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Abstract

Selective and feasible reactions are top targets in synthesis planning, both of which

depend on the reactivity of the molecules involved. Mayr’s approach to quantifying re-

activity has greatly facilitated the planning process, but reactivity parameters for new

compounds require time-consuming experiments. In the past decade, data-driven mod-

eling has been gaining momentum in the field as it shows promise in terms of efficient

reactivity prediction. However, state-of-the-art models use quantum chemical data

as input, which prevents access to real-time planning in organic synthesis. Here, we

present a novel data-driven workflow for predicting reactivity parameters of molecules

that takes only structural information as input, enabling de facto real-time reactivity

predictions. We use the well-understood chemical space of benzhydrylium ions as an

example to demonstrate the functionality of our approach and the performance of the

resulting quantitative structure–reactivity relationships (QSRRs). Our results suggest

that it is straightforward to build low-cost QSRRs that are accurate, interpretable, and

transferable to yet unexplored systems within a given scope of application.
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Introduction

The ability to predict whether two compounds will react and, if so, how fast, is essential for

synthesis planning. The estimation of relative rates and hence, selectivity, is equally vital as

they determine the likelihood of unwanted side reactions taking place during the synthesis

process. Knowledge of these fundamental variables is rooted in the reactivity of the molecules

involved. They allow chemists to make informed decisions about which reactions to pursue,

thereby saving time, resources, and effort in the laboratory. Traditionally, determining

reactivity has relied on experimental trial and error or referencing existing literature and

databases, which is time-consuming and limits the scope of exploration.1,2

By leveraging advances in hardware, algorithms, and data science, a plethora of new effi-

cient tools for planning organic syntheses has become available in the past two decades.3–11

These new techniques can rapidly provide valuable insights into the reactivity of molecules,

enabling chemists to make informed decisions during routine synthesis design. This ap-

proach has the potential to significantly accelerate the discovery and development of novel

compounds, drugs, and materials, benefiting a wide range of scientific disciplines.

Our group currently explores the feasibility of real-time prediction of reactivity parame-

ters by quantitative structure–reactivity relationships (QSRRs).12–14 We aspire to build an

interactive platform on which users can query arbitrary organic compounds and receive in-

stant feedback, including site-specific reactivity information and uncertainty estimates15 to

ensure reliability und practical benefit. With the ability to assess reactivity in real-time,

chemists can efficiently evaluate a vast number of potential reactions and choose the most

promising ones for further investigation.

Here, we present a proof of principle using the chemical space of benzhydrylium ions as an

example. The benzhydrylium ion and its derivatives write a success story in terms of quan-

tifying chemical reactivity. Driven by the attempt to systematize the use of carbocations

in organic synthesis, Mayr and coworkers studied reactions of olefins with benzhydrylium

ions.16,17 Mayr’s team was astonished when they found that the relative reactivity of most
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alkenes is independent of the reactivity of the benzhydrylium ion they react with.18,19 Eventu-

ally, Mayr and Patz proposed a simple expression containing only three empirical parameters

to compute the rate constant of polar bimolecular reactions in solution,20

log k(20 ◦C) = sN(N + E) (1)

Here, E, N , and sN represent electrophilicity, nucleophilicity, and a nucleophile-specific sen-

sitivity parameter, respectively. As they proceeded, Mayr and his team found that the

Mayr–Patz equation (1) is also valid for many other classes of nucleophiles and electrophiles.

To date, reactivity parameters have been determined for 352 electrophiles (E) and 1264 nu-

cleophiles (N , sN), which can be accessed via Mayr’s Database of Reactivity Parameters.21,22

A brief explanation of how these parameters are determined experimentally23,24 is given in

Boxes 1 and 2 of ref.14

Because synthesis and kinetic experiments are time-consuming and resource-intensive,

attempts have been made to determine reactivity parameters by thermochemical calculations

based on density functional theory (DFT). However, they have not yet prevailed over the

experimental approach, also because of accuracy issues. In a recent uncertainty quantification

study,15 we confirmed that the average accuracy of experimental rate constants corresponding

to reactions of olefins with benzhydrylium ions is higher — deviation in k below one order of

magnitude — than that achievable with standard DFT calculations. Even high-performing

functionals result in average barrier height errors of at least 2 kcal mol−1,25 translating to a

deviation in k of one to two orders of magnitude at 20 ◦C assuming validity of the Eyring

equation.26 Ultimately, neither of the two approaches (experiment vs. DFT) is suitable for

the efficient prediction of reactivity parameters. This is one reason why data-driven or

machine-learning (ML) algorithms have gained much attention in this context as they are

capable to yield fast predictions by interpolating between available data.14

In supervised ML, relationships between descriptors (input variables) and targets (output
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variables) are learned by means of regression (continuous target) or classification (discrete

target). Aside from the expensive acquisition of targets (i.e., experimental reactivity param-

eters), the generation of descriptors can constitute a critical bottleneck of the ML workflow.

For instance, previous data-driven studies have mostly relied on quantum molecular prop-

erties (QMPs) as descriptors,27–37 meaning that each prediction is preceded by quantum

chemical calculations, which occupy almost 100% of the overall prediction time.

While QMPs are among the most informative descriptors,33 we target fast descriptor

generation that avoids quantum chemical calculations as much as possible. For this purpose,

we focus on structural descriptors in this work. Structural descriptors are direct represen-

tations of the connectivity/graph or the three-dimensional structure of a molecule.38 There

are two principal types of structural descriptors: General (application-agnostic) descriptors,

which are applicable to a broad range of structure classes, but rather difficult to interpret.

On the other hand, application-specific descriptors are rather simple to interpret but not

generalizable to cases outside the domain of application. Here, we investigate the merits and

drawbacks of both types of descriptors.

In general, structural descriptors are much higher in dimensionality than QMPs. As

a rule of thumb, the greater the dimensionality of a descriptor, the more data is needed

to uncover the underlying QSRR. However, the number of reactivity parameters in Mayr’s

database is limited. Therefore, we hypothesize that the structural descriptors examined here

are too high-dimensional to be directly linkable with the relatively small number of available

reactivity parameters. To meet this challenge, we propose a two-step workflow for building

QSRR models from structural descriptors (Fig. 1).

Assume a set of K available reactivity parameters that is too small to build an accurate

QSRR model based on a high-dimensional structural descriptor. Further assume that a set

of L ≫ K reactivity parameters would be necessary to achieve the desired accuracy. Then, if

we could identify a less expensive surrogate quantity that correlates well with the reactivity

parameter of interest, it would be possible to build such a two-step QSRR model. In this
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work, we propose QMPs to serve as surrogate quantities. The use of QMPs may seem like

a contradiction to the goal of avoiding them, as stated above. However, given a set of M

molecules of interest, only L ≪ M of which are equipped with QMPs, we have avoided

(multiples of) M − L quantum chemical calculations, leading to substantial computational

savings.

Summarizing: In step 1, high-dimensional structural descriptors are linked with a small

number of QMPs. The training set size of step 1 is L. In step 2, the same QMPs are

linked with the actual reactivity parameters. The training set size of step 2 is K. Both

steps are based on multivariate linear regression (MLR)39 to facilitate interpretation of the

results. The group of Sigman has popularized the method for physical organic chemistry40

and it has already been applied by Orlandi et al.35 for predicting and understanding Mayr’s

nucleophilicity parameter N .

In this work, we apply the novel two-step QSRR workflow to a dataset of M = 3570

benzhydrylium ions (Fig. 3), for only K = 27 of which an electrophilicity parameter E is

available. At the same time, these 27 systems cover a wide range of reactivity, −10.04 < E <

8.02, spanning almost 20 orders of magnitude. Their electrophilic center, an carbenium ion,

can be tuned by distant substituents. As a result, the reactivity of benzhydrylium ions can

be dominantly attributed to electronic effects, leading to unambiguous E parameters. These

electrophiles are therefore particularly well suited for building quantitative nucleophilicity

scales for a variety of organic compounds.1

After an overview of the data and methods used in this work, the potential of our two-

step workflow in terms of real-time reactivity prediction is evaluated. In particular, the

MLR models for both steps of the workflow are analyzed with respect to performance and

interpretability.
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Figure 1: Schematic description of our two-step workflow for predicting reactivity parame-
ters from molecular structures. In step 2 of the workflow, the relationship between a suitable
quantum molecular (QM) property and the reactivity parameter of interest is learned. Since
QM properties require expensive quantum chemical calculations, we seek to replace their cal-
culation in step 1 of the workflow. For this purpose, the three-dimensional (3D) molecular
structures are initially transformed into machine-learnable descriptors, before the relation-
ships between these descriptors and the QM property are learned.

Methods

Data set

Mayr’s database21,22 comprises electrophilicity parameters for 33 benzhydrylium ions, six of

which are annulated and therefore removed for the following analysis. Table 1 and Fig. 2

show the remaining K = 27 electrophiles.

For this study, a combinatorial data set of benzhydrylium ion derivatives was generated

based on the unsubstituted ion 19. Its four meta (m) and two para (p) positions, which

are shown in Fig. 3, are suitable substitution sites. By avoiding substitution of the ortho

positions, the steric situation at the carbenium ion is preserved and, hence, its electrophilicity

is predominantly caused by electronic substituent effects. We considered only substituents

of benzhydrylium ions available in Mayr’s database (see Table 1), 13 in total: –F, –Cl,

–Me, –OMe, –OPh, –N(Me)2, –N(Me)(Ph), –N(Ph)2, –N -pyrrolidino, –N -morpholino, –
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Figure 2: Top: The benzhydrylium scaffold with substituents Y and Z, which are specified
in Table 1. Bottom: Lewis structures of the N -pyrrolidino and N -morpholino substituents.
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Figure 3: The benzhydrylium scaffold with emphasized meta positions m and para positions
p. Rotation axes leading to (approximately) isoenergetic structures are displayed in gray.

N(Me)(CH2CF3), –N(Ph)(CH2CF3), and –CF3. The Lewis structures of the –N -pyrrolidino

and –N -morpholino groups are shown in Fig. 2. Only –F and –Cl were selected as possible

m-substituents to avoid steric hindrance with the p-substituents, while all of the above-

mentioned substituents were selected as possible p-substituents.

Next, all possible substitution combinations of these functional groups were generated,

leading to 34 · 142 = 15876 structures (counting hydrogen as 3rd m-substituent and 14th p-

substituent, respectively). If structures could be converted into each other by the C2 rotation

axis, shown as gray solid line in Fig. 3, only one of them was kept. In addition, tests have

shown that assuming a symmetry axis passing through the bond between the carbenium

ion and the aromatic rings (dashed gray lines in Fig. 3) is a reasonable approximation (see
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Table 1: Benzhydrylium ion derivatives of Mayr’s database considered in this work. Sub-
stituents Y and Z (cf. Fig. 2) as well as electrophilicity parameters E 1 are listed. See
Table S6 for reference electrophile names.

ID Y Z E 1 ID Y Z E 1

1 4-(N -pyrrolidino) Y −7.69 15 4-Me H 4.43
2 4-N(Me)2 Y −7.02 16 4-F Y 5.01
3 4-N(Me)(Ph) Y −5.89 17 4-F H 5.20
4 4-(N -morpholino) Y −5.53 18 3-F, 4-Me Y 5.24
5 4-N(Ph)2 Y −4.72 19 H Y 5.47
6 4-N(Me)(CH2CF3) Y −3.85 20 4-Cl Y 5.48
7 4-N(Ph)(CH2CF3) Y −3.14 21 3-F H 6.23
8 4-OMe Y 0.00 22 4-(CF3) H 6.70
9 4-OMe 4-OPh 0.61 23 3,5-F2 H 6.74

10 4-OMe 4-Me 1.48 24 3-F Y 6.87
11 4-OMe H 2.11 25 3,5-F2 3-F 7.52
12 4-OPh 4-Me 2.16 26 4-(CF3) Y 7.96
13 4-OPh H 2.90 27 3,5-F2 Y 8.02
14 4-Me Y 3.63

SI Section “Examination of rotational symmetry”). The resulting duplicate molecules were

removed as well. The final data set therefore consists of M = 3570 structures, in which the

27 aforementioned reference structures are present.

Descriptors

For the data set under investigation, two problem-specific descriptors have been developed.

All descriptors considered in this work are represented as vectors, the individual elements of

which are referred to as features. See SI Section “Descriptor properties” for useful require-

ments for the development/choice of a suitable descriptor.

The counting descriptor CFG reflects the number of each functional group (FG) at

the meta positions (group 1) and the para positions (group 2), as well as the number of

substituent combinations regarding the meta positions located at the same ring (group 3)

and regarding the para positions adjacent to meta positions (group 4). The last two groups

ensure that the descriptor is a unique description of the substitution pattern.

In Fig. 4, a schematic description of CFG is shown. The hydrogen atom is neglected as
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FG. Considering all possible substituents (m = 2 and p = 13), the descriptor dimension is

composed of m = 2 features for group 1, p = 13 features for group 2, m · (m + 1)/2 = 3

features for group 3, and m ·p = 26 features for group 4. This application-specific descriptor

features 44 dimensions. It can only be applied to this specific data set. At the same time, it

is an easy-to-interpret descriptor.

meta
positions

para
positions

meta adjacent 
to meta

positions

para adjacent 
to meta

positions

Counting 
functional 
groups at:

2

13

3

26

44 
dimensions

X =
m

p

m

m

p

m

m

p

m

m

p

m

Figure 4: Schematic description of the counting descriptor CFG. The number of occurrences
is counted individually for every substituent or combination of substituents according to the
categories shown. The right-hand side represents the number of descriptor dimensions (44
in total) occupied by the different categories.

The original F 2B descriptor was proposed by Pronobis et al.41 and is a general

descriptor including two-body interactions. It is specified for all possible element pairs in

the data set including hydrogen atoms. For each unique element combination (x, y), the

pairwise sum of inverse internuclear distances, {Rij}, is calculated without double counting,

(F2B)(x,y) =


∑

ij
1

Rn
ij
, x ̸= y∑

j>i
1

Rn
ij
, x = y

(2)

Therefore, the F2B descriptor takes information on the 3-dimensional molecular structure
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into account; as opposed to the CFG descriptor. For more flexibility, the authors introduced

different exponents, n = {1, ..., 15}, resulting in 15 descriptor dimensions per unique element

pair. In Fig. 5, a schematic description of the F2B descriptor is shown, which includes the

Coulomb-type interactions (n = 1) only and is denoted F 1
2B. To keep the computational

i = H
j = H, C, N, 

O, F, Cl
i = C

j = C, N, O, 
F, Cl

i = N
j = N, O, F, 

Cl

i = O
j = O, F, Cl

i = F
j = F, Cl

i = Cl
j = Cl

Coulomb type interaction

="
1
𝑅!"

6

5

4

3

2

1

21 
dimensions

X =

Figure 5: Schematic description of the F 1
2B descriptor. The sum of pairwise Coulomb-

type interactions is calculated individually for every unique element pair. The right-hand
side represents the number of descriptor dimensions (21 in total) occupied by the different
categories.

cost of descriptor generation as low as possible, the three-dimensional molecular structures

should not originate from expensive quantum chemical structure optimizations. If not oth-

erwise mentioned, the generation of F2B-type descriptors did not include quantum chemical

calculations. (The CFG descriptor is independent of the actual three-dimensional struc-

ture.) See SI Section “Structure generation” for a detailed description of the automated and

quantum-chemistry-free generation of three-dimensional structures.

The F split
2B descriptor is an adapted version of the F 1

2B descriptor created by us. To

include more chemical information, the original F 1
2B descriptor is divided into different in-

teraction groups resulting from the benzhydrylium scaffold. For example, carbon atoms
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appear in the carbenium ion (C+) as well as in the phenyl rings (CPh), and in different

p-substituents (p-C). In F 1
2B, the interactions of these carbon atoms with a given second

element are summed up into a single feature. By splitting them up in the new descriptor,

the interactions are divided among different regions of the molecule, which further helps in

the interpretation of results. The interaction groups are shown in Fig. 6. Hydrogen atoms

are neglected in all of them. The descriptor dimensions sum up to 44 in total. The di-

mensionality of this descriptor only coincidentally equals that of the CFG descriptor for the

underlying data set. F split
2B is an application-specific descriptor. It is easier to interpret than

F 1
2B but less universal.
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Figure 6: Schematic description of the F split
2B descriptor. In each category, the sum of pair-

wise Coulomb-type interactions is calculated individually for every unique element pair repre-
sented by that category. The right-hand side represents the number of descriptor dimensions
(44 in total) occupied by the different categories.

Quantum mechanical properties

We selected five QMPs based on conceptual density functional theory42 as they yielded the

most promising results in a data-driven investigation of electrophilicity by Hoffmann et al.33
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As some of them represent compositions of simpler terms, we partitioned the five QMPs to

yield eight QMPs in total, see Table 2. All of them are based on energies of frontier molecular

orbitals (FMO), i.e., εHOMO and εLUMO, which we obtained from either quantum chemical

calculations (Section “Computational methods”) or MLR predictions (Section “Results and

discussion”).

Table 2: List of quantum molecular properties (QMPs) examined in this study, including
mathematical definitions. The numbering of the properties corresponds to the ranking de-
termined by Hoffmann et al.33 Asterisks indicate that the corresponding QMP is important
for the definition of other QMPs of this list.

Name Mathematical definition

Ionisation potential43 * µ−
FMO = εHOMO

Electron affinity43 1 µ+
FMO = εLUMO

Global molecular hardness44 * ηFMO = εLUMO − εHOMO

Electronic chemical potential45,46 * µFMO =
µ+
FMO+µ−

FMO
2

Electrophilicity index47 2 ωFMO =
µ2
FMO

2ηFMO

Electroaccepting power48 4 ω+
FMO = (3εLUMO+εHOMO)2

16µFMO

Electrodonating power48 5 ω−
FMO = (εLUMO+3εHOMO)2

16µFMO

Net electrophilicity49 3 ∆ω±
FMO = ω+

FMO + ω−
FMO

Metrics

The metrics taken into account in this work are specified with respect to N observations {yi}

and corresponding predictions {ŷi}. An observation yi refers to either the electrophilicity

parameter E or a QMP of the ith molecule. The mean of {yi} and {ŷi} is denoted ȳ and ¯̂y,

respectively. The root-mean-square error (RMSE) is defined as

RMSE =

√√√√N−1

N∑
i=1

(yi − ŷi)2 ≥ 0 (3)

The coefficient of determination,50

R2 = 1− RMSE2

N−1
∑N

i=1(yi − ȳ)2
, R2 ∈ (−∞, 1] , (4)
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is a strictly monotonically decreasing function of the RMSE. Both RMSE and R2 are per-

formance metrics. Pearson’s correlation coefficient,51

r =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2
√∑N

i=1(ŷi − ¯̂y)2
, r ∈ [−1, 1] , (5)

on the other hand, is a correlation metric. While especially its squared form, r2 ∈ [0, 1], is

often used as a performance metric, we emphasize that this may be a misconception. Even if

two quantities correlate perfectly with each other (r2 = 1), the corresponding R2 value can

be arbitrarily smaller than 1 due to a constant systematic error. Only if the least-squares

solution of a linear regression problem is considered, r2 equals R2.50

Computational methods

The structure-generator program was employed for the combinatorial generation of the

data set structures in XYZ format with Python (version 3.9.7). After preoptimization with

the xTB software (version 6.5.1)36,52 using GFN2-xTB,52 CREST (version 2.12)53,54 was

employed to search for the most stable conformer of each molecule with the same settings

as before. Full structure optimizations were then carried out with the ORCA program

(version 5.0.3)55,56 using the hybrid meta-GGA exchange–correlation functional TPPSh57,58

and the D3 dispersion correction with the Becke–Johnson damping function.59,60 (Note that

the optimized structures are not required for the generation of the structural descriptors,

see SI Section “Comparison of descriptors: guess structures versus relaxed structures”.) The

def2-SVP basis set61 was employed as well as the auxiliary basis set def2/J with the Coulomb

integral approximation RIJCOSX.62 Preliminary tests motivating the choice of functional

and basis set are given in SI Section “Development of a quantum chemical protocol”.

The subsequent descriptor calculations were performed with self-written Python code,

which can be accessed through the project-related GitLab repository.63 After preprocessing

the data with Scikit-learn 0.24.2,64 ordinary least-squares MLR was performed with the same
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package.

Results and discussion

The second step (QMP to E)

As described in Section “Quantum mechanical properties”, eight QMPs were selected, see

Table 2. Instead of selecting the single best QMP for our purposes, we propose to use a linear

combination of all linearly independent terms contained in the eight pre-selected QMPs (six

in total) to build an estimate of the electrophilicity parameter,

Ê := w0 + w1εL + w2εH + w3ε
2
L + w4ε

2
H

+ w5εLεH + w6(εL − εH)
−1 ≈ E

(6)

Here, we abbreviated εHOMO and εLUMO as εH and εL, respectively. The coefficients w0 to

w6 were determined by ordinary least-squares MLR and represent the intercept (w0) and

the weights of the linearly independent terms (w1 to w6). For training, experimental E

parameters of the K = 27 reference systems were utilized. In the following, we refer to the

optimized model (eq 6) as reference MLR (rMLR) model. Its predicitions Ê approximate the

actual electrophilicity parameter E, which is unknown for M −K = 3543 of the M = 3570

structures considered here. The relative impact of each coefficient wi>0 was determined by

|wi|/
∑

j>0 |wj| and the results are summarized in Table 3. The coefficients can be directly

compared to each other due to standardization of frontier molecular orbital energies εF

(F = L, H),

εF,i =
eF,i − µF

σF

(7)

Here, eF,i is the raw frontier molecular orbital energy for the ith molecule obtained from

quantum chemical calculations, and µF and σF represent mean and standard deviation of raw

frontier molecular orbital energies, respectively, for the reference systems. As a consequence,
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Table 3: Relative impact, |wi|/
∑

j |wj|, of the coefficients w1 to w6 of the reference MLR
(rMLR) model shown in eq (6). The coefficients are dimensionless as we used standardized
frontier molecular orbital energies. Pearson’s coefficient r refers to the correlation between
the respective term and Mayr’s E parameter.

Coefficient Term Value Impact r

w1 εLUMO −38.1 21.1% −0.986
w2 εHOMO +22.6 12.6% −0.968
w3 ε2LUMO −58.3 32.3% +0.980
w4 ε2HOMO −6.8 3.8% +0.965
w5 εLUMO · εHOMO +54.3 30.1% +0.977
w6 (εLUMO − εHOMO)

−1 +0.2 0.1% −0.740

εF,i is a dimensionless quantity.

The coefficient of εLUMO, w1, is quite impactful at 21.1% (third highest). The ranking

by Hoffmann et al.,33 shown in Table 2, even suggests εLUMO to be the most impactful

among all quantities studied by them (928 in total). The highest relative impact at 32.3%

was found for the coefficient of ε2LUMO, w3, and the second highest at 30.1% was found for

the product of εLUMO and εHOMO, w5. Both terms were not directly considered in previous

regression studies, but are included in the electrophilicity index ωFMO (see Table 2), which

has been studied in related contexts27,29–34 and ranked second by Hoffmann et al. On the

other hand, the coefficients associated with the third term of the numerator (ε2HOMO) and

the denominator ((εLUMO−εHOMO)
−1) of ωFMO are substanstially less impactful, with values

of 3.8% (w4) and 0.1% (w6), respectively. We draw the conclusion that the highest-impact

terms of this analysis play a predominant role in correlating the electrophilicity index ωFMO

with the E parameters of benzhydrylium ions.

Fig. 7 shows a plot of the rMLR-predicted Ê parameter versus its experimental analog

E for the reference systems. The seven structures with the smallest E values all comprise

nitrogen-bonded para-substituents. They are associated with a larger deviation of Ê from

E than the other structures. We assume that either increased conformational flexibility

or size-related increased repulsion with meta-substituents (relative to the other functional

groups of the data set) is responsible for this trend. Overall, the statistical test set metrics,
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r2 = R2 = 0.992 and RMSE = 0.450, indicate the success of the MLR approach. The

Figure 7: Predicted Ê versus Mayr’s E for K = 27 reference structures. The coefficients of
the rMLR model yielding Ê were optimized with respect to E for the same set of structures.
Frontier molecular orbital energies obtained from quantum chemical calculations served as
input. See eq (6) for the mathematical definition of the rMLR model.

optimized rMLR model provides a reasonable starting point for the implementation of the

overall workflow. Additionally, given the high accuracy of the rMLR model paired with its

superior interpretability, we decide against the application of more complex ML models such

as neural networks,65 Gaussian processes,66 or gradient boosting decision trees.67 The latter

was found to excel other types of ML models in the prediction of E parameters for a range

of electrophiles including mostly carbocations and Michael acceptors.33

The first step (structure to QMP)

The target of properly connecting the molecular structures with their associated reactivity

parameters can be approached via two paths, A and B. In both cases, the goal is to replace

the rMLR predictions Ê, which require quantum chemical calculations of εLUMO and εHOMO,

with purely structure-based and hence real-time predictions, ÊA and ÊB, respectively. We

divided the data set into a test set, which includes the 27 reference structures, and a training
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set comprising the remaining 3543 structures.

structure (xyz)

𝜀!̂"#$, 𝜀%̂$#$

𝐸%&

𝐸%'

rMLR

Figure 8: We propose two differents paths to approximate the rMLR model predictions Ê,
see eq (6), by structural descriptors. In path A, the descriptors are directly mapped onto Ê.
In path B, the descriptors a mapped onto ε̂LUMO and ε̂HOMO, respectively, before they are
plugged into the rMLR model.

Path A describes the establishment of a structure–Ê relationship. That is, the output

of the rMLR model, Ê, is learned directly by another MLR model, which takes structural

descriptors instead of QMPs as input. We refer to the predictions of this model as ÊA. The

results are shown in Table 4.

Path B includes the training of two separate MLR models; one representing a structure–

εLUMO relationship, the other one representing a structure–εHOMO relationship. We refer to

the predictions of these models as ε̂LUMO and ε̂HOMO, respectively. Since Ê is a function of

only εLUMO and εHOMO, substitution of the latter by their MLR-learned analogs (ε̂LUMO and

ε̂HOMO) leads to ÊB. Note that the substitution does not alter the optimal coefficients w0 to

w6 of the rMLR model. The test set performance with respect to ε̂LUMO, ε̂HOMO, and ÊB is

reported in Table 4.

Table 4: Test set R2 values (K = 27) for the prediction of ÊA, ε̂LUMO, ε̂HOMO, and ÊB

obtained via paths A and B of step 1, respectively, for all three descriptors. The best result
is shown in bold for each quantity.

Descriptor ÊA ε̂LUMO ε̂HOMO ÊB

CFG 0.418 0.930 0.613 0.972

F split
2B 0.693 0.894 0.549 0.984
F 1
2B 0.941 0.761 0.449 0.906
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Comparing the results of path A and B to each other, the R2-values of path B are superior

to those in path A except for the F 1
2B case. However, both F split

2B and CFG applied in path

B excel F 1
2B in both paths. The highest performance is measured for F split

2B in path B. The

advantage of F split
2B over F 1

2B not only is its performance but also its interpretability. The

same is true for path B over path A as it allows us to understand the E parameter in terms

of ε̂HOMO and ε̂LUMO, respectively.

In Fig. 9, the predicted vs. experimental E parameters are shown for the final workflow

settings (path B, F split
2B ) with respect to the 27 reference systems. A possibility to verify the

Figure 9: Predicted ÊB(F split
2B ) versus Mayr’s E for K = 27 reference structures. The

results are based on quantum chemical frontier molecular orbital energies for M −K = 3543
benzhydrylium ions.

quality of our approach is to exploit the strict relationship between r2 and R2. By coupling

different MLR models, the strict relation r2 = R2 is no longer valid. However, the comparison

of both values can be considered as a quality measure: The smaller the deviation between

r2 and R2, the closer the result is to the least-squares solution. In this case, r2 = 0.985 and

R2 = 0.984 are very close, although we use a prediction model which is based on another

model, confirming the success of the two-step approach in a least-squares context.

Finally, we would like to know if we really need M − K = 3543 systems to obtain a
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good prediction of E, or whether a substantially smaller number L is sufficient to identify a

QSRR. Learning curves are instructive for this purpose. Due to the lack of reference data,

we examine learning curves for εHOMO and εLUMO obtained from quantum chemistry. Since

frontier molecular orbital energies have been shown to yield accurate estimates of E (in the

form of Ê), we consider them adequate surrogate quantities. The results for the F split
2B are

shown in Fig. S8. Significantly steeper learning curves were obtained for the CFG descriptor,

which performed only slightly worse than F split
2B in the prediction of electrophilicity (path

B), see Table 4. The results for CFG (Fig. 10) suggest that L ≈ 150 quantum chemical

data points are necessary before robust and accurate predictions are obtained. In return,

however, M − L ≈ 3420 or (M − L)/M · 100% ≈ 96% quantum-chemistry-free predictions

of the electrophilicity parameter E can be made in real-time. This result represents proof of

principle that real-time reactivity prediction is possible.

Figure 10: Learning curves for structure-εHOMO and structure–εLUMO relationships based on
the CFG descriptor. The median of the test set R2 (K = 27) is shown (dots) for different
training set sizes (L = 50, 100, ..., 500). For each size, 1000 MLR models were trained on
randomly selected training samples. The error bars represent 95% confidence intervals. The
results suggest that real-time reactivity prediction becomes robust and accurate at around
L = 150.
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The direct path (structure to E)

To verify the necessity of our two-step approach, we now examine whether structure–E

relationships can be learned directly, i.e., without detouring through quantum chemical

calculations. We used the descriptors considered in this work to train MLR models on all

available E parameters, which is a small number (K = 27).

The results are shown in Fig. 11. The test set comprises the remaining M −K = 3543

structures of the data set. Due to the unavailability of experimental data for these structures,

it was assumed that the rMLR model predictions Ê would provide adequate surrogate values

for E. The test set metrics, R2 = 0.662 and RMSE = 3.309, confirm that it is not sufficient

Figure 11: Êdirect versus Ê for M −K = 3543 benzhydrylium ions. The results are based on
a direct mapping of the F split

2B descriptor onto Mayr’s E for K = 27 reference structures.

to perform reliable predictions based on a training set including only 27 systems.

Chemical insight from linear coefficients

Interpretable models can offer valuable understanding of patterns in data. By grasping

which features of a descriptor are important for making predictions, domain experts can

gain deeper insights into the problem of interest and potentially make new discoveries.
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Here, we are interested in understanding the quantitative and qualitative relationship

between molecular structure (in the form of descriptors) and reactivity (E). Recall that

we cannot use E directly due to lack of data. We also cannot use ÊA or ÊB instead. The

correlation between ÊA and E is poor, and ÊB is linked with ε̂LUMO and ε̂HOMO, but not with

the structural descriptors. However, ε̂LUMO and ε̂HOMO are in turn linked with them. Taking

into account the chemically intuitive correlation between εLUMO and E (see also column r in

Table 3), we select ε̂LUMO over ε̂HOMO for the following analysis.

Figure 12: Model coefficients are shown for the regression of εLUMO on CFG.
The different reddish sections refer to the categories from Fig. 4. The coefficient
names are based on the notation in Mayr’s database.21,22 The following abbrevia-
tions are used: p-dma, 4-(dimethylamino)phenyl; p-dpa, 4-(diphenylamino)phenyl; p-
mpa, 4-(methylphenylamino)phenyl; p-mfa, 4-(methyl(trifluoroethyl)amino)phenyl; p-pfa, 4-
(phenyl(trifluoroethyl)amino)phenyl.

In Figs. 12 and 13, the regression coefficients are shown for the MLR models linking CFG

and F split
2B with ε̂LUMO, respectively. In both cases, the intercept, w0, is an approximation to

εLUMO of the unsubstituted benzhydrylium ion 19 for which all other coefficients are zero.

CFG (Fig. 12). The different substituents at the meta and para positions of the ben-

zhydrylium ion have the ability to push/pull electron density in/out of the aromatic rings.
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Figure 13: Model coefficients are shown for the regression of εLUMO on F split
2B . The different

reddish sections refer to the categories from Fig. 6.

Negative regression coefficients correspond to electron-withdrawing groups, reducing the elec-

tron density at the carbenium ion and therefore the εLUMO, as expected. This results in a

larger E parameter (see column r in Table 3). For the underlying data set, large negative

coefficients are primarily found for both meta substituents, –F and –Cl, and in para position

for –CF3. The opposite effect is found for positive regression coefficients. They correspond

to electron-donating groups increasing the electron density at the carbenium ion, resulting

in higher εLUMO values and smaller E parameters. Especially the electron-rich nitrogen- and

oxygen-bonded substituents at the para positions substantially decrease the E parameter.

Compared to the “meta” and “para” blocks of the CFG descriptor, the coefficients of the

“meta adjacent to meta” and “meta adjacent to para” blocks are close to zero. They are

hence of minor importance for the prediction and interpretation of benzhydrylium reactivity.

F split
2B (Fig. 13). Contrary to the descriptor composition shown in Fig. 6, some descriptor

dimensions were deleted after performing a sensitivity analysis (see SI Section “Sensitivity

analysis of the different interaction groups of the F split
2B descriptor.”). All coefficient blocks

including the carbenium ion (C+) were deleted due to strong correlation with those con-
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tainting the carbon atoms of the phenyl rings (CPh). The decision whether to delete the

C+ or CPh coefficient blocks is arbitrary since both possibilities lead to the same result.

Additionally, the coefficient block CPh/CPh was deleted, as it is identical for all molecules.

The first two coefficient blocks (CPh/m and CPh/p) describe the direct interactions of the

substituents with the aromatic rings. The closer a substituent’s atom (element X) is to the

phenyl rings, the greater the effect of the X/CPh interaction on εLUMO. Hence, the element

that is directly bonded to the phenyl ring is expected to predominantly alter εLUMO, which is

consistent with chemical intuition in many cases. The first coefficient block (CPh/m) shows

the same trend as observed for CFG, with the same explanation. In the second coefficient

block (CPh/p), the interactions to p–Cl and p–N can be well interpreted since both atoms

appear only in one certain position: directly bonded to the aromatic rings. For instance, the

strong electron-pushing character of the nitrogen-bonded substituents is reflected by a large

positive coefficient value, resulting in a high value of εLUMO and a low value of E. The CPh/p

interactions to carbon, fluorine, and oxygen, on the other hand, are composed of several pos-

sible positions in the molecule. Nevertheless, the general trend in the oxygen interactions

can be explained: Oxygen atoms are present in three functional groups (p-OMe, p-OPh,

p-mor), all of which are electron donating groups resulting in higher εLUMO values. In the

p/p and m/p coefficient blocks, many different effects overlap, which does not allow for a

straightforward interpretation. However, individual insight is still possible. For instance, the

negative coefficient of the p-(F/F) interaction can be observed only in the electron withdraw-

ing groups containing fluorine (–F, –CF3), because other fluorine atoms (in p-mfa and p-pfa)

are far away and the influence is approximately zero. Regarding the p-(N/N) interaction,

the possible distance between two nitrogen atoms is always large in this data set, resulting

in a descriptor value close to zero. To compare the different regression coefficients, they have

to be standardized. However, this may result in artifacts for descriptor dimensions that are

close to zero for the entire data set, such as p-(N/N).

In summary, the interpretation of CFG is straightforward for each substituent. F split
2B , on
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the other hand, can reveal details beyond substituent identities. The more universal F 1
2B

descriptor is not nearly as simple to interpret. For instance, no distinction between different

fluorine atoms is possible. In general, the more complex the descriptor structure is, i.e., the

more different effects overlap in one descriptor dimension, the more difficult the chemical

interpretation becomes. This is especially true for the “meta adjacent to para” block of CFG

and the p/p and m/p blocks of F split
2B .

The limits of chemical intuition

Finally, we would like to highlight one of the practical benefits of our approach. Fig. 14 shows

a fully substituted benzhydrylium ion. It comprises four electron-withdrawing groups (m-Cl)

and two electron-donating groups (p-OMe). Does the electrophilicity increase or decrease

with respect to the unsubstituted ion 19? For each individual substituent, the qualitative

effect on E can be estimated using chemical intuition, whereas quantitative predictions are

already difficult to make at this level. As soon as the effects of several substituents on

E overlap, even qualitative estimates are no longer possible. This challenge can be met

with the help of a quantitative approach as presented in this study: Without the electron-

Cl

OMe

Cl

MeO

Cl Cl

Figure 14: Example of a fully substituted benzhydrylium ion. Does the electrophilicity
increase or decrease with respect to the unsubstituted ion 19?

donating para groups, the benzhydrylium ion is more electrophilic (E = 8.31) compared to

the unsubstituted prototype 19 (E = 5.32). Adding p-OMe, its electrophilicity decreases by

−4.18 units (E = 4.13) and hence even below the prototype’s value.
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Conclusions and outlook

We have explored the feasibility of real-time data-driven reactivity prediction for routine

synthesis planning. In previous data-driven reactivity studies, quantum molecular prop-

erties (QMPs) were used to learn quantitative relationships between these properties and

Mayr-type reactivity parameters (E, N , sN). While QMPs are informative quantities, their

calculation is computationally intensive, preventing the possibility of a real-time approach.

As an alternative, we have considered here structural descriptors that can be generated in

real-time. A combinatorial data set ofM = 3570 benzhydrylium ions served as domain of ap-

plication. For only K = 27 of these systems, electrophilicity parameters E are available. For

each system, three structural descriptors were generated, ranging from application-specific

but interpretable (CFG, F
split
2B ) to application-agnostic but less interpretable (F 1

2B). However,

a direct mapping of the structural descriptors to E via multivariate linear regression (MLR)

is not possible due to lack of data (cf. K). We expect more sophisticated machine-learning

models, which are even more data-hungry than linear models, to fail as well.

Instead, we have developed a two-step workflow based on the MLR technique. Step 2 of

the workflow resembles previous approaches: a quantitative QMP–E relationship is learned

based on K training data points. The QMPs considered here are functions of frontier molec-

ular orbital energies. In step 1 of the workflow, quantitative descriptor–QMP relationships

are learned to replace the expensive QMP generation by efficient real-time predictions. We

identified CFG to be the descriptor of choice with respect to the rate of learning. Our analysis

suggests that L ≈ 150 training data points (i.e., quantum chemical calculations) are neces-

sary to make robust and accurate E predictions with a test set R2-value of approximately

0.98. Hence, we can replace quantum chemical calculations with real-time predictions for

almost 96% of all structures. In summary, the two-step workflow is an effective approach if

K ≪ L ≪ M .

A positive side effect of the MLR approach and the use of application-specific descriptors

is that they yield interpretable models. Not only could we confirm chemically intuitive trends,
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we could also identify quantitative effects of individual substituents and even individual

elements on E. Due to the additive nature of the MLR framework, individual functional

groups can be simply “clicked” together to predict E parameters for highly substituted

benzhydrylium ions, an example where even qualitative estimates based on human expertise

are error-prone.

The next challenge on the way to real-time reactivity prediction for arbitrary molecules

is to extend our approach to a broader range of structural classes. However, even within

the benzhydrylium space, many more substituents are to be explored. We assume that

the second step of our approach is — without any further modification — applicable to

other functional groups and the resulting substitution patterns. At the same time, we need

to overcome the problem of data shortage. With the information provided by data-driven

reactivity studies, synthetic chemists can more systematically plan new experiments that,

in turn, feed future data-driven campaigns. We invite laboratories around the globe to help

us build such experimental–computational feedback loops to accelerate advances in organic

synthesis.
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