rates.
As can be suspected, adding cavity loss causes an equiv-
alent effect to adding a dissipative bath for the cavity
mode. Thus, with an increased cavity loss, one observes
an increase in the decoherence among polariton states.
It should be noted that even for an experimentally ac-
cessible cavity loss rate of Γ = 10 meV and Rabi split-
ting ΩR = 2ℏc ≈ 124 meV) we still observe a long-lived
polaritonic coherence (for t > 200 fs) at room tempera-
ture, much longer than the typical electronic decoherence
of the molecule (see the orange curve in Fig. 8) whose
exciton-phonon re-organization energy is λ = 24.8 meV
(200 cm−1). Similar experimental conditions for the λ, Γ
and ΩR have been recently achieved when coupling CdSe
nanoplatelets to a dielectric optical cavity.48

VII. CONCLUSION

We developed a new theoretical approach to simulate
polariton linear and non-linear spectra, which fully ac-
count for the non-Markovian exciton-phonon couplings
and the effect of cavity loss. This approach is based on
combining the partial linearized density matrix (PLDM)
approach,19–22 which is a non-adiabatic path-integral for-
malism, and a new Lindblad method that exactly maps
the Lindblad dynamics with a stochastic evolution of the
mapping variables. We refer to this approach as the
L -PLDM method. Using this approach, we simulated
the linear and third-order response functions, and upon
Fourier transform, obtain the corresponding optical spec-
tra.

Using the Jaynes-Cummings (JC) type model Hamil-
tonian, we further investigated the optical spectra influ-
enced by the light-matter coupling strength ℏgc and the
cavity loss rate Γ. In this work, we focused on two par-
ticular model systems, an exciton monomer coupled to
a single-mode cavity, and an exciton dimer coupled to a
single-mode cavity. For an exciton monomer coupled to
the cavity, the linear spectra obtained from the L-PLDM
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FIG. 8. (a) and (b) present the time-dependent 2DES signal intensity (along t2) in the upper diagonal peak and upper off-
diagonal cross-peak of an exciton dimer coupled to the cavity at different light-matter coupling strength ℏgc for a lossless cavity
(Γ = 0meV). (c) and (d) present the time-dependent 2DSE signal intensity in the upper diagonal peak and the upper off-
diagonal cross-peak intensity of a dimer coupled to the cavity with different cavity loss rate Γ for a fixed light-matter coupling
strength ℏgc = 500cm−1.

approach are in excellent agreement with the analytic an-
swer (Eq. 57), at various light-matter coupling strengths
and cavity loss rates. In particular, with an increasing
cavity loss rate, we observe a decrease in Rabi splitting,
which can be attributed to an effective decrease in light-
matter coupling strength due to the difference between
the cavity and matter line widths.

We then present the results of the pure absorptive
2D spectra for the monomer coupling to the cavity
when varying cavity loss rates and light-matter coupling
strengths. In the off-diagonal peaks (cross peaks) of the
polariton 2D spectra, we observe the coherent energy ex-
change between the upper and lower polariton states,
with the frequency corresponding to the Rabi splitting.
Further, the cavity loss acts as a homogeneous broaden-
ing (width along the anti-diagonal direction of the di-
agonal peaks in Fig. 5) that dampens the polaritonic
energy transfer and signal intensities. The increase in
light-matter coupling strength causes a larger splitting
of polaritonic peaks. Finally, we present the 2D spec-
tra of an exciton dimer coupled to a cavity. We present
the total signal for the 2D spectra as well as individual
contributions from different Liouville pathways, includ-
ing ground state bleaching (GSB), stimulated emission
(SE), and excited state absorption (ES), for both rephas-
ing and non-rephasing pathways. These pathways are
then interpreted from how different polariton eigenstates
contribute to each of the signals on the basis of the dipole
matrix in the polariton eigenbasis.

In the 2D spectra of the dimer coupled to the cav-
ity, we further observe a significant increase in polariton
coherence time with increased cavity coupling strength,
compared to the excitonic coherence time for the system
outside the cavity. At room temperature with a cav-
ity loss rate of Γ = 10 meV, the coherence lifetime of a
molecular dimer can be significantly prolonged up to 200

fs (from < 50 fs outside the cavity), with a light-matter
coupling strength of ΩR ≈ 124 meV. The prolonged off-
diagonal oscillations are the direct consequence of the
polaron decoupling effect6,7,9 where the light-matter cou-
pling effectively decreases the exciton-phonon coupling of
the system (see Eq. 46), leading to a longer polariton co-
herence time. This is a clear theoretical demonstration
of the polaron decoupling effect by simulating the polari-
ton 2DES spectra. Similar experimental conditions for Γ
and ΩR have been recently achieved when coupling CdSe
nanoplatelets to a dielectric optical cavity,48 and we en-
vision observing such an effect from direct experimental
measurements in the future.
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Appendix A: Derivation of the L-PLDM approach

We provide a brief derivation of the L-PLDM method
(Eq. 27) described in Sec. II C (see similar discussions
for the Ehrenfest dynamics in Ref. 47 for details). The
decay dynamics of the reduced density matrix elements in
the subspace of {|0⟩, |1⟩}, governed by the jump operator

L̂ = |0⟩⟨1| are expressed (based on Eq. 19) as follows

ρ11(t+ dt) = e−Γdtρ11(t), (A1a)

ρ00(t+ dt) = ρ00(t) + (1− e−Γdt)ρ11(t), (A1b)

ρ01(t+ dt) = e−Γdt/2ρ01(t), (A1c)

ρ10(t+ dt) = e−Γdt/2ρ10(t). (A1d)

Further, for the coherences that involve states |j⟩ /∈
{|0⟩, |1⟩} due to the influence of the jump operator L̂,
the following equations hold

ρj1(t+ dt) = e−Γdt/2ρj1(t), (A2a)

ρ1j(t+ dt) = e−Γdt/2ρ1j(t), (A2b)

ρj0(t+ dt) = ρj0(t), (A2c)

ρ0j(t+ dt) = ρ0j(t). (A2d)

The joint probability distribution of complex random
variables that update the PLDM coefficients must satisfy
Eq. 26. For the variables ηF1,ξ and ηB1,ξ in Eq. 24, the
following expectation values must hold

⟨ηF1,ξηB*
1,ξ⟩ = e−Γdt, (A3)

in order to satisfy Eq. A1a. Further, to satisfy Eq. A2a-
A2b, the following relation is required

⟨ηF1,ξ⟩ = ⟨ηB1,ξ⟩ = e−Γdt/2. (A4)

The simple choice of ηF1,ξ = ηB1,ξ = e−Γdt/2 satisfies Eq. A3
and Eq. A4. Note that this is just one possible choice of
many possible choices. The variables ηF0,ξ and ηB0,ξ must
satisfy a different set of expectation values. In particular,
to satisfy Eq. A2c-A2d, we have

⟨ηF0,ξ⟩ = ⟨ηB0,ξ⟩ = 1, (A5)

and to satisfy Eq. A1b, we have

⟨ηF0,ξηB*
0,ξ⟩ = 1 + (1− e−Γdt)

ZF
1,ξ(t)ZB*

1,ξ(t)

ZF
0,ξ(t)ZB*

0,ξ(t)
, (A6)

Note that the assumption that ηF0,ξ = ηB0,ξ will not work
because the left-hand side of Eq. A6 would be a purely

real number (which corresponds to the population of
state |0⟩) while the right-hand side of Eq. A6 is com-
plex in the general case. Likewise, ηF0,ξ and ηB0,ξ cannot
be independent random variables since this would imply
⟨ηF0,ξηB*

0,ξ⟩ = ⟨ηF0,ξ⟩⟨ηB*
0,ξ⟩ = 1, which cannot satisfy the

right-hand side of Eq. A6. Instead, we make the ansatz
that ηF0,ξ = ηB*

0,ξ which when applied to Eq. A5 and Eq. A6
leads to the following expectation value equations

⟨ηF0,ξ⟩ = 1, (A7a)

⟨(ηF0,ξ)2⟩ = 1 + (1− e−Γdt)
ZF

1,ξ(t)ZB*
1,ξ(t)

ZF
0,ξ(t)ZB*

0,ξ(t)
. (A7b)

Equations A7a and A7b describe the first and second
moments, respectively, of the probability distribution of
ηF0,ξ. These can be used to describe the pseudo-variance,

PVar, of the probability distribution (note that the vari-
ance of a complex number is always a non-negative real
number while the pseudo-variance is complex in general).
The psuedo-variance of ηF0,ξ is

PVar(ηF0,ξ) = ⟨(ηF0,ξ)2⟩ − ⟨ηF0,ξ⟩2, (A8)

= (1− e−Γdt)
ZF

1,ξ(t)ZB*
1,ξ(t)

ZF
0,ξ(t)ZB*

0,ξ(t)
.

Note that (ηF0,ξ)
2 is a complex number (not to be con-

fused with |ηF0,ξ|2 = ηF0,ξη
F*
0,ξ which is a real number).

The probability distribution of ηF0,ξ can thus be chosen as

any distribution with mean 1 (see Eq. A7a) and pseudo-
variance given in Eq. A8. We choose a uniform distri-
bution corresponding to a line segment in the complex
plane with mean 1 and complex boundaries that give
the correct pseudo-variance. For convenience, a com-
plex random number z with a uniform distribution on
a line segment in the complex plane can be written in
terms of a standard uniform random variable r ∈ [0, 1] as

z = ⟨z⟩+(2r−1)
√

3 · PVar(z). Thus, ηF0,ξ can be written
as

ηF0,ξ = 1 + (2r − 1)

√√√√3(1− e−Γdt)
ZF

1,ξ(t)ZB*
1,ξ(t)

ZF
0,ξ(t)ZB*

0,ξ(t)
, (A9)

with a uniform real random number r ∈ [0, 1]. Further-
more, ηB0,ξ = ηF*0,ξ due to the ansatz.

Note that the random variables ηF1,ξ and ηF0,ξ must also
satisfy Eq. A1c and Eq. A1d, which correspond to

⟨ηF1,ξηB*
0,ξ⟩ = e−Γdt/2. (A10)

The above relations are automatically satisfied by the
chosen distributions of ηF1,ξ and ηF0,ξ since ⟨ηF1,ξηB*

0,ξ⟩ =

e−Γdt/2⟨ηB*
0,ξ⟩ = e−Γdt/2.
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Appendix B: Direct comparison between the Lindblad and
the L-PLDM approach

Here, we present a direct comparison of the original
Lindblad dynamics (Eq. 18) and the stochastic method
(Eq. 27). The model used in Fig. 9 includes the monomer-

cavity Hamiltonian with ĤR = Ĥex−R = 0, a cavity loss
rate of Γ = 10 meV and a coupling strength of ℏgc = 456
cm−1. Fig. 9a presents the population dynamics of the
exciton-photon basis, with the initial state |g1⟩⟨g1|. The
results obtained from the exact Lindblad dynamics simu-
lation (Eq. 18) are depicted by solid lines. The L-PLDM
dynamics (dotted lines) exactly reproduce the Lindblad
simulations, with 104 trajectories.

FIG. 9. Density matrix dynamics comparison of Lindblad
(solid line) with L-PLDM (dotted) dynamics.

Fig. 9b presents the dynamics with the initial condition
starting from a non-Hermitian density matrix |g1⟩⟨e0|,
which is the necessary component for simulating optical
response functions. Because of the asymmetry of the
coherence elements in the initial density matrix, we see
the rise of imaginary populations. Here, we can see the
coherent transfer between the |g1⟩, |e0⟩, and |g0⟩ states
and the decay of all magnitudes due to loss.

Fig. 9c presents the dynamics of coherence matrix ele-
ments between |g1⟩ and |e0⟩ states when we started with
|g1⟩⟨g1|. With time, we see the decay of coherence ex-
change between the states. Fig. 9d presents the evolu-
tion of coherence elements when the dynamics start with
|g1⟩⟨e0|. This represents the decoherence process due
to cavity loss. In all the cases presented in Fig. 9, one
can clearly see that the L-PLDM dynamics (dotted lines)
quantitatively reproduce the original Lindblad results.

Having compared the density matrix dynamics, we now
focus on comparing the purely absorptive 2DES results
(without the phonon dynamics by setting ĤR = Ĥex−R =
0). We use the same model as in Fig. 9 and compare the

2DES for two different cavity loss rates in Fig. 10 (Γ = 10
meV) and Fig. 11 (Γ = 50 meV), both generated with 105

trajectories. The L-PLDM generates 2DES with visually
identical results compared to the Lindblad dynamics.

FIG. 10. 2DES spectra of an exciton monomer coupled to
the cavity, by setting exciton-phonon coupling to be zero
ĤR + Ĥex−R = 0. The light-matter coupling strength is
ℏgc = 500 cm−1, and the cavity loss rate is Γ = 10 meV.
The spectra are calculated with (a)-(e) the original Lindblad
approach (Eq. 19) and (d)-(f) L-PLDM dynamics (Eq. 28).

FIG. 11. 2DES spectra of a monomer coupled to the cavity.
Same model parameters are used as in Fig. 10, except for the
cavity loss rate Γ = 50 meV. The spectra are calculated with
(a)-(e) Lindblad and (d)-(f) L-PLDM dynamics.
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