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Abstract 

The identification of functional enzymes for the catalysis of specific biochemical reactions is a major 
bottleneck in the de novo design of biosynthesis and biodegradation pathways. Conventional 
methods based on microbial screening and functional metagenomics require long verification 
periods and incur high experimental costs; recent data-driven methods are only applicable to a few 
common substrates. To enable rapid and high-throughput identification of enzymes for complex 
and less-studied substrates, we propose a robust enzyme promiscuity prediction model based on 
positive unlabeled learning, which shortens the time needed for new enzyme discovery from 
several years to 29 days. Using this model, we identified 15 new degrading enzymes specific for 
the mycotoxins ochratoxin A and zearalenone, of which six could degrade > 90% mycotoxin content 
within 3 h. We anticipate that this model will become indispensable for the identification of new 
functional enzymes, thereby advancing the fields of synthetic biology, metabolic engineering, and 
pollutant biodegradation. 
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Introduction 
Mycotoxins are toxic secondary fungal metabolites that frequently contaminate food and feed 

and adversely affect animal welfare and productivity 1. Mycotoxins in food and livestock products 
can also be transferred to human consumers, compromising public health 2. At a time when the 
global production of agricultural commodities is barely sustaining the growing population, the Food 
and Agriculture Organization of the United Nations has estimated that at least 25% of the world’s 
food crops are ruined annually due to mycotoxins, and global investigations revealed that 
mycotoxins were detected in ~70% of crop samples 3-5. With climate change and an increased 
frequency of extreme weather events, the levels of mycotoxin contamination are expected to 
increase in the future 6-9.  

Enzymatic elimination of mycotoxins is considered a promising method owing to its specificity, 
safety, and environmental friendliness 10. However, effective mycotoxin-degrading enzymes are 
rare, owing to economic limitations and the potential toxicity of metabolic products 11,12. In a 
previous study, we predicted > 550,000 enzymatic reactions involving biogenic toxins based on 
reaction rules 13. Although these reactions could potentially eliminate mycotoxins, ~94.7% of these 
have not been experimentally verified owing to the long verification period and high experimental 
costs of traditional enzyme-mining methods based on microbial screening and functional 
metagenomics 13. To date, 4 × 109 proteins have been sequenced, and with the rapid development 
of proteomics, the number of known proteins doubles every 24 months 14,15. A framework for the 
rapid and high-throughput prediction and verification of new enzymes with desired activities, e.g., 
mycotoxin degradation, is urgently required. 

In recent years, the traditional view that enzymes have strict substrate specificity has been 
replaced by the promiscuity theory 16. Enzyme promiscuity is defined as the capability of enzymes 
to catalyze other substrates besides their natural substrate 17. More than 37% of enzymes in E. coli 
are promiscuous, and these enzymes catalyze >65% of the known metabolic reactions in E. coli 18. 
This finding inspired us to establish a prediction model for enzyme promiscuity and use it to screen 
enzymes that can specifically degrade mycotoxins. A few methods have recently been proposed 
to predict enzyme promiscuity based on the similarity theory, assuming the substrates catalyzed 
by an enzyme generally possess similar structural characteristics 19. However, being limited by 
poor generalization abilities, these methods cannot yield reliable results for complex and less-
studied molecules, such as mycotoxin ochratoxin A (OTA) and zearalenone (ZEA) (Fig S1). 
Another strategy used to identify functional enzymes for the catalysis of a specific biochemical 
reaction is predicting enzyme commission (EC) numbers based on sequence characteristics 20; 
however, this strategy only applies to common reactions involved in the EC system. For complex 
molecules and less-studied reactions, no effective computational method exists to identify their 
catalytic enzymes. The feasibility of enzymatic reactions is determined by complex interactions 
between enzymes and substrates. Hence, an enzyme’s substrate promiscuity is more suitably 
predicted based on the characteristics of both the enzyme and substrate 21. Many active enzyme–
substrate pairs have been annotated in bioinformatics databases 22-27. However, owing to the lack 
of negative samples (e.g., a certain enzyme that cannot catalyze a certain substrate), the feasibility 
of predicting enzyme promiscuity based on both enzyme and substrate characteristics remains 
tenuous. Moreover, although data-driven models enable the rapid prediction of potential enzymes, 
enzyme screening is a slow process owing to the long experimental period of traditional verification 
systems. 

In this study, we aimed to resolve the obstacles of low efficiency and accuracy in traditional 
enzyme-mining methods with a framework that combines data-driven prediction models with a rapid 
cell-free protein expression (CFPE) system (Fig 1). We showcased the feasibility and efficiency of 
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the proposed framework with two case studies, identification of new enzymes for ZEA and OTA 
degradation. Using the framework, we successfully found 15 new enzymes with prominent 
degradation activity within 29 d and identified critical residues on enzymes based only on 
sequence-level information without any prior knowledge. Based on our findings, we anticipate that 
this framework will serve as an indispensable tool for the identification of new functional enzymes. 

 
Figure 1. Discovery of new functional enzymes based on the positive unlabeled learning-based 
enzyme promiscuity prediction (PU-EPP) model and cell-free protein expression. The framework 
mainly consists of three parts: schematic design (~3 d), enzyme screening (~14 d), and 
experimental verification (~12 d). First, potential biotransformation reactions and metabolic 
products of the target substrate (e.g., mycotoxins) were predicted using reaction rules in ToxinDB. 
The potential biotransformations were evaluated with regards to safety, economy, and feasibility. 
Next, optimal biotransformations and the corresponding categories of enzymes were selected 
based on enzyme commission (EC) numbers for downstream screening. The molecular structure 
of mycotoxins formatted in the simplified molecular input line entry system (SMILES) and the amino 
acid sequences of candidate enzymes were analyzed using the positive unlabeled (PU) learning-
based enzyme promiscuity prediction (PU-EPP) model to screen enzymes that could specifically 
catalyze the biotransformation. Finally, selected enzymes were expressed using a CFPE system 
and assayed for their catalytic activity. 
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Results 
The positive unlabeled learning-based enzyme promiscuity prediction (PU-EPP) model. 
Deep learning relies on large-scale data to make high-quality predictions. To afford a 
comprehensive dataset on enzyme promiscuity, we integrated data from the Rhea 22, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 23, MetaCyc 24, Brenda 25, and RxnFinder 26,27 
databases and acquired 170,179 enzymes, 5,837 substrates, and 606,555 corresponding enzyme–
substrate pairs. Since negative data are rarely reported, previous studies usually augmented 
negative samples for training classification models based on activity thresholds or random sampling 
28,29. However, low activity is not equivalent to inactivity, and certain randomly sampled enzyme–
substrate pairs may actually be functional (positive) because of enzyme promiscuity, which would 
result in the deep learning models acquiring inaccurate results. Therefore, we proposed a strategy 
that combines weighted random sampling and positive unlabeled (PU) learning to minimize the 
impact of inaccurate negative samples (see the methods section for detail). The weighted random 
sampling strategy assumes that enzymes with fewer reported substrates have higher catalytic 
specificity. Therefore, to reflect both enzyme promiscuity and specificity, more corresponding 
negative enzyme–substrate pairs should be included in the training set. Accordingly, we generated 
6,488,914 “negative” samples with a ratio of ~10 times the positive samples (Fig 2A and S2). 
However, since some enzymes may be promiscuous, some positive samples might remain in the 
generated negative samples. If these cases are ignored, the model would ignore the enzyme’s 
promiscuity. Therefore, to ensure that the model accurately predicts enzyme behavior, we 
considered these generated samples as unlabeled data and proposed a PU learning-based 
enzyme promiscuity prediction (PU-EPP) model. This model employs a PU learning mechanism 
during training to exclude potential positive samples in the unlabeled data according to the 
probability ranges of positive samples (Fig 2B) 30. We chose the 90th percentile of the probability 
distribution of positive samples as the threshold because it presents both good performance and 
robust recognition ability of potential positive samples (Fig S3 and S4). The PU-EPP model was 
built based on a multi-head attention mechanism (Fig 2C) 31. The substrate features were extracted 
through graph neural networks, while the protein sequence was encoded using a Continuous Bag-
of-Words 32-34. 
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Figure 2. Framework of the PU-EPP model. (A) Known enzyme–substrate pairs were collected 
from Rhea, KEGG, MetaCyc, and RxnFinder. The molecular structures of substrates were collected 
from PubChem, while the amino acid sequences of enzymes were collected from UniProt. 
Afterward, unlabeled enzyme–substrate pairs were obtained through weighted random sampling 
of known (positive) enzyme–substrate pairs. (B) Framework of PU learning. For each epoch, equal 
numbers of unlabeled and positive samples were sampled and input into the model. Then, the 
probability ranges of positive samples in each epoch were calculated, which were used for 
removing potential positive samples in the unlabeled dataset to avoid the model learning inaccurate 
knowledge. The potential positive samples were removed from the dataset while others were put 
back. These processes were repeated until the end of the training. The final model was used to 
screen potential enzymes (hit) for mycotoxin elimination. (C) Detailed implementation of PU-EPP. 
The enzyme sequence was encoded with the Continuous Bag-of-Words model, while substrate 
features were extracted from the molecular structure of substrates with graph neural networks. 
Extracted enzyme features were input into the encoder. Extracted substrate features were 
processed through a self-attention layer and then combined with enzyme features. Then, the 
combined features were input into another self-attention layer (interaction layer) to extract 
interaction information between the substrates and the enzymes. Finally, the features were input 
into a fully connected layer and a layer normalization step to achieve the final output by softmax. 
FC: fully connected layer; Add: residual connection; Norm: layer normalization. 
 

Recovery experiments demonstrate the strong robustness of PU-EPP. An independent test 
set consisting of 20,000 enzyme-substrate pairs was used for model evaluation, among which 
>60% of pairs had not been included in the EC system. The final PU-EPP model showed 
remarkable performance with a receiver operating characteristic area under the curve (ROC-AUC) 
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of 0.985 and precision recall curve (PRC)-AUC of 0.988, indicating it can achieve reliable 
predictions on both well-studied and less-studied enzyme-substrate pairs. On the contrary, 
previous models for enzyme function prediction, e.g., EPP-HMCNF 17 and CLEAN 20, can only apply 
to hundreds of common substrates involved in the EC system. PU-EPP’s wide applicability domain 
enables it to serve as a more useful tool for the identification of new enzymes with specific catalytic 
activities. To evaluate the improvement of the new proposed ML framework, we also compared the 
PU-EPP with ML models in the drug discovery field that utilize both protein and compound features 
28,33,34. We re-trained and tested PU-EPP and other models on a dataset comprising 20,000 positive 
samples and ~10 times the number of unlabeled samples. PU-EPP showed the best performance, 
followed by TransformerCPI 28, DeepConv-DTI 33, and GNN-PT 34 (Fig 3A). We also tested the 
performance of PU-EPP on five independent small-scale datasets collected by Goldman et al., 
including data on phosphatase, esterase, glycosyltransferase, β-keto acid cleavage enzymes, and 
halogenase, that comprised real positive and negative enzyme–substrate pairs (Table S1) 35. We 
then compared the performance of PU-EPP with the best models reported in their study 35. PU-
EPP also showed better performance on each dataset, illustrating its superiority (Fig 3B).  

 
Figure 3. Evaluation of the models’ performance. (A) Comparison between PU-EPP and previously 
published models. PU-EPP-1 is the model trained on whole datasets, while PU-EPP-2 is the model 
trained on the dataset consisting of 20,000 positive samples and corresponding unlabeled samples. 
(B) The performance of PU-EPP and previously published models on five independent datasets 
related to phosphatase, esterase, glycosyltransferase (GT), β-keto acid cleavage enzymes 
(BKACE), and halogenase. (C-G) Recovery experiments of mislabeled positive samples on these 
five datasets. The light area presents the ranges of the ± s.d of the five-fold cross-validation. Here, 
1%, 3%, 5%, 10%, and 20% of positive samples were added to the unlabeled samples. PU-EPP 
successfully identified ~80% of mislabeled positive samples, which presented better robustness 
and anti-interference ability than the baseline models. 
 

To assess whether the PU learning strategy we proposed can identify potential positive 
samples from unlabeled samples, thereby improving the model’s robustness, we conducted a 
recovery experiment of hidden positive samples. To this end, 1%, 3%, 5%, 10%, and 20% of the 
positive samples were mislabeled as negative, and the recognition capability of PU-EPP and a 
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baseline model (models trained by conventional procedure) on these mislabeled samples was 
tested by five-fold cross-validation. Through the PU learning strategy, PU-EPP identified ~80% of 
mislabeled positive samples in the training process, while the baseline model trained through the 
conventional procedure (non-PU) only identified between ~40% to 65% (Fig 3C–G). When 20% of 
the positive samples were mislabeled, PU-EPP still had a strong recognition capability, 
demonstrating its high robustness. We also evaluated the performance of the PU-EPP and the 
baseline model under each condition and found that PU-EPP also achieved higher AUC scores 
than the baseline model (Fig S5). Thus, when there are biases and noise in the training datasets, 
the PU learning strategy employed herein could be considered an effective approach to improve 
the model’s performance and robustness.  

PU-EPP successfully identified 15 new enzymes for mycotoxin detoxification. Two 
mycotoxins with high contamination levels, ZEA and OTA, were selected as case studies. The 
complex structural features of ZEA and OTA lead to various biotransformation possibilities under 
the action of enzymes. Therefore, we comprehensively predicted the potential toxin 
biotransformations of OTA and ZEA based on reaction rules in ToxinDB (Fig S6) 13. To rationally 
select the optimal detoxification reactions for ZEA and OTA detoxification, we evaluated the 
feasibility, safety, and economics of these enzymatic biotransformations (Table S2) and finally 
selected lactone bond hydrolyses (EC 3.1.1.-) and amide bond hydrolyses (EC 3.5.1.-) for the 
detoxification of ZEA and OTA, respectively (Tables S3 and S4). 

According to the probes predicted by PU-EPP, we selected 10 potential ZEA hydrolases (ZH 
1-10) and 10 potential OTA hydrolases (OH 1-10) for downstream experiments. The candidate 
genes were synthesized and then expressed with a CFPE system that only required a few hours 
to synthesize one protein. Then, the obtained enzymes were incubated with ZEA and OTA for 3 h. 
Overall, 75% of predicted enzymes exhibited expected activities. Nine enzymes exhibited 
prominent catalytic activities toward ZEA, of which ZH4 eliminated >90% and ZH9 eliminated 
~100% of the ZEA content (Fig 4A). Six enzymes exhibited obvious catalytic activity toward OTA. 
Among them, OH1, OH4, and OH6 eliminated >90% and OH8 eliminated nearly 100% of the OTA 
content in the reaction system (Fig 4B). To confirm that the enzymes did catalyze the expected 
degradation reactions, the metabolic products of ZEA and OTA degradation in the reaction system 
were measured using high-resolution mass spectrometry. A catalytic product of ZEA with an m/z 
[M-H]- 291.16 was detected in samples of ZH1-ZH9 (Fig 4D-G), while the catalytic product of OTA, 
ochratoxin α, with an m/z [M-H]- 255.0067, was detected in samples of OH1, OH2, OH4, OH6, 
OH8, and OH9 (Fig 4E and F), verifying the predicted degradation reactions. 

We also tested the degradation ratio of mycotoxins contaminated in two food matrices (wheat 
and maize flour) after incubation with four enzymes (ZH4, ZH9, OH1, and OH8) with relatively 
higher degradation activities (Fig 4C). Despite a certain decrease in activity owing to the influence 
of the complex matrices, all the enzymes exhibited obvious activity. ZH9 eliminated 67% of ZEA in 
wheat flour and 24 % in maize flour, while OH8 eliminated 62% of OTA in wheat flour and 33% in 
maize flour. These results indicate the feasibility of using enzymes to eliminate mycotoxins 
contaminating foodstuffs. It is worth noting that we only tested the degradation effects of low-dose 
natural enzymes. With the structural modification of enzymes and engineering methods, such as 
immobilization, the degradation ratio of mycotoxin contaminants in food matrices will be further 
improved. 
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Figure 4. Experimental verification of the catalytic activity of candidate enzymes. (A, B) The 
degradation ratio of candidate enzymes on mycotoxins ZEA and OTA was assayed by measuring 
the residual concentration of mycotoxins in the reaction system. After incubation for 3 h at 37 °C, 
the content of mycotoxins and their metabolites were measured using liquid chromatography–mass 
spectrometry (LC-MS). (C) The degradation ratio of enzymes for mycotoxin contaminants in wheat 
and maize flour. Enzyme supernatant was mixed with mycotoxin-contaminated flour. After 
incubation under the same conditions, the content of mycotoxins was tested using LC-MS. (D–G) 
The MS/MS spectra of ZEA and OTA and their degradation products. Error bars represent ± s.d. 

 

PU-EPP successfully identified critical sites on substrates and enzymes. Despite successful 
application in many areas, interpretability remains a challenge for deep learning-based methods 28. 
PU-EPP uses attention mechanisms 31 to capture the importance and contributions of different 
input positions (e.g., atoms in substrates or residues in enzymes) to the final prediction, thereby 
inferring the knowledge the model has learned (Fig 5A and B). To verify whether PU-EPP was able 
to learn the catalytic mechanism behind the data, we mapped the attention weights to the 
substrates and enzymes and compared them with known data. Enzymatic catalysis lies in the 
enzyme's recognition of reaction sites on substrates. To evaluate the model’s recognition ability for 
the reaction sites on substrates, we compared the attention weights with annotated reaction site 
data and found that ~60% of reaction sites were correctly identified, which was significantly higher 
than the results of random sampling (Fig 5G and H). For instance, in screening tasks, the model 
successfully identified the oxygen atom near the reaction sites in ZEA and the nitrogen atom in 
OTA, which both are top-ranked in all atoms in ZEA and OTA (Fig 5C and D).  

Since enzymes are complexes composed of hundreds of amino acid residues, identifying 
critical residues in enzymes is more challenging. Hence, we took ZH4 and OH1 as examples and 
analyzed their critical residues using molecular dynamics (MD) simulations and compared them 
with the important residues inferred through attention mechanisms. The most likely enzyme–
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substrate binding pose was predicted via systematic docking plus extensive MD simulations. 
Energetically critical residues that contribute significantly to substrate binding free energy were 
identified via the molecular mechanics-generalized Born and surface area (MM-GBSA) methods 
(Fig S7–S9). We found that the attention weights of the interaction layer that has learned both 
enzyme and substrate features could map with the binding sites well, while the attention weights of 
the encoder that only learned enzyme features could not (Fig S10). This indicates that both enzyme 
and substrate features are crucial for prediction, which validated our initial methodological 
assumptions. It also demonstrates that although the model only takes enzyme sequences as input, 
it learned the hidden three-dimensional structural information (i.e., sites at which the substrate 
might bind). Furthermore, allosterically critical residues were calculated using root mean square 
fluctuation (RMSF) and dynamics cross-correlation map analysis (Fig S11 and S12). The 
consistency of important residues identified via attention mechanisms and MD (~90% on ZH4 and 
~40% on OH1 were consistent) was significantly higher than that between MD and randomly 
selected residues (Fig 5E, 5F, and Fig S13–S15), indicating that PU-EPP learned the meaningful 
enzymatic knowledge behind the data. 

To further test the reliability of identified residue sites, we selected eight high-attention sites 
on enzymes and performed single-site mutation verification. We mutated two proximal sites on 
each enzyme to alanine and found that, in most cases, enzyme activity significantly decreased after 
the mutation, indicating that these residues play important roles in catalysis (Fig 5I and J). 
Furthermore, the OH1_348 site was only identified by PU-EPP, suggesting that PU-EPP could be 
considered a supplement to MD for the identification of potentially important residues. 
Subsequently, we mutated two top-ranked distal sites on each enzyme to alanine and found that 
the enzymes’ activity also decreased significantly, indicating that PU-EPP can identify distal 
residues that play important roles during catalytic processes, although most of them are generally 
considered to have no significant effect on catalytic activity (Fig 5I and J).  
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Figure 5. Evaluation of the interpretability of PU-EPP. (A, B) The attention weights on each residue 
in the ZH4/OH1 enzymes. The red and blue regions on enzymes present regions that were 
identified by PU-EPP’s attention mechanism and those identified by both PU-EPP and molecular 
dynamics (MD), respectively. Residues marked as dotted lines were selected for subsequent 
mutation experiments to verify their functionality. (C, D) The attention weights on each atom in the 
ZEA/OTA molecules. The contour lines around the atoms represent the attention weights: the more 
contour lines, the higher the attention weight. Atoms near the reaction sites, such as the oxygen 
atom in the lactone bond of ZEA and nitrogen atom in the amido bond of OTA, both ranked 2nd in 
all the 45 and 46 atoms in ZEA and OTA, indicating these atoms contribute more to the final 
prediction. (E, F) The simplified UpSet plots of randomly selected residues and residues identified 
by PU-EPP and MD simulations, respectively. We evaluated the consistency of predicted residues 
and found ~90% of residues identified by PU-EPP on ZH4 (n = 56 for attention-identified residues 
and random residues, and n = 161 for MD-identified residues) and ~40% on OH1 (n = 124 for 
attention-identified residues and random residues, n = 131 for MD-identified residues) are 
consistent with MD, and both are significantly higher than randomly selected residues. Error bars 
represent ± s.d. (G, H) The boxplot and distribution of the hit ratio of atoms near reaction centers. 
It shows the median (horizontal line), 25th and 75th percentiles (lower and upper boundaries, 
respectively). Whiskers extend to data points that lie within 1.5 interquartile ranges of the 25th and 
75th quartiles; and observations that fall outside this range are not displayed. The hit ratio of PU-
EPP is significantly higher than that of random selection. (I, J) The enzyme activity before and after 
site mutation. The red bars indicate proximal sites, while the blue bars indicate distal sites. Error 
bars represent ± s.d. P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.0001 (****), two-tailed 
Student’s t-test. 
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Discussion  
Identifying functional enzymes for a specific substrate and determining their interaction has 

been a major bottleneck in the fields of synthetic biology, metabolic engineering, and pollutant 
biodegradation. Here, we constructed a comprehensive enzyme promiscuity dataset containing 
over 600,000 known enzyme–substrate pairs and developed PU-EPP for robust enzyme 
promiscuity prediction based on weighted random sampling and PU learning strategies. PU-EPP 
achieved good performance on test sets and presented significantly better robustness and anti-
interference ability than that of baseline models in cases of highly biased data. PU-EPP was 
combined with a rapid CFPE system to establish a rapid screening framework, which shortened 
the time needed for new enzyme discovery from several years to 29 d. Using the framework, we 
successfully identified nine carboxylic-ester hydrolases that can specifically open the macrocyclic 
structure of ZEA and six amidohydrolases that can efficiently degrade OTA into OTA α, by causing 
fundamental alterations to their conformation and eliminating most of their toxicity. The attention 
mechanism of PU-EPP enabled us to identify important enzyme residues, which can assist in 
downstream enzyme engineering and modification to optimize catalytic efficiency and stability, and 
ultimately promote the practical application of enzymes. 

Compared with traditional strategies based on microbial screening and functional 
metagenomics, the proposed data-driven method can better elucidate the biotransformation 
potential of living organisms. For instance, of the screened enzymes, one OTA-degrading enzyme 
(OH9) was derived from Exilibacterium tricleocarpae, a marine bacterium isolated from coralline 
algae in the Beibu Gulf 36. To our knowledge, this is the first reported enzyme from a marine microbe 
with OTA-degrading activity. Researchers intending to use the PU-EPP model are encouraged to 
fine-tune PU-EPP in their datasets comprising specific sub-categories of enzymes and substrates. 
This will further reduce the time required for model training while improving model performance.  

Several aspects of the current research could be further expanded on. First, the application of 
enzyme-based methods to remove mycotoxin contaminants from food remains limited by high 
economic costs. Although degradation pathways comprising multi-step reactions can achieve 
complete toxin degradation, the present study used an optimal single-step reaction to degrade 
mycotoxins into products with low toxicity, considering economic factors. However, the screening 
framework can also be combined with pathway design tools, such as novePathFinder 37, to develop 
more comprehensive degradation pathways for pollutants or synthetic pathways for high-value 
chemicals. Second, similar to lead identification in drug discovery, the discovery of lead enzymes 
(natural enzymes with moderate activity) is the initial and rate-limiting step of the research and 
development cycle in enzyme engineering and, in most cases, a prerequisite for the application of 
directed evolution and rational design. This study focused on the screening of lead enzymes rather 
than the improvement of enzyme activities via structural modification. Third, although we 
successfully synthesized all the tested enzymes, the potential for protein expression failure remains 
because the correct folding of some proteins may not be observed in the CFPE system; 
researchers will need to consider the applicability of CFPE systems when using the screening 
framework. Nevertheless, we believe that the present study provides an indispensable tool for the 
efficient identification of new enzymes with expected catalytic activity. 
 
Materials and Methods 
Dataset construction. Enzyme–substrate interaction data were collected from the Rhea 22, KEGG 
23, MetaCyc 24, Brenda 25, and RxnFinder 26,27 databases. We collected biochemical reactions with 
known enzymes from these databases and organized them into relational pairs composed of the 
enzymes and substrates. Since most of the enzymatic reactions are bidirectional, both reactants 
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and products of reactions were considered substrates of an enzyme. The molecular structure of 
substrates and the sequences of enzymes were collected from PubChem 38 and UniProt 14, 
respectively. Subsequently, redundancy caused by data integration was eliminated based on the 
SMILES of substrates and UniProt IDs of enzymes. To avoid the excessive consumption of 
resources and interference for model training, data pairs involving enzymes with sequence lengths 
>1500 amino acids and some parts of substrates, such as water, cupric ions, and carbon dioxide, 
were removed from the data set. Unlike the traditional random sampling methods, we adopted a 
weighted random sampling strategy, which assumes that enzymes with fewer reported substrates 
have higher catalytic specificity and enzymes with many reported substrates have higher catalytic 
promiscuity. Therefore, to reflect both enzyme promiscuity and specificity, more corresponding 
“negative” enzyme–substrate pairs should be included in the dataset (Fig 2A). The weight of the 
“negative” enzyme–substrate pairs was calculated as follows: 

𝑊𝑒𝑖𝑔ℎ𝑡 = −log!"(
!"

#!"#$#!$%
× #$#!$%

#!"#$#!$%
)   (1) 

where 𝑋 is the number of corresponding substrates of an enzyme, 𝑋%&' is the maximum of 
corresponding substrates of an enzyme, and 𝑋%() is the minimum of corresponding substrates of 
an enzyme. In this way, we generated ~10 times as many “negative” enzyme–substrate pairs as 
known (positive) enzyme–substrate pairs. To save valuable data and computing resources, we 
adopted experience-based manual hyperparameter selection according to previously published 
studies 39. Thus, we randomly selected 10,000 positive datapoints and 10,000 unlabeled datapoints 
as the test set and used the rest as the training set. The data in the test set were not “seen” by the 
models during the training process. 
Implementation of PU learning. The implementation of PU learning primarily consisted of three 
steps (Fig 2B). First, equal numbers of unlabeled and positive samples were sampled and input 
into the model. Second, the probability ranges of positive samples in each epoch were calculated, 
and were used for identifying and removing potential positive samples in the unlabeled dataset. 
Third, the potential positive samples were removed from the dataset while others were put back. 
To ensure that the model had acceptable prediction ability, the PU mechanism was conducted after 
the model achieved an AUC >0.80. This process was repeated until the end of the training. 
Furthermore, the 90th percentile of the probability distribution of positive samples was chosen as 
the threshold for the exclusion of potential positive samples in the unlabeled dataset (Fig S3 and 
S4). 
Construction of the deep learning pipeline. Graph neural networks (GNNs) were used to extract 
substrate features 40. Substrates were considered as molecular graphs G =	(𝜈, 𝜖). Each atom 𝑣( ∈
𝜈 was represented by a 46-dimensional vector, which was the concatenation of one-hot encodings 
representing the atom types, degrees of the atom, chirality, hybridization types, number of radical 
electrons, number of hydrogen atoms attached, explicit valence, implicit valence, and aromaticity 
of the corresponding atoms. 𝜖 was the set of covalent bonds 6𝑣( , 𝑣*7 ∈ 𝜖, in a molecule represented 
as an adjacency matrix 𝐴 ∈ 𝑅+×+, in which N was the number of atoms in the molecule. We used 
the following layer-wise propagation rules to extract substrate features: 

𝐻(./!) = 𝜎(𝐷=$
&
'𝐴>𝐷=$

&
'𝐻(.)𝑊(.))   (2) 

where 𝜎  is the activation function, we used ReLU (𝑅𝑒𝐿𝑈(⋅) = 𝑚𝑎𝑥(0,⋅)). 𝐴> = 𝐴 + 𝐼)  is the 
adjacency matrix of G with added self-connections while 𝐼) is the identity matrix. For each atom (i), 
the degree of the atom is 𝐷=(( = ∑ 𝐴>(** . 𝑊(.) is a layer-specific trainable weight matrix. 𝐻. ∈ 𝑅+∗2(d 
= 46) is the matrix of activations in the 𝑙34 layer. The output of the GNN is a metric 𝑍 ∈ 𝑅+∗2. 
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The Continuous Bag-of-Words model, a classical unsupervised learning algorithm for learning 
semantic knowledge from a large amount of text, was used to encode enzyme sequences: 

𝐿(𝜃) = !
5
∑ 𝑙5
)6! 𝑜𝑔𝑃(𝑤3|𝑤3$), . . . , 𝑤3$!, 𝑤3/!, . . . , 𝑤3/))   (3) 

where T is the length of the enzyme sequence, P is the probability of the amino acid residues, 
and 𝑤3 is given by the context of the amino acid residues 𝑤3$) - 𝑤3/). N is set to 1. The feature 
dimension was set to 100. 

The multi-head self-attention mechanism 31 was employed to interpret which sub-regions on 
enzymes and substrates contributed more to the final prediction (Fig 2C). We used a multi-head 
self-attention layer in the encoder to evaluate the contribution of each point of the input enzyme 
sequence. Concurrently, two multi-head attention layers were used in the decoder. The first one 
was used to evaluate the contribution of each atom of the input substrates, and the second one 
was used to extract interaction information between the substrates and the enzymes. The attention 
mechanism was defined as follows: 

𝛼(𝑞, 𝑘) = 𝑞5𝑘/√𝑑
𝑓(𝑞, (𝑘!, 𝑣!), (𝑘7, 𝑣7), . . . , (𝑘), 𝑣))) = ∑ 𝛼)

(6! (𝑞, 𝑘()𝑣(
𝛼(𝑞, 𝑘() =

8'9(:(;,=$))
∑ 8%
()& '9(:(;,=())

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ]?@
*

√2
^ 𝑉

  (4) 

where 𝑞 ∈ 𝑅2+  is the query, 𝑘 ∈ 𝑅2,  is the key, 𝑣 ∈ 𝑅2-  is the value, and 𝑄,𝐾, 𝑉  is the 
minibatch representation of 𝑞, 𝑘, 𝑣. The softmax can be described as:  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥() =
8#$
∑ 8#$$

   (5) 

The multi-head in multi-head attention ℎB was defined as follows: 

ℎB = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊B
;𝑞,𝑊B=𝑘,𝑊BC𝑣)    (6) 

where 𝑊B
; ∈ 𝑅9+×2+ ,𝑊B= ∈ 𝑅9,×2, ,𝑊BC ∈ 𝑅9-×2-  are learnable parameters. The learnable 

parameter 𝑊D was used to process the output of multi-head attention. For h-head attention, it can 
be described as: 𝑊D[ℎ!, … , ℎ4] ∈ 𝑅9.. 𝑝D is specified based on the dimension of hidden layers. In 
code implementation, we set (𝑝; = 𝑝= = 𝑝C = 𝑝D/ℎ), so (𝑝;ℎ = 𝑝=ℎ = 𝑝Cℎ = 𝑝D), and then h-heads 
attention could be computed in parallel. We used the “mask-softmax” function to obtain the valid 
sequence length. Any value beyond the valid length was set to an extremely small value 10$!", so 
that it would be 0 after softmax. Then, we used linear layers to achieve the final output. 

We used the Leaky Rectified Linear Unit (Leaky ReLU) as an activation function. It has been 
proposed as a way to resolve the dying units problem of ReLU, by preventing the unit from 
saturating, thus enabling a small gradient to always flow through the unit, potentially recovering 
extreme values of the weights 41; it can be described as follows: 

𝑙𝑒𝑎𝑘𝑦_𝑟𝑒𝑙𝑢(𝐳) = i𝐳 if 𝐳 ≥ 0
𝛼𝐳 if 𝐳 < 0   (7) 

where 𝛼 is a hyperparameter, which was set to 0.01. 
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We used Glorot initialization 42 as the weight initialization method. Glorot initialization is 
designed to keep the scale of the gradients roughly the same in all layers. It can be described as 
follows: 

𝑎 = 𝑔𝑎𝑖𝑛 ∗ m E
)$%/)./0

W ∼ 𝒩(−𝑎, 𝑎)
    (8) 

where 𝑔𝑎𝑖𝑛 is an optional scaling factor that is set to 0.2, 𝑛() is the number of input units in the 
weight tensor, and 𝑛DF3 is the number of output units in the weight tensor.  

In the training process, RAdam was used as the optimizer because it can adjust the adaptive 
momentum in the original Adam optimizer according to the size of the variation, outperforming 
manual warmups under a variety of warmup lengths and various learning rates: 

𝑔3 = ∇G𝑓3(𝜃3$!)
𝑣3 = 𝛽7𝑣3$! + (1 − 𝛽7)𝑔37

𝑚3 = 𝛽!𝑚3$! + (1 − 𝛽!)𝑔3
𝑚3s = 𝑚3/(1 − 𝛽!3)
𝑝3 = 𝑝H − 2𝑡𝛽73/(1 − 𝛽73)

𝑖𝑓𝑝H > 4: 𝑣x3 = y𝑣3/(1 − 𝛽73)

𝑟3 = m (90$I)(90$7)91
(91$I)(91$7)90

𝜃3 = 𝜃3$! − 𝛼3𝑟3𝑚3s/𝑣x3
𝑒𝑙𝑠𝑒: 𝜃3 = 𝜃3$! − 𝛼3𝑚3s

   (9) 

where 𝛼3 is the step size, 𝛽!, 𝛽7 is the decay rate to calculate the moving average and moving 
2nd moment, 𝑓3(𝜃) is the stochastic objective function. 𝜃3  is the resulting parameter, and 𝑝H =
2/(1 − 𝛽7) − 1 is the maximum length of the approximated simple moving average.  

To make the training process more robust and stable, we introduced the LookAhead 43 
mechanism, which consists of three steps:  

(1) Sync slow and fast weights. For slow weights (𝜙3/!): 

𝜙3/! = 𝜙3 + 𝛼(𝜃3,= − 𝜙3)   (10) 

where the synchronization period (k) and step size of slow weights (𝛼) are hyperparameters, 
which were set to 5 and 0.5, respectively. 𝜃3,= is the k step (the last step) of the t round of the fast 
weights update.  

(2) Update fast weights. We chose RAdam to update the fast weights as follows: 

𝜃3,(/! = 𝜃3,( + 𝑅𝐴𝑑𝑎𝑚(𝐿, 𝜃3,($!, 𝑑)   (11) 

where L is the objective function, d is a sample minibatch of data, and 𝑖 ∈ {1,2, … , 𝑘} is the fast 
weight update step.  

(3) According to the update direction of the fast parameters, the slow weights were updated 
as follows: 

𝜙3 = 𝜙3$! + 𝛼6𝜃3,= − 𝜙3$!7   (12) 
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Since there may be some mislabeled samples in the unlabeled dataset, maximizing the 
likelihood of log 𝑝 (𝑦 ∣ 𝑥) directly can be harmful. Considering this, we used label smoothing to 
introduce noise for the labels, making the model more robust so that it could generalize well: 

𝐿 = − !
+
∑ [+
(6! (1 − 𝜖)𝑙𝑜𝑔(𝜖) + 𝜖𝑙𝑜𝑔(1 − 𝜖)]  (13) 

where N is the batch size and 𝜖 is the label smoothing rate, which was set to 0.1.  
Owing to the large training dataset used in this study, it was impossible for us to use common 

parameter search approaches, such as grid search or random search, to obtain the best 
hyperparameters. According to previously published studies and experimental tests on small 
datasets, we set the batch size to 30, the learning rate to 1E-4, the weight decay to 1E-4, the layers 
of the encoder block and decoder block to 12, the hidden dim to 128, and the norm shape to 128. 
The models were built on PyTorch 1.10 (https://pytorch.org/). We used five NVIDIA Tesla V100 
GPUs for model training, which required about 14 days. 
Model evaluation. PU-EPP was compared with TransformerCPI 28, DeepConv-DTI 33, and GNN-
PT 34, with their default hyperparameters. We also tested the performance of the PU-EPP with five-
fold cross-validation on five independent datasets, including phosphatase, esterase, 
glycosyltransferase, β-keto acid cleavage enzymes, and halogenase (Table S1), which were 
compared with the performance of prediction models developed by Goldman et al. 35. To 
demonstrate whether PU-EPP can identify potential positive samples from unlabeled samples, we 
conducted recovering experiments of mislabeled positive samples on these five datasets. To this 
end, 1%, 3%, 5%, 10%, and 20% of the positive samples were mislabeled as negative, and the 
recognition capability of PU-EPP and default models on these mislabeled samples was tested with 
five-fold cross-validation. 
Prediction and evaluation of mycotoxin biotransformations. ToxinDB 13 was used to predict 
the potential biotransformations of mycotoxins. To rationally select the optimal biotransformation 
for detoxification of ZEA and OTA, we evaluated the feasibility, safety, and economics of predicted 
biotransformations at the molecular (e.g., the availability of co-reactants and toxicity and synthesis 
feasibility of mycotoxin metabolites) and reaction levels (e.g., reaction feasibility and 
biotransformation types) (Table S2). Because ToxinDB 13 can only predict the main metabolic 
products of the input mycotoxins, the co-reactants of the top-ranked reference reaction provided 
by ToxinDB were considered as the co-reactants of the predicted biotransformation and 
subsequently used for evaluation. Meanwhile, the enzyme classification (EC) number of the top-
ranked reference reaction was considered as the EC number of the predicted biotransformation. 
Screening and expression of candidate enzymes. UniProt 14 was used as the source of 
candidate enzymes. Because the EC numbers of most enzymes in UniProt 14 are unknown, we 
annotated the EC number of the enzymes with Bio2Rxn 44, a sequence-catalytic function model 
based on a consensus strategy. Subsequently, enzyme sequences belonging to the 3.1.1.- and 
3.5.1.- categories were extracted, and the enzyme sequences and the molecular structure of ZEA 
and OTA were input into the PU-EPP model in pairs to obtain the predicted probability of whether 
a certain enzyme could catalyze a selected substrate. Then, according to the predicted probability, 
10 enzymes for each mycotoxin with potential catalytic activity were selected for expression and 
activity verification (Table S5). The gene sequences for coding candidate enzymes were 
synthesized and then cloned into the pD2P vector from Healthcode (http://healthcode.com/). The 
constructed plasmids with candidate genes were expressed using the cell-free expression system 
provided by Healthcode according to their instructions. The control was a plasmid without candidate 
genes. After incubation at 30 °C for 4 h for targeted enzyme production, the supernatant of reaction 
mixtures containing enzymes was collected for subsequent mycotoxin degradation assays. 
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Evaluation of the catalytic activity of candidate enzymes. The mycotoxin standards of ZEA or 
OTA were added into 500 µL reaction supernatants at a final concentration of 1000 ng/mL. One 
major method to eliminate mycotoxins using enzymes is to fix enzymes with the feed. These 
enzymes start to perform detoxification when they reach the stomach of animals along with the 
feed. To simulate the activity of enzymes under practical conditions (e.g., animal intestines and 
stomach), we set the temperature of the experimental environment to 37 °C. After incubation at 37 
°C for 3 h, 500 µL methanol was added to stop the reaction. The mixture was shaken vigorously 
and then centrifuged at 13,000 g for 10 min. Finally, the supernatant was filtered using a 0.22-μm 
filter before being subjected to liquid chromatography–mass spectrometry (LC-MS) analysis. 
Mycotoxin determination and metabolite analyses were achieved following the previously 
developed LC-MS method 45. For the degradation assay under food matrices, mycotoxin standards 
were added to the wheat and maize flour at a final concentration of 1000 ng/g. Then, 500 µL 
enzyme supernatant was mixed with 500 mg mycotoxin-contaminated flour. After incubation at 37 
°C for 3 h, the reaction was stopped by adding 500 µL methanol. Finally, the mycotoxin in the 
samples was extracted for analysis as described above. The experiments were independently 
performed three times (n=3 biologically independent samples), and at least two technical replicates 
were used in each experimental group. 
Model interpretability evaluation and MD simulations. To interpret which residues on enzymes 
and which atoms on substrates are most important for the catalysis process, the multi-head self-
attention mechanism 31 was employed by assigning attention weights to the residues and atoms. 
For instance, a higher attention weight for a residue means that the residue is more important for 
enzyme activity toward the specific substrate, a higher attention weight for an atom means that it 
is important for binding with enzymes or means it may be present at the reaction sites (i.e., the 
atoms and bonds changed in the substrate during reactions) 21. To evaluate the model’s recognition 
ability for the reaction sites on substrates, we compared attention weights with known reaction sites 
collected from EnzyMine 46. Atoms less than one bond distance from bonds that changed in the 
reaction were considered reaction sites. We considered it to be identified correctly if an atom in a 
reaction site was ranked in the top 2N (N = the number of atoms in reaction sites) of all atoms 
because atoms with other functions (e.g., providing binding affinity with enzymes) may also be top 
ranked. We also randomly generated equal numbers of atoms on each substrate. Then, we 
compared the recognition ratio of atoms in reaction sites by PU-EPP and the recognition ratio of 
the randomly generated result. To evaluate the correctness of important residues inferred using 
the attention mechanism, we analyzed the important residues on ZH4 and OH1 enzymes using MD 
simulations (Fig S7). The first 25 amino acids in OH1 were deleted because they were likely to 
serve as a signal peptide. Then, the consistency of the results achieved by these two approaches 
was evaluated. To conduct MD simulations, an initial guess of the small molecule binding site in 
the enzyme was detected by BiteNet (https://sites.skoltech.ru/imolecule/tools/bitenet/) with the 
protein structure predicted by AlphaFold 47 as input. Additionally, four extra putative sites (e.g., 
pockets and grooves) were manually identified. The small molecule was then docked to each 
putative site via AutoDock Vina using the default scoring function. For docking, a 25 × 25 × 25 Å 
cubic box was set up to encompass the binding site, and the exhaustiveness value was set as 32. 
For each putative site, nine binding poses were obtained. Then, we selected the 10 top-ranked 
binding poses to conduct all-atom MD simulations. 

MD simulations were performed using Amber (https://ambermd.org/). The force field 
parameters for small molecules were adapted from the Amber GAFF force field, with point charges 
of atoms calculated via AM1-BCC. The protein was described by the Amber FF19SB force field 
and solvated in an OPC water box with a 12-Å buffer. KCl ions were added into the system to 
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neutralize the charge. The system was first energy-minimized using the steepest descent algorithm 
for 200 steps followed by the conjugate gradient algorithm for 9800 steps. The system was then 
heated from 0 to 100 K in the NVT ensemble over 800 ps and from 100 to 300 K in the NPT 
ensemble over 2 ns. During the heating stage, the backbone of the protein was restrained by a 
harmonic constraint with a force constant of 5 kcal/mol/Å2. A 1-ns equilibrium simulation with force 
constant reduced to 1 kcal/mol/Å2 was then performed to relax the system. The equilibrated system 
was used to initiate a 200-ns production run. During the simulations, the SHAKE algorithm 48 was 
used to restrain the lengths of bonds that involve hydrogen. The hydrogen mass repartition 
operation, which redistributes the masses of heavy atoms to their bonded hydrogens, was 
performed to enable a 4-fs time step for MD simulations. The Langevin thermostat was used during 
the simulations, and the equilibration and production runs were performed in the NPT ensemble at 
300 K. The non-bonded interaction cutoff was 10 Å. For each of the selected binding poses, its 
200-ns MD trajectory with the protein was subjected to MM-GBSA 49 to estimate the binding free 
energy. The ionic strength was set at 0.15 M. The binding poses were re-ranked according to their 
MM-GBSA binding free energies. Finally, we identified and selected the three top-ranked poses 
and extended their simulations to 1 μs. 

Based on the extended MD trajectories, the RMSF of the protein's heavy atoms and the 
dynamic cross-correlation matrix (DCCM) of the protein's Cα atoms were calculated via the 
CPPTRAJ program 50. The alignment of trajectories to the first frame was conducted prior to the 
RMSF and DCCM calculations. Residues that made a < -1 kcal/mol contribution to MM-GBSA-
binding free energy were categorized as energetically important residues. Residues that showed 
clear RMSF changes (ΔRMSF > ~0.5 Å) and significant correlation changes (as evidenced by 
DCCM analyses) upon small molecule binding were identified as potential allosterically important 
residues. Collectively, these energetically and allosterically important residues were identified as 
key residues for enzyme catalysis. 

We used RDKit (https://www.rdkit.org/) to visualize attention weights on the molecular 
structure of substrates. We used ProDy (http://prody.csb.pitt.edu/) and PyMol (https://pymol.org/) 
to visualize attention weights and MD-identified important residues on the structure of enzymes. 
The 90th percentile of the probability distribution of attention weights was considered the threshold 
to identify important residues. According to the Continuous Bag-of-Words mechanism, the number 
of attention weights extracted is two less than the number of amino acids; therefore, we set the 
attention weight of an amino acid as the highest attention weight in three neighboring amino acids 
and then selected the important amino acids according to the threshold. 
Gene site mutagenesis. The residue sites for mutation were selected according to attention 
weights, including four proximal sites (distance to substrate <10 Å) and four distal sites (distance 
to substrate >10 Å). Gene site mutagenesis was achieved using a ClonExpress Ultra One Step 
Cloning Kit (Vazyme Biotech, Nanjing) as per the manufacturer’s protocol. The pD2P plasmids with 
genes ZH4 and OH1 were used as PCR templates to generate point mutations in selected residues 
of ZH4 and OH1. The sequence of each variant was confirmed through sequencing. Finally, the 
pD2P plasmids with point mutation on genes ZH4 (index of amino acid residues: 12, 21, 32, and 
134) and OH1 (index of amino acid residues: 101, 169, 255, and 348) were expressed and assayed 
for their mycotoxin degradation activity, as described in the sections on the evaluation of the 
catalytic activity of candidate enzymes. The experiments were independently performed three 
times (n=3 biologically independent samples), and at least two technical replicates were used in 
each experimental group. 
 
Acknowledgments 

https://doi.org/10.26434/chemrxiv-2023-g6qb5 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g6qb5
https://creativecommons.org/licenses/by/4.0/


 

 

18 

 

We would like to thank S. Pfister and Y. Yu for providing feedback to improve this manuscript. This 
project received funding from the National Key Research and Development Program of China 
[Grant numbers: 2021YFC2103001 and 2019YFA0904300], the International Partnership Program 
of the Chinese Academy of Sciences (CAS) [Grant number: 153D31KYSB20170121], and the CAS 
Science and Technology Service Network Initiative Program [Grant number: QYZDB-SSW-
SMC012]. 
 
Data Availability 
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(http://www.rxnfinder.org/enzymine/). Datasets of five types of enzymes for model evaluation were 
collected from the GitHub repository (https://github.com/samgoldman97/enzyme-datasets). An 
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Supplementary Information 

 

Fig. S1. Prediction of mycotoxin-degrading enzymes based on molecular and reaction similarity. 
(A) Frequency distribution of similarity scores between substrates in Rhea 1 (N = 11,780) and 
zearalenone (ZEA) and ochratoxin A (OTA). (B) Frequency distribution of similarity scores between 
biochemical reactions in Rhea (N = 29,101) and ZEA and OTA hydrolysis reactions. Molecules or 
reactions are treated as similar if they exceed similarity score threshold of 0.75. These results show 
that similarity-based methods cannot provide reliable predictions for ZEA and OTA. (C) Molecular 
similarity scores (N = 11,780) of ZEA, OTA, and three well-studied metabolites (vanillin, quercetin, 
and glutamic acid) with substrates in Rhea. (D) Reaction-similarity scores (N = 11,780) between 
biochemical reactions in Rhea and the hydrolysis reactions of ZEA, OTA, vanillin, quercetin, and 
glutamic acid. Compared to well-studied molecules, molecules with higher structural specificity, 
such as ZEA and OTA, have fewer similar molecules and reactions. This indicates that traditional 
similarity-based methods and conventional fingerprints are not eligible to assist in the identification 
of enzymes for complex substrates (e.g., ZEA and OTA). (E) The most similar molecules with OTA 
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and ZEA in the Rhea database. (F, G) The most similar reactions with OTA and ZEA hydrolysis 
reactions in the Rhea database. Molecular similarity was calculated using the maximum common 
substructure algorithm 2. Reaction similarity was calculated based on the reaction difference 
fingerprint 3 and the Tanimoto algorithm 4. Both hydrolysis reactions of ZEA and OTA are not 
included in the International Union of Biochemistry and Molecular Biology Enzyme Commission 
(EC) system 5, indicating EC-based prediction methods (e.g., CLEAN 6) do not apply to these 
cases. 
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Fig. S2. Weighted random sampling strategy reflecting both enzyme specificity and 
promiscuity. (A) Distribution of the number of catalyzed substrates of enzymes in the positive data. 
(A) P450 metabolic enzymes catalyze several substrates, indicating that they have high 
promiscuity. Synthases of secondary metabolites can only catalyze a few substrates. (B) 
Distribution of corresponding enzymes of substrates in the positive data. Common primary 
metabolites such as glutamine, acetyl CoA, and pyruvic acid can be catalyzed by numerous 
enzymes, while secondary metabolites such as dihydrokaempferol, gallic acid, and kaurenoic acid 
can only be catalyzed by several specific enzymes. (C, D) Distributions of positive (N = 606,555) 
and negative samples (N = 6,488,914) were generated based on the weighted random sampling 
strategy. For enzymes/substrates with high specificity, more corresponding unlabeled (considered 
as negative) enzyme–substrate pairs were included in the dataset. For enzymes/substrates with 
high promiscuity, fewer corresponding unlabeled enzyme–substrate pairs were included in the 
dataset. (E, F) Ratios of unlabeled and positive enzyme–substrate pairs. The weighted random 
sampling strategy assumes that enzymes with fewer reported substrates have a higher catalytic 
specificity and enzymes with many reported substrates have a higher catalytic promiscuity. 

https://doi.org/10.26434/chemrxiv-2023-g6qb5 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g6qb5
https://creativecommons.org/licenses/by/4.0/


 

 

25 

 

Therefore, to reflect both enzyme promiscuity and specificity, 1–10 times as many corresponding 
unlabeled (considered as negative) enzyme–substrate pairs were included in the dataset. 
  

https://doi.org/10.26434/chemrxiv-2023-g6qb5 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g6qb5
https://creativecommons.org/licenses/by/4.0/


 

 

26 

 

 

Fig. S3. Recovery experiments on five datasets consisting of real positive and negative 
samples. This was done to evaluate the model’s hit ratios of mislabeled positives. The thresholds 
(0.85, 0.90, 0.95) stand for the probability ranges of positive samples for identifying and removing 
potential positive samples in the unlabeled dataset. The model achieved relatively stable hit ratios 
when the threshold was set to 0.90. 
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Fig. S4. Models’ area under the curve (AUC) scores under different thresholds (0.85, 0.90, 
0.95). The model achieved a relatively stable AUC when the threshold was set to 0.90. 
  

https://doi.org/10.26434/chemrxiv-2023-g6qb5 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g6qb5
https://creativecommons.org/licenses/by/4.0/


 

 

28 

 

 

Fig. S5. Models’ performance on five datasets related to phosphatase, esterase, 
glycosyltransferase (GT), β-keto acid cleavage enzyme (BKACE), and halogenase. The 
performance of the positive-unlabeled learning-based enzyme promiscuity prediction (PU-EPP) 
model is better than that of the baseline model. 
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Fig. S6. Prediction of biotransformation reactions based on reaction rules. From the 
metabolic reaction (A) catalyzed by enzymes (EC number: 2.6.1.17), two reaction rules were 
extracted and encoded into the simplified molecular input line entry system (SMILES) arbitrary 
target specification format (B). These reaction rules were used to predict a molecule's potential 
biotransformations and metabolic products if the molecule shared a common substructure (blue 
and orange parts in C and D) with the reaction rule. 
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Fig. S7. Schematic of the computational methodology used for exploring the binding mode 
between substrates and enzymes. First, five putative binding sites were used for docking 
calculations. Second, the top-ranked docking poses were refined by all-atom molecular dynamics 
simulations. Finally, the binding poses were re-ranked using molecular mechanics-generalized 
Born and surface area (MM-GBSA)-calculated binding free energies. The most probable binding 
pose was selected for binding mode analyses. 
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Fig. S8. Predicted enzyme–substrate binding sites and binding conformations. (A) A list of 
candidate binding sites and binding conformations of the ZH4 enzyme and zearalenone. (B) The 
most likely binding sites (S1P4) and conformations of ZH4. (C) A list of candidate binding sites and 
binding conformations of OH1 and OTA. (D) The most likely binding sites (S1P4) and conformations 
of the OH1 enzyme. 
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Fig. S9. Decomposition of the binding free energy using MM-GBSA to identify the residues 
contributing most to substrate binding. (A) Decomposition of the substrate-binding free energy 
of the ZH4 enzyme. (B) Decomposition of the substrate-binding free energy of the OH1 enzyme. 
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Fig. S10. Important regions on the enzymes identified by PU-EPP. (A) Attention weights of the 
coding layer (only based on features from enzymes) of ZH4, which cannot identify the enzyme’s 
substrate-binding sites. (B) Attention weights of the interaction layer (based on features from both 
enzymes and substrates) of ZH4, which identified the regions around the binding sites. (C) Attention 
weights of the coding layer of OH1, which could not identify the enzyme’s substrate-binding sites. 
(D) Attention weights of the interaction layer of OH1, which identified the regions around the binding 
sites. 
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Fig. S11. Root mean square fluctuations (RMSF) of protein-heavy atoms before and after 
substrate binding. (A) RMSF of the ZH4 enzyme. (B) RMSF of the OH1 enzyme. The black line 
indicates the RMSF of enzymes before substrate binding. The green line indicates the RMSF of 
enzymes after substrate binding. The x-axis denotes the amino acids in enzymes. The y-axis 
denotes the RMSF scores of each amino acid. 
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Fig. S12. Dynamic cross-correlation matrix (DCCM) analyses of proteins before (left panel) 
and after (right panel) substrate binding. The binding modes with the lowest MM-GBSA-binding 
free energy were selected for analysis. (A, B) DCCM of the ZH4 enzyme. Residues 30–60 vs 10–
30, 244–260 vs 33–57, and 170–190 vs 210–227 have high correlations. (C, D) DCCM of the OH1 
enzyme. Residues 170–190 vs 125–150, 135–160 vs 250–270, and 250–270 vs 300–320 have 
high correlations. The boxes highlight regions that show significant correlation changes upon 
substrate binding. 
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Fig. S13. Important regions on the ZH4 enzyme inferred via PU-EPP and molecular 
simulation. (A) Important regions identified by PU-EPP. (B) Important regions identified through 
molecular simulation. (C) Energetically important residues inferred through MM-GBSA analysis. (D) 
Allosterically important residues inferred through RMSF analysis. (E–G) Allosterically important 
residues inferred using DCCM analysis. 
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Fig. S14. Important regions on the OH1 enzyme inferred via PU-EPP and molecular 
simulation. (A) Important regions identified using PU-EPP. (B) Important regions identified through 
molecular simulation. (C) Energetically important residues inferred using MM-GBSA analysis. (D) 
Allosterically important residues inferred using RMSF analysis. (E–G) Allosterically important 
residues inferred through DCCM analysis. 
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Fig. S15. Overview of important amino acid residues in the ZH4 and OH1 enzymes inferred 
through PU-EPP and molecular simulation. Red indicates the important residues inferred via 
PU-EPP, while blue indicates the important residues inferred via molecular simulation. 
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Table S1. Datasets used in this study and their data sizes 
Dataset Number of 

enzymes 
Number of 
substrates 

Number of pairs 

Dataset for training PU-EPP 170,179 5,837 7,095,469 
Phosphatase 218 108 23,544 
Esterase 146 96 14,016 
Glycosyltransferase 54 90 4,298 
β-keto acid cleavage 
enzymes 

161 17 2,737 

Halogenase 42 62 2,604 
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Table S2. Rules for evaluating biotransformation reactions for toxin detoxification 
Type Category Description Software Score 

Molecular 
level 

Availability of co-
reactants 

The availability of co-reactants 
was calculated according to the 
normalized frequency of co-
reactants appearing in reactions. 
The more common the co-
reactants, the higher the score. 
For reactions with multiple co-
reactants, the lowest score of co-
reactants was summarized into 
the final score. 

Rhea 1 

0–1 
(2 non-
zero 
digits) 

Predicted lethal 
concentration 50% 
of the metabolite  

> the parent form of toxins 
ADMETLab 6 

0 

< the parent form of toxins +1 

Synthetic 
accessibility  
of the metabolite 

> the parent form of toxins 
MOSES 7 

0 

< the parent form of toxins +1 

Reaction 
level 

Biotransformation 
types 

Occurred on the side chains of 
the molecular structure of 
mycotoxins RDKit 8 

0 

Occurred on the scaffold of the 
molecular structure of mycotoxins +1 

Reaction feasibility Unfeasible DeepRFC 9 Exclude 
Feasible Retain 
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Table S3. Representative ochratoxin A (OTA) biotransformation reactions and their 
feasibility scores 
EC 
number 

Description  Metabolic reaction Score 

3.5.1.- Hydrolases acting on carbon-
nitrogen bonds (except peptide 
bonds) in linear amides 

OTA + H2O >> Ochratoxin α + DL-
phenylalanine 

3.59 

2.4.1.- Hexosyltransferases OTA + UDP-glucose + H2O >> OTA-
11-glucoside + UDP 

1.02 

2.7.2.- Phosphotransferases transferring 
phosphorus-containing groups 
with a carboxy group as an 
acceptor 

OTA + ATP >> OTA-27-phosphate + 
ADP + H+ 

0.12 

1.14.16.- Oxidoreductases acting on paired 
donors with reduced pteridine as 
one donor, and incorporation of 
one atom of oxygen into the other 
donor 

OTA + O2 + L-phenylalanine >> OTA-
21-OH + 3-hydroxy-L-phenylalanine 

0.01 

3.1.1.- Carboxylic-ester hydrolases OTA + ethanol >> Ochratoxin C + 
H2O  

0 
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Table S4. Representative zearalenone (ZEA) biotransformation reactions and their 
feasibility scores 
EC 
number 

Description  Metabolic reaction Score 

3.1.1.- Carboxylic-ester hydrolases ZEA + H2O >> hydrolyzed-ZEA 3.59 
1.14.13.- Oxidoreductases acting on paired 

donors with the incorporation of 
NADH or NADPH as one donor and 
one atom of oxygen as the other 
donor 

ZEA + NADPH + O2 + H+ >> ZEA-
14-carboxyl + CO2 + H2O + 
NADP+ 

2.13 

2.4.1.- Hexosyltransferases ZEA + UDP-glucose + H2O >> 
ZEA-14-glucoside + UDP 

1.02 

1.1.1.- Oxidoreductases acting on the CH-
OH group with NAD+ or NADP+ as 
an acceptor 

ZEA + NADPH + H+ >>Zearalenol 
+ NADP+ 

0.13 

2.7.1.- Phosphotransferases with an alcohol 
group as an acceptor 

ZEA + ATP >> ZEA-14-phosphate 
+ ADP + H+ 

0.12 
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