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Abstract 
To explore alternative abaucin antibiotics predicting nanomolar affinities against Acinetobacter baumannii, thousands of virtual abaucin-derived 
molecules were randomly generated and selected. For this, alphafold-modeled A.baumannii lipoprotein outer membrane localization (Lol) 
complex proteins were targeted by DataWarrior "build evolutionary libraries". Abaucin-children libraries were generated from the abaucin-
parent iteratively selecting those predicting higher affinities to the most probable A.baumannii LolCE docking-cavity. To improve accuracies, 
~4000 abaucin-children docking-scores were consensed with those from AutoDockVina. The resulting laydown table provided with filter sliders 
would allow user-criteria to be applied. One example explored candidates predicting both higher nanomolar affinities to A.baumannii LolCE (to 
favor putative antibiotics) and lower affinities to E.coli LolCE (to favor narrow-bacterial spectrum hits). Despite being highly hypothetical, some 
of these abaucin-derived chemotypes may constitute another step towards exploring possible improvements for anti-A.baumannii antibiotics. 
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Introduction 
Most recently, a deep-learning guided study predicted a novel 

antibiotic against Acinetobacter baumannii, which was named abaucin 
1 

.   
Chemically synthesized abaucin and derivatives inhibited in vitro  A.baumannii 
growth at the low micromolar range (~ 5 µM) and suppressed A.baumannii  in a 
wound-infected mice model. Furthermore, abaucin displayed a desirable narrow  
bacterial spectrum  which would favor host microbiota preservation during 
treatment, in contrast to many other antibiotics. In particular, abaucin was 
discovered by training a deep-learning model with a chemical library of 7500 
molecules obtained from patented and synthetic origins. Briefly, 6.2 % inhibited 
A.baumannii in vitro growth at < 50 µM (active molecules). A training-set 
containing active and inactive virtual molecules computationally trained a deep-
learning model. Finally, screening of the Drug Repurposing Hub library 

2 
 with the 

deep-learning model, predicted high affinity compounds and discovered the 
abaucin lead

1
.  Additional molecular mechanistic studies found out that abaucin 

perturbs lipoprotein trafficking in A. baumannii by interacting with the lipoprotein 
outer membrane localization (Lol) protein complex. 

A. baumannii is a Gram-negative bacteria causing health care-
associated infections resistant to multiple antibiotics

3-5 
. For instance, A. baumannii 

is a leading cause of nosocomial infections, particularly in intensive care units. It 
can cause pneumonia, bloodstream, urinary tract, and surgical site infections 
associated with high mortality rates. The ability of A. baumannii for environmental 
persistence and for dissemination of antibiotic-resistance genes is a global 
concern

6 
. A. baumannii has demonstrated resistance to a wide range of 

antimicrobial agents, including carbapenems, which are considered the last line of 
defense against multidrug-resistant bacteria

7
. The increasing emergence of pan-

drug resistant A. baumannii strains further limits treatment options constituting an 
emerging target aspect for new drug discovery

8, 9 
. Identification of novel antibiotics 

against A. baumannii is crucial for world wide healthcare
10, 11 

.  
The abaucin-targeted Lol protein complexes are among the under 

explored bacterial targets that may be an appropriated source for new anti-
bacterial treatments. In Gram negative bacteria such as A. baumannii or E.coli,  Lol 
proteins transport signaled lipoproteins from their internal to their external outer 
compact membranes. External outer bacterial membrane lipoproteins cause most 
of their resistance to penetration of antibiotics. Mislocalization of the Lol protein 
complexes results in bacterial death. Small-molecule inhibitors of lipoprotein 
transport have shown antibacterial activities. However, most of present Lol-
targeted antibiotics, including abaucin are active against A. baumannii at low 
micromolar ranges 

7, 12-17
. There may be room for affinity improvements. 

Lol complexes involve 3-5 different proteins depending on the 
lipoprotein transport stages

16
. E.coli LolCDE consists of a CE protein heterodimer 

inserted in the bacterial membranes through C4+E4 transmembrane α-helices and 
projecting outside their head and cytosolic domains. With a sequence identity of 
only 14.6 %, C and E proteins form dimerization interfaces with  C2+E2 α-helical V 
shaped central lipoprotein-binding cavity extending above ~20 Å out the bacterial 
membranes. The LolCE complex is maintained together by a DD homodimer 
interacting with the cytosolic domains down the membrane. Purified E.coli LolCDE 
revealed a number of lipoprotein ligands.  Most ligands contain one 9-10 amino 
acid peptide upwards linked to three downward hydrophobic triacyl chains. The 
other LolC2+E2 α-helices, sterically prevent any possible scape of the bound 

lipoproteins (Figure 1). The DD dimer shows ATP-binding capacities implicating 
ATP hydrolysis in LolCE open/close conformational changes. Protein A binds 
above C and also participate in the conformational changes (RMSD 3.6-4.8 Å). 
Conformational changes facilitate ATP hydrolysis, inner to outer membrane 
transport and delivery of the lipoprotein

18 
.  

E.coli mutants in the upper part of their E protein such as 
LolCDE(D264A), Lol CDE(I268D), LolCDE(Y366A) and LolCDE(F367D) reduced 
lipoprotein binding and were lethal 

18 
. In contrast, other mutants surrounding the 

lipoprotein triacyl chains in the protein C like LolC(M48G)DE, LolC(M267E)DE or 
LolC(L356D)DE, were not lethal. Mutants in the D proteins caused disintegration of 
the LolCDE complex. The results of all these studies, suggest that the peptide 
moieties of lipoproteins mostly interact with the E protein at the LolCDE complexes 
and that the lipoprotein peptide-binding residues at the upper part of E, may be 
essential for LolCDE transport. The mutational studies and the crystal structures 
briefly commented above, clarified E.coli lipoprotein transport mechanisms and 
allowed an hypothetical probable modeling of the A. baumannii LolCE. 
Accordingly,  the upper α-helices of the E protein modeled in the A. baumannii 
LolCE heterodimer have been targeted here to study abaucin-derivatives.  

Abaucin was selected as parent to generate children molecules 
because it is among the most recently described antibiotics anti-A.baumannii 
displaying low micromolar activities. The LolCE model was selected as target 
because despite the absence of a crystallographic abaucin-bound A.baumannii 
model, the elucidated E.coli LolCDE protein complex 3D structure

16
 could be used 

to predict an alphafold A.baumannii model  with high accuracy (Figure 1). 
To explore a possible  expansion of abaucin-derived chemotypes 

predicting nanomolar activities, we choose the "build evolutionary library" 
generation algorithm described at the DataWarrior (DW) program. This algorithm 
has been similarly applied on our predictions targeting other protein-ligand pair 
examples 

19-21 
. This generation/selection algorithm offers a unique alternative to 

the screening of large chemical data banks or to the deep-learning discovery 
methods. The here called evolutionary docking library augmented the repertoire of 
abaucin-derived children by generating ~ 45000 new molecules by small chemical 
random changes. Only those children predicting improved affinity to the abaucin A. 
baumannii LolCE docking-cavity were selected for iterative generations. 
Thousands of abaucin-children with improved fitting to the abaucin docking-cavity 
could be generated by this method. Additionally, since E.coli is the  most important 
commensal specie, DW docking to the crystallographic E.coli LolCDE target was 
employed to eliminate those A. baumannii abaucin-children with E.coli undesirable 
high affinities. The abaucin-children candidates predicting DW high affinities (low 
docking-scores) to A. baumannii LolCDE by both DW and AutoDockVina (ADV) 
were consensed to increase the accuracy of their predictions. While these results 
are uncertain due to be based only on a computationally predicted model and 
ligand putative candidates, the proposed list displayed numerous alternatives with 
higher affinities than abaucin.  

The most recent successful inhibitory activity of the computationally 
guided abaucin

1 
, the availability of crystallized E.coli LolCDE models

18 
, the 

accuracy improvements in modeling proteins by alphafold
22 

, and the application of 
recent  DW build evolutionary library predictive algorithms 

19-21
, have been 

combined here to computationally extend hypothetical new abaucin-derived 
chemotypes predicting nanomolar affinities for future antibiotic candidates against 
A. baumannii.  
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Computational Methods 
 

LolCE A.baumannii alphafold modeling 
  The 7arh.pdb crystallographic model of E.coli lipoprotein outer 
membrane localization (Lol) was retrieved from the RCSB bank 
(https://www.rcsb.org/) 

18 
. The amino acid sequences of blastp C (EGI41640) and 

E (SST00685) chains of  A.baumannii LolCE were identified from the 
corresponding E.coli protein C and E sequences at 7arh.pdb 
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide). The C and E 
A.baumannii protein sequences were then modeled as one heterologous dimer 
with the Sokrypton Alphafold2.ipynb Colab (https://colab.research.google.com/ 
github/sokrypton/ColabFold/blob/main/ AlphaFold2.ipynb)

22 
. The A.baumannii 

LolCE model predicting the lowest RMSD (Root Square Mean Differences) of 3.6 Å 
with the E.coli 7arh.pbd CE dimer, was selected for further work. The 4+4 CE 
transmembrane α-helices of the A.baumannii alphafold model could be mapped in 
a similar position than those previously described for E.coli 

18 
 (Figure 1AB).  

Abaucin was docked to A.baumannii  LolCE by ADV and DW and visualized in 
PyMol. For DW docking, the pdb files required elimination of the CONECT lines. 
 

A 

 
B 

Figure 1 
LolCE-abaucin A.baumannii complex predicted at 

the alphafold-derived model 
 

The amino acid sequences of the C (EGI41640) and 
E (SST00685) proteins of  A.baumannii  LolCE  were 
identified  by blastp of  E.coli LolCE (7arh.pdb). 
A.baumannii  LolCE  was  alphafold-modeled as an 
heterologous  dimer. The resulted positions  of the 
C4+E4  transmembrane α-helices was as previously 
described

18 
. Here abaucin was docked to 

A.baumannii  LolCE by DW and visualized by PyMol. 
 
A) side view.  B) top view 
Blue horizontal background,  bacterial membranes 
Light gray, LolC chain cartoon.  
Dark gray, LolE chain cartoon 
Green mesh, MET1 amino terminal of E  
Red spheres, DW docked abaucin 

1 
  

 
Generation of abaucin-children    

 The "Build Evolutionary Library" and "Dock Structures into Docking 
Cavity" subprograms included into DataWarrior (DW)

 46
 were used here to 

generate abaucin-derivative libraries fitting the abaucin docking-cavity 
(evolutionary docking libraries), following our previous more detailed 
descriptions

19-21 
. Common evolutionary parameters such as generations of 128 

children, selection of 16 children per generation, preference for drug-like properties 
and 3 runs were chosen as optimized in previous work. Children from the abaucin 
parent, were first predicted by fitting to higher affinity to the ADV and DW identified 
abaucin-docking cavities (evolutionary docking). Molecular weight restriction 
criteria were then added to the fitting criteria but maintaining the highest relative 
weight  for affinity (x4). Additional molecular weight  (2x) and logP (x1) fitting 
criteria were added to subsequent evolutionary docking. As indicated before, the 
abaucin-children were saved as *.dwar files and filtered by excluding any toxic DW 
chemical properties  (mutagenesis, tumorigenicity, reproductive interference, 
irritant, and nasty functions) using a home-designed toxicprediction.dwam macro 
(included in the Supplementary Material). Non-toxic children were saved  as *.dwar 
and special *.sdf (vs3) files

19, 20 
  

 
Computational programs   

 The "Build evolutionary library" and "Dock Structures into Docking 
Cavity" subprograms included into the DataWarrior (DW)

 46
 (dw550win.zip for 

Windows) were obtained (https://openmolecules.org/datawarrior/download.html) as 
described at DW and our previous work 

19-21
. The AutoDockVina (ADV) program 

written in Python vs3.8 and included in the PyRx-098/PyRx-1.0 package  was used 
as described before (https://pyrx.sourceforge.io/)

19 
. The MolSoft program (ICM 

Molbrowser vs3.9Win64bit (https://www.molsoft.com/ download.html) was used for 
easier manipulation of the *.sdf files and for drawing 2D molecular structures.  The 
Origin program (OriginPro 2022, 64 bit, Northampton, MA, USA) 
(https://www.originlab.com/) was used for calculations and figure drawings. The 

predicted structures were visualized mostly in PyMOL 2.5.3 
(https://www.pymol.org/) but also in PyRx 098/PyRx1.0 (Mayavi), and Discover 
Studio Visualizer v21.1.0.20298 (Dassault Systemes Biovia Corp, 2020, 
https://discover.3ds.com/discovery-studio-visualizer-download). Hydrophobic and 
Hydrogen-bonded  amino acid interactions predicted by the docked ligand 
complexes were identified by LigPlus vs2.2.8 (https://www.ebi.ac.uk/thornton-
srv/software/LigPlus/download.htm), and internally visualized using PyMol. A 
multithreading multi-core i9 (47 CPU) PCSpecialist (AMD Ryzen Threadripper 
3960X) provided with 64 Gb of RAM (Corsair Vengeance DDR4 at 3200 MHz, 4 x 
16 GB)  (https://www.pcspecialist.es/) was used for computation. 
 

Results 
 To define one abaucin docking-cavity on A.baumannii LolCE, the 
crystallographic E.coli Lol structure template was employed for modeling

18 
. After 

alphafold-modeling, a possible abaucin docking cavity in A.baumannii LolCE was 
predicted by ADV docking simulation. Because some molecular alterations were 
observed in the abaucin geometry after docking (not shown), the resulted ADV-
cavity was used for abaucin docking by DW. The new A.baumannii LolCE DW 
docking-cavity was similar to that obtained from ADV docking but with the 
advantage of  preserving 100 % of the abaucin chemical geometry (Figure 1, AB). 
Both A.baumannii LolCE-abaucin ADV and DW docking cavities were applied for the 
subsequent evolutionary docking. 
 Children from the abaucin-parent were first generated by maximizing 
affinities (minimizing docking-scores) as the unique criteria to explore the 
molecular characteristics of any possible predictions. After eliminating those 
children predicting known DW toxicities, the highest children affinities were  found 
at mean molecular weights of 476 ±52 g/mol and mean logP hydrophobicities of 
6.1 ±1.6  (Figure S1).  
 Molecular weight criteria between 300 to 550 g/mol maintaining logP< 
4, were added for additional evolutionary dockings.  Using both ADV or DW 
abaucin-docking cavities, thousands of abaucin-children fitting their corresponding 
A.baumannii LolCE cavities predicted higher affinities (Figure 2, horizontal 
dashed blue line) than those predicted for the abaucin-parent (~ DW docking-
scores < -78). The number of raw-children generated per experiment varied from 
33387 to 46067  with different molecular weight  targets (Table S1). The 
percentage of raw children predicting best fitting to the criteria mentioned above 
were almost constant since only varied from 14.5 to 15.4 %. Fitted children that 
were non-toxic varied from 15.4 to 69.8 %. The children predicted with non-
restricted and < 550 g/mol molecular weights, predicted the highest affinities  as 
shown by analyzing their rank profiles of docking-scores vs docking-score order 
(Figure 2, red stars and spheres). The children predicted with non-restricted and 
< 550 g/mol molecular weights, were selected to further studies.  
  

 
Figure 2 

Evolutionary docking rank  profiles of abaucin-children at different molecular weights  
  

DW "Build Evolutionary Libraries" using ADV or DW docking cavities at different Molecular Weights (MW, g/mol)  
generated  the abaucin- children described at Table S1.  Non-toxic children are represented. The abaucin  
molecular weight is 390 g/mol. 
Open triangles, abaucin fitted to ADV docking-cavity (abaucin altered geometry) 
Closed spheres, abaucin fitted to DW docking-cavity (abaucin conserved geometry). 
Horizontal dashed blue line, abaucin DW and ADV docking-scores 
Red open starts, any MW (Figure S1) 
Gray triangles,  MW <300 g/mol  Gray spheres, MW <390 g/mol 
Green triangles,  MW <450 g/mol Green spheres, MW <500 g/mol 
Red triangles, MW <550 g/mol  Red spheres, MW <500 g/mol 

C chain E chain 
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 Therefore, the abaucin-children predicted when using no molecular 
weight restrictions were pooled with those restricted when using <550 g/mol 
molecular weights. The children predicting > -90 docking-scores (low affinities),  
<250 g/mol molecular weights (low specificity), and duplicated were removed to 
obtain an abaucin-children library.  The abaucin-children library library contained 
4312 abaucin-children, predicting between -90 to -145 DW docking-scores, 336 to 
550 g/mol molecular weights, and -2.4 to 4.0 logP 
(4312AbaucinChildrenLibrary.dwar, Supplementary material). 
 Next, the abaucin-children  that  predicted high affinities to E.coli 
LolCE (an example of commensal Gram-negative bacteria) were removed. DW 
docking results predicted very few E.coli LolCE abaucin-children with affinities 
greater or equal to those corresponding to A.baumannii and therefore the number 
of children were maintained (Figure S2). These surprising results suggest that the 
predicted LolCE abaucin-children are highly specific to A.baumannii. They may be 
innocuous to other commensal bacterial species, if used at appropriated 
concentrations. Similar computational analysis of any other commensal bacterial 
species could be performed as their additional Lol structures will become available.  
Experimental evidences will be required to confirm these hypothesis. 
 To increase the accuracy of the abaucin-children library predictions, 
their DW docking-scores were consensed with those obtained by the ADV docking 
algorithm. ADV was chosen because it relies in a complete different algorithm than 
DW docking. The DW A.baumannii and E.coli docking-scores together with ADV 
A.baumannii docking-scores corrected by ligand efficiency (LELP parameter) were 
displayed together in a unique DW table containing the ~ 4000 abaucin-children 
library. This DW table allow multiple filter thresholds to be simultaneously user-
applied for each of the abaucin-children A.baumannii (DWa, DWe, ADVa, LELPa, 
a=A.baumannii, e=E.coli), including also their molecular weights and logP 
properties (4312AbaucinChildrenLibrary.dwar, Supplementary Material).  
 To show the results of a prove-of-concept example of the above 
mentioned  possibilities for candidate selection, stringent <-100 DW docking-score 
thresholds were applied to retain only the highest affinities to A.baumannii LolCE 
(lead predicted antibiotics). In contrast, those children predicting also high affinities 
(<76 DW docking-scores) to E.coli LolCE, were skipped (avoid commensal 
antibiotics). The so downsized abaucin children library was further refined by 
consensus docking by selecting for those children predicting also A.baumannii 
LolCE ADV scores <100 nM (high affinities) and also by taking into account their 
minimal calculated ligand efficiency LELP parameters. This example of 
simultaneous filter combinations, predicted the abaucin-children leads 18544 and 
34326  (Table S2 and Figure 3) Other threshold combinations may be chosen to 
predict other A.baumannii LolCE children for particular user purposes 
(4312AbaucinChildrenLibrary.dwar,  Supplementary Material). 
  

 

 
Abaucin 

   
 18544              34326 

Figure 3 
Representative 2D molecule examples of abaucin and their abaucin-children 

Red, Oxygens. Blue, Nitrogens 

 

 
A                     B 

Figure 4 
Mapping  of  representative 18554 (A) and 34326 (B) compared to abaucin (red sticks) DW-docked to 

A.baumannii LolCE  
Light gray, protein C.      Darker gray, protein E 

 All the abaucin-children in the library targeted similar cavities at the 
upper part of the A.baumannii LolCE compared to abaucin (Figure 4 AB). Most of 
the LolCE amino acids targeted by 18544 and 34326  were into the E rather than 
into the C protein, in contrast to those predicted for abaucin docking (Table S3). 
More hydrogen bonds were also predicted into the E protein (3-4) compared with 
1-2 into the C protein (Table S3). These amino acid preferences confirmed their 
higher affinity predictions towards A.baumannii E protein at the LolCE complex. 
Because of the implication of lethal mutants in the upper E region

16
 , the similar  

18544 and 34326  preferences could be implicated in experimental binding to 
A.baumannii LolCE to interact with its lipoprotein traffic activity. 
 
 

Discussion 

 This work explores abaucin-derived chemical spaces by designing on-
demand-libraries fitting their probable docking-cavities. Abaucin is a recently 
discovered antibiotic specifically targeting the lipoprotein transport LolCE of Gram-
negative A.baumannii. For potential antibiotic study purposes, a new library of ~ 
4000 abaucin-children molecules were computationally generated and selected by 
best fitting to the corresponding abaucin-LolCE  docking-cavity. 

 The DW "Build Evolutionary library"  subprogram was particular 
because to our knowledge, it is one of the few programs  which randomly generate 
their own possible ligands,  and select the ones targeting a unique cavity by 
maintaining their ligand geometries.  Accurate targeting one docking-cavity favored 
the specific selection of the best fitting abaucin-derived children. 

In particular, thousands of abaucin-children predicting higher affinities 
to their docking-cavity could be generated by targeting the alphafold modeled 
A.baumannii LolCE cavity. These large number of abaucin-children allowed to 
study an example of how undesirable docking predictions, for instance those  
against any commensal species, could be used to minimize antibiotic off-target 
effects. To retrieve a similar large number of candidates would have been 
impossible using more traditional screening, even if targeting the largest chemical 
libraries publically available (Mcule, chemSpace, Zinc, PubChem, Chembl, etc). 
Nevertheless, enormous number of alternatives still exist to be explored in the vast 
chemical/chemotype space 

23, 24
. 

 Computationally predicting chemical synthesis pathway alternatives 
will be the next complementary step before any in vitro or in vivo experimental  
studies could  be undertaken. Any possible chemical synthesis may also be 
computationally guided by retrosynthesis predictions

25 
 (https://rxn.res.ibm.com/). 

 The described results, identified numerous new chemotypes predicting 
low nanomolar abaucin-children with high specificity while conserving its targeting 
to the predicted abaucin-docking cavity.  Further work needs to include chemical 
synthesis for experimental validation. 

 
 

Supporting information 
 

 
Figure S1 

Resulting molecular weight and LogP profiles of abaucin-children from evolutionary docking without 
any other criteria than DW docking 

The DW evolutionary docking of abaucin was applied only with the minimal docking-score criteria (maximal 
affinity), without any other criteria. Non-toxic children were represented. 
Horizontal dashed red line, DW clogP of abaucin. 
Horizontal dashed gray line, DW docking-score of abaucin. 
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Table  S1 

Characteristics of abaucin-children generated with different molecular weight criteria (Figure 2) 
docking  

 
Fitting Nontoxic 

cavity <MW Raw children % children % 

DW -------- 46067 6707 14.5 1034 15.4 
       
ADV <300 45667 6751 14.8 4071 60.3 
ADV <450 45879 7070 15.4 3613 51.5 
ADV <550 33387 4881 14.6 2107 43.1 
       
DW <390 42403 6240 14.7 3486 55.8 
DW <500 39992 6100 15.2 4260 69.8 
DW <550 41861 6178 14.7 3649 59.1 
       

 
Initial parent: abaucin.sdf  
Initial LolCE docking cavity: ADV or DW A.baumannii-abaucin cavity.pdb 
Evolutionary criteria and relative weights(x): fitting to abaucin-cavity (x4); < MW (x2); logP<4 (x1). 
16 children were saved from 128 children per generation, 3 runs per experiment 
<MW, children maximal preferential molecular weight criteria (x4) chosen to fit during evolution 
Raw, total  number of randomly generated  children per experiment , 
Light blue vertical backgrounds, calculated percentages 
Fitting,  raw children fitting the cavity and their % calculated by the formula 100*fitting children/raw 
Nontoxic, non-toxic children and their % calculated by the formula: 100*non-toxic children / fitting children. 

 
 

 
Figure S2 

DW docking-scores of abaucin-children docked to A.baumannii and E.coli LolCE 
The DW A.baumannii  abaucin-children were DW docked using the E.coli docking cavity. 
Dashed Blue line, expected data if A.baumannii and E.coli predicted similar affinities. 
Vertical straight line, DW -90 docking-score threshold  to select for high-affinity abaucin-children. 

 
 

Table S2 
Representative A.baumannii LolCE chemotype properties and predictions  

 

ID 
MW 
g/mol 

logP 
DW 
A.baum 

DW 
E.coli 

ADV,nM 
A.baum 

LE LELP  

abaucin 390 4.0 -71 -60 414 0.31 8.0  

18544 542 0.6 -114 -71 77 0.25 2.4  

34326 485 -0.5 -105 -71 65 0.28 -1.8  

 Each of the ID numbers were automatically assigned by the DW during evolutionary docking  

 
 

Table S3 
Amino acid residues of A.baumannii LolCE predicting contacts with 

representative abaucin-children 

Protein position Aa Aa abaucin 18544 34326 

C 88 F Phe  H  
 92 L Leu    
 96 I Ile    
 292 E Glu    
 293 L Leu H   
 294 F Phe    
 296 A Ala    
 297 V Val    
 300 E Glu H   

E 52 F Phe H   
 53 E Glu    
 56 L Leu  H H 
 261 Y Tyr    
 262 M Met  H H 
 264 N Asp    
 265 N Asp   H 
 266 I Ile  H H 
 267 Q Gln    
 ***268 M Met    
 269 V Val    
 ***367 Y Tyr H   

Aa, Amino acid residues  of the A.baumannii  LolCE docking-cavity. 
Colored rectangles, amino acid residues predicted as contacts by LigPlus  
H, predicted Hydrogen bonds by LigPlus. 
***,  lethal E.coli  E mutants mapped to this A.baumannii  E sequence

16
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Supplementary Material 
 
- toxicprediction.dwam. A DW macro file to eliminate all toxic children from any 
*.sdf file, rename the resulting files and save them into the corresponding dwar and 
sdf files. 
 
- 4312AbaucinChildrenLibrary.dwar. A DW table containing 4312 adaucin-
children. It was provided with threshold filters to their DW and ADV / LELP-
corrected docking-scores to A.baumannii  and to  E.coli LolCE, including each of 
their molecular weights and clogP properties.  
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