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ABSTRACT: Substrate positioning dynamics (SPD), which orients the substrate to a reactive 

conformation in the active site, is critical in mediating enzyme catalysis. However, given that 

conformational changes often accompany variations in the enzyme interior electrostatics, it 

remains unknown whether SPD contains a non-electrostatic component that independently 

mediates catalysis, or originates primarily from perturbation of enzyme interior electrostatics. This 

study integrated computational and experimental approaches to investigate the non-electrostatic 

component of SPD using Kemp eliminase (KE) as a model enzyme. A molecular dynamics-

derived descriptor, substrate positioning index (SPI), was used to quantify the impact of protein 

dynamics on substrate positioning. Using high throughput enzyme modeling, we selected 7 KE 

variants for kinetic assessment – these variants involved significantly different SPD but similar 

interior enzyme electrostatics. We observed a valley-shaped, two-segment piecewise linear 

correlation between the experimentally characterized activation free energies and SPI values. The 

trend is further validated using previously reported kinetic data. An optimal SPI value, 

corresponding to the lowest activation free energy, was observed for R154W, a surface mutation 

located distantly from the active site. Compared to the wild type, R154W involves favorable SPD 

that increases the proportion of reactive conformations for substrate deprotonation. These results 

indicate the presence of the non-electrostatic component of SPD, a concrete factor that mediates 

catalysis by tuning the population of reactive conformation.  

Keywords: Substrate Positioning Dynamics, Enzyme Kinetics, Mutation Effect, Electrostatic 
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1. Introduction  

Elucidating the catalytic origin of enzymes enhances the fundamental comprehension of 

chemistry, which in turn guides the development of engineering strategies to create enzyme 

variants for chemical synthesis,1-3 waste degradation,4-7 fuel production,8-11 disease diagnosis, and 

treatment.12-14 Protein dynamics have been widely reported as a factor to mediate catalysis.15-20 

Their complexity is attributed to the broad range of time scales over which correlated protein 

motions can occur.15, 19, 21-28 For example, residue vibrations and collision have been proposed to 

facilitate transition state (TS) barrier crossing in the sub-picosecond time scale (e.g., lactate 

dehydrogenase, alcohol dehydrogenase, and purine nucleoside phosphorylase).15, 21, 22 Residue and 

loop motions have been proposed to facilitate the positioning of substrates to form reactive 

conformation (or near-attack conformation29) in the pico- to nanosecond time scale (e.g., 

dihydrofolate reductase, chitinase, β-lactamase, retro-aldolase, Kemp eliminase, glycoside 

hydrolase, Cytochrome P450, and soybean lipoxygenase).25-28, 30-37 Conformational change of 

loops and domains have been demonstrated to enable substrate binding, solvent shielding, or 

product releasing in the nanosecond to millisecond time scale (e.g., triosephosphate isomerase and 

adenylate kinase).19, 23, 38, 39  

Substrate positioning dynamics (SPD) is perhaps the most extensively studied form of 

protein dynamics in enzyme catalysis, as it directly orients the substrates for an energetically 

favorable barrier crossing and desired selectivity.33, 36, 40-52 Experimentally, the impact of SPD on 

catalysis has been investigated using mutagenesis, where a significant change of kinetics was 

observed upon mutating a key residue hypothesized to govern conformational dynamics (e.g., 
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Gly15 in DHFR). Nonetheless, a major pitfall is that SPD is sensitively coupled to the variation of 

enzyme interior electric field,16, 53 which is a well-established physical factor underlying the high 

catalytic efficiency of enzymes based on theoretical,54 computational,34, 55-57 spectroscopy,58-60 

kinetic and mutagenesis studies53. Upon mutation, any change in SPD likely affects the projection 

of the enzyme electric field along the reacting bond. As evidence, Wu et al. showed experimentally 

that the SPD mediates catalysis through tuning electrostatics in ketosteroid isomerase.58 In this 

case, the correlation between the change of SPD and that of enzyme catalytic efficiency appears 

to be confounded by enzyme interior electrostatics. On the other hand, rate-enhancing mutants 

have been created through strategies that apparently optimize SPD.49, 61 For one, Broom et al. 

observed 700-fold rate acceleration in Kemp eliminase HG4 after multiple rounds of mutagenesis 

that turned out to rigidify the dynamic motion of active site residues.49  

Unless the impact of electrostatics is factored out in mutagenesis,18, 62-64 it will remain 

elusive whether SPD contains a non-electrostatic component that independently mediates catalysis 

(bottom, Figure 1) or originates primarily from perturbation of enzyme interior electrostatics (top, 

Figure 1). The answer to the question will not only deepen our fundamental understanding of the 

catalytic origin of enzymes but also inform us whether dynamics-related descriptors should be 

considered as a general and independent factor for the computational engineering of biocatalysts. 
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Figure 1. The correlation between substrate positioning dynamics and enzyme kinetics. (Top) The 

correlation is confounded by enzyme interior electrostatics. (Bottom) Substrate positioning 

dynamics contains a non-electrostatic component that directly mediates enzyme catalysis.  

 In this work, we investigated the non-electrostatic component of substrate positioning 

dynamics using Kemp eliminase (KE07-R7-2) as the model enzyme.35, 65  We adopted a computer-

guided mutagenesis approach that integrates high-throughput enzyme modeling with experimental 

kinetic assays. Through in silico screening enabled by EnzyHTP,66 we identified single-point KE 

variants involving significantly different SPD but highly similar interior electrostatics. The 

turnover rate and Michaelis constant of these selected KE mutants were then characterized 

experimentally using kinetic assays. Based on these data, we examined the correlation between the 

activation free energies and substrate positioning index to investigate the non-electrostatic 

component of SPD.  

2. Computational and Experimental Methods  

Computational Methods. We employed EnzyHTP, a software developed by our lab, to 

perform high-throughput computational screening of Kemp eliminase (KE) mutants.66 A job script 

was prepared that leveraged EnzyHTP functions to automate the process of enzyme structure 

preparation, random mutation generation,67 folding stability assessment,68, 69 molecular dynamics 

simulation using AMBER18,67 quantum mechanics calculation using Gaussian1670 and 

TeraChem,71, 72 and post-analysis of results using PyMol.73 The workflow starts from KE07-R7-

2,39 the “wild-type” structure used in this study and then creates and simulates 98 random KE 

variants with single amino acid substitution. The configurations of the EnzyHTP functions are 

detailed in Supporting Information, Text S1. 
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Experimental Methods and Characterization. The enzymes were expressed in Escherichia 

coli BL21(DE3) using a pET-29b(+) vector (Novagen) and purified using Ni-NTA resin 

(Invitrogen). Kinetic parameters were determined using 5-nitro-1,2-benzoxazole as the substrate, 

with concentrations ranging from 5 to 1500 μM. The reactions were initiated by adding 50 μL of 

the enzyme (8 μM final concentration) to 150 μL of the substrate in a 96-well plate (Corning-Costa) 

at 25 °C in 25 mM HEPES (pH 7.25), 100 mM NaCl, 5% glycerol and 1.5% (v/v) acetonitrile.35 

The formation of the product was monitored at 380 nm using a SpectraMax iD3 microplate reader 

(Molecular Device). Vmax and Km were calculated by nonlinear regression with the Michaelis-

Menten model using GraphPad Prism software (Version 8).74 Three biologically independent 

replicates were used to calculate means and standard deviations. More details can be found in the 

Supporting Information, Text S1. 

3. Results and Discussion 

3.1 The Model Enzyme for the Study: Kemp Eliminase 

We used Kemp eliminase (KE), the first known de novo-designed enzyme, as the model 

enzyme in this study. KE accelerates the conversion of benzisoxazole to cyanophenol through C–

H deprotonation followed by ring opening (top, Figure 2).34, 35, 39, 50, 56, 65, 75-78 The substrate 5-nitro-

1,2-benzoxazole undergoes deprotonation catalyzed by the carboxylate of E101, generating 2-

hydroxy-5-nitrobenzonitrile through a single transition state (top, Figure 2). KEs involve a general 

acid-base mechanism, which is enabled by active site residues, including A9, I11, S48, W50, E101, 

Y128, H201, R202, and K222 (bottom, Figure 2). Specifically, Glu101 serves as the general base 

that deprotonates the substrate, Lys222 acts as the hydrogen bond donor to stabilize the phenoxide 

intermediate, and Trp50 acts as the π-stacking residue to stabilize the substrate binding and charge-
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separated transition state. Four polar residues (Ser48, Tyr128, His201, and Arg202) likely stabilize 

the substrate binding or transition state through electrostatic or polar interactions. The nonpolar 

residues Ala9 and Ile11 likely favor substrate binding via dispersion interactions. 

In this study, we employed KE07-R7-2 as the “wild-type” scaffold.35, 65 KE07-R7-2 was 

obtained from seven rounds of directed evolution based on the parent scaffold KE07.65 We chose 

this model enzyme for the following reasons. First, KE is a single-substrate enzyme whose reaction 

mechanism and strategies of kinetic characterization have been well-established. Second, kinetic 

parameters have been experimentally characterized by Bhowmick et al.35 for KE07-R7-2 mutants 

that were identified computationally based on the correlated motion of residues. These parameters 

can provide references for comparison in this study. Third, we have performed benchmarks on 

KE07-R7-2 and its variants and determined the optimal computational strategies to ensure 

accuracy and reproducibility.79  
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Figure 2. The model enzyme, Kemp eliminase, used in the study. (Top) A putative reaction 

mechanism. The carboxylic group of Glu101 deprotonates the C–H bond on the substrate, 5-nitro-

1,2-benzoxazole. (Bottom) The active site structure of Kemp eliminase, KE07-R7-2. The active 

site residues and the substrate are shown in stick. The substrate is shown in green, and the carbon, 

oxygen, and nitrogen of the residues are shown in gray, red, and blue, respectively. The catalytic 

base is labeled in red, and others are labeled in black. The structure is derived from the crystal 

structure with a PDB ID of 5D38.39 

3.2 A Quantitative Metric for Substrate Positioning Dynamics  

To quantitatively describe the impact of protein dynamics on substrate positioning, we 

introduced a computational descriptor derived from molecular dynamics (MD) simulations. 

Existing descriptors for substrate position dynamics (SPD), including mechanism-based bond 

parameters (e.g. length of a certain H-bond) and root-mean-square deviation (RMSD) of the active 

site, do not directly inform the dynamic response of substrate to the conformational fluctuation of 

the active site residues.44, 49 To address this, we defined a substrate positioning index (SPI), based 

on the ratio of solvent-accessible surface area (SASA) between the substrate and the active site 

residues that constitute the enzyme binding pocket (i.e., SASAsub/SASApkt, Figure 3). For the same 

substrate binding to various enzyme mutants, a greater SPI value means that protein dynamics 

positions the substrate more tightly in the active site. The descriptor was first introduced in our 

prior study of mutation effects in lactonase SsoPox,46 where a piecewise linear correlation was 

observed between the activation free energies and SPI values for various lactonase mutants-

substrate pairs. An optimal range of SPI was identified that enables the non-native substrate to 

react as efficiently as the native substrate.  
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Technically, SPI was first computed for an individual MD snapshot, with SASAsub and 

SASApkt evaluated separately, and then averaged over all snapshots taken along the MD 

trajectories (Supporting Information, Text S1). The residues incorporated in the calculation of 

SASApkt are illustrated in Figure 2 – the selection was guided by our previous benchmark study.79 

We also conducted a test using solvent-exclusive surface area (SESA) in lieu of SASA to compute 

the SPI (Figure S4). The results indicate SASA to be a better descriptor for substrate positioning 

effects. 

 

Figure 3. The definition of substrate positioning index (SPI). The solvent-accessible surface area 

(SASA) of the substrate (SASAsub) and enzyme pocket (SASApkt) are evaluated separately by 

isolating these two parts from the complex. The SPI value is computed as an average over all 

snapshots sampled along the MD trajectories.  

3.3 Identify KE Mutants Mediated by Substrate Positioning Dynamics  
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We designed a high-throughput computational workflow to identify single amino acid 

mutations with significant variation in substrate positioning dynamics but minimal change in 

interior enzyme electrostatics (Figure 4). Notably, substrate positioning dynamics is represented 

by SPI as described in Section 3.2, while interior enzyme electrostatics is represented by the 

interior electric field change of the breaking C–H bond, ΔEFC–H (Supporting Information, Text 

S1). Enabled by EnzyHTP,66 we constructed the high-throughput computational workflow (Figure 

4a) that first built structural models for 98 KE variants, then conducted a folding stability test to 

identify mutants with a thermally stable fold at room temperature (Table S1), and eventually 

performed a functional test to select mutations that perturb SPI significantly but electric field 

minimally (Table S2).  

Specifically, the 98 KE variants used in this study consist of a “wild-type” enzyme (KE07-

R7-239, 65), 17 mutants reported by Bhowmick et al.35 and were involved in our previous benchmark 

study,79 and 80 randomly-generated mutants using EnzyHTP.66 The 80 randomly-generated 

mutants were then sent for the folding stability test, which was introduced to minimize unexpressed 

and misfolded mutants for experimental characterization. Through the stability test, 61 mutants 

were retained with their folding free energies of less than 10 Rosetta Energy Units (calculated 

using cartesian_ddg68, 69). These mutants were used for the following MD simulations, in which 

the average SPI and ΔEFC–H were calculated using snapshots sampled from MD production 

trajectories. To factor out the impact of electrostatics, we selected the mutants whose averaged 

electric field strength was determined to be within ±2.88 MV/cm compared to the wild-type 

enzyme (WT, KE07-R7-2). This range corresponds to the fluctuation of electrostatic stabilization 

energy (ΔGele) of ±0.1 kcal/mol, in which ΔGele was estimated by the projection of electric field 

on the reacting dipole of C–H bond (Text S1). Within these mutants, we further selected 5 KE 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

10 

 

variants for a kinetic assessment, including N247W, K4M, R154W, K37Q, and WT. These 

variants are evenly distributed across an SPI range from 1.30 to 1.70 (orange dots in Figure 4b).  

After the first round of kinetic measurements, R154W was found to exhibit a 1.4-fold 

increase in kcat/KM compared to the WT (Table S2). As such, we further selected D14F and E185A 

for the second round of kinetic measurement (white dots in Figure 4b) because they have a similar 

SPI value to R154W. Eventually, we obtained 7 variants to investigate the impact of substrate 

positioning dynamics on enzyme kinetics. These mutation spots involve large distances to the 

substrate, from 17.4 Å for K4M to 23.0 Å for N247W. Because they involve similar electric field 

strength along the reacting bond, we expect that the influence of interior enzyme electrostatics is 

minimized.  
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Figure 4. The computational protocol for the selection of KE variants for kinetic assessment. (a) 

Computational workflow to screen for mutants with a single amino acid substitution that 

significantly affects the substrate positioning dynamics but minimally the electric field strength on 

the breaking bond. The protocol contains a stability screening step and a mutational selection step. 

(b) Distribution of the electric field change, ΔEFC–H versus the substrate positioning index, SPI. 

The ΔEFC–H of WT is set to be the reference (0 MV/cm). The dashed lines show the EFC–H range 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

12 

 

cutoff from which mutants with a small electrostatic effect were selected. The dots include the data 

points for 63 KE variants, including 61 randomly-generated variants that pass the folding stability 

test, E185A reported by Bhowmick et al.35, and the wild-type enzyme. Orange and white dots are 

the mutants selected for the first and second rounds of kinetic characterization, respectively. Other 

mutants are shown in blue. The blue shade under the dots shows the data distribution in the 2D 

space and the curves with blue fill on the sides show the data distribution of EFC–H or SPI. 

3.4 Non-electrostatic Component of Substrate Positioning Dynamics 

To evaluate the non-electrostatic component of substrate-positioning dynamics, we 

investigated the correlation between free activation energy barrier changes, ΔΔ𝐺eff
‡

, versus the SPI 

(Figure 5). ΔΔ𝐺eff
‡

 is calculated using the equation ΔΔ𝐺eff
‡ = −𝑅𝑇 ln

𝑘cat
mutant 𝐾M

mutant⁄

𝑘cat
WT 𝐾M

WT⁄
, where kcat and 

KM are the experimentally measured turnover number and Michaelis constant, respectively, and 

the superscripts denote the variant to be the wild-type or its mutants. The temperature T is set at 

298 K and R represents the gas constant. ΔΔ𝐺eff
‡

 represents the mutation effect on kinetics and 

directly informs whether a mutation accelerates (positive sign) or slows down (negative sign) the 

overall reaction. 

Figure 5a shows a valley-shaped, two-segment piecewise linear correlation between the 

ΔΔ𝐺eff
‡

 and SPI values for the seven selected KE variants whose kinetics were experimentally 

characterized in this work. The first linear segment involves a gradual drop of ΔΔ𝐺eff
‡

 from 0.11 

kcal/mol (N247W) to -0.21 kcal/mol (R154W), which accompanies the increase of SPI value from 

1.29 (N247W) to 1.56 (R154W). The K4M and WT, the two variants in between, are similar in 

both SPI (~1.42) and ΔΔ𝐺eff
‡

 (~0.00 kcal/mol). The second linear segment involves a gradual 
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elevation of ΔΔ𝐺eff
‡

 from -0.21 kcal/mol (R154W) to 0.31 kcal/mol (K37Q), which accompanies 

the increase of SPI value from 1.56 (R154W) to 1.68 (K37Q). The SPI values are 1.61 in D14F 

and 1.65 in E185A, corresponding to a ΔΔ𝐺eff
‡

 of -0.08 and 0.05 kcal/mol, respectively. The 

Pearson correlation coefficients for the two linear segments are -0.98 and 0.96, respectively. 

R154W exhibits the most favorable ΔΔ𝐺eff
‡

 value with an SPI of 1.56. To validate the observed 

trend, we tested the correlation by incorporating data points reported by Bhowmick et al.35, 

including H201A, M62A, N25S, K162A, K132M, H84Y, and L170A, which fall into the same 

selection cutoff of  ΔEFC–H (±2.88 MV/cm) to ensure small electrostatic deviation (orange dots, 

Figure 5b). As a result, the two-segment piecewise linear correlation still holds with a Pearson 

coefficient of -0.83 and 0.83, respectively. A similar trend has also been observed in our previous 

work for lactonase SsoPox.46 Noticeably, a recent study by Bååth et al.80 showed that the turnover 

of poly(ethylene terephthalate) hydrolases is initially enhanced and then diminished as the binding 

affinity between enzyme and the substrate becomes weaker (i.e., Sabatier principle81, 82). The 

similarity in trend is likely resulted from the fact that both SPI and binding affinity are related to 

the influence of active site cavity on the substrate – an optimal cavity should favor both the 

recruitment of substrate into the active site cavity (i.e., binding affinity) and the positioning of the 

substrate for chemical activation (i.e., SPI). 
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Figure 5. The correlation between change of activation free energy (ΔΔ𝐺eff
‡

) versus the substrate 

positioning index (SPI) for (a) KE variants that are experimentally tested in this work (blue) and 

(b) additional variants reported by Bhowmick et al.35 (orange). For each data point shown in (a), 

the mean and standard error are derived from three independently repeated kinetic measurements. 

In each plot, the horizontal dashed line indicates the position of ΔΔ𝐺eff
‡ = 0. The vertical dashed 

line indicates the position of SPI = 1.56 where the beneficial mutant R154W is located. The vertical 

dashed line is also the boundary of the two-segment piecewise linear fitting. The fitting lines are 

shown in red and labeled with the corresponding Pearson correlation coefficient (r). The data point 

of R154W is included in both fitting lines. S48N is not included in the fitting because its electric 

field strength is outside the selection window of ±2.88 MV/cm. 

The results shown in Figure 5 indicate a concrete correlation between the change of 

activation free energy versus the variation of SPD. The increase of SPI from 1.30 to 1.70 reflects 
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the process in which mutations reshape protein dynamics, gradually positioning the substrate 

toward a more compact active-site conformation. The presence of an optimal SPI value (i.e., ~1.56 

for R154W) suggests the formation of a reactive conformation in which the substrate is positioned 

for favorable barrier crossing (will be investigated further in Section 3.6). This observation is 

consistent with previous hypotheses that SPD promotes the formation of reactive conformation.33, 

40-43 Beyond the optimal range, further increasing SPI leads to the compressed active-site cavity, 

which likely jeopardizes the population of reactive conformation. Since the selected mutations 

have been constrained within a small range of electrostatic deviation, the observed trend is largely 

mediated by the non-electrostatic component of SPD.  

Despite being an independent factor that mediates enzyme catalysis, the change of 

magnitude in ΔΔ𝐺eff
‡

 caused by SPD appears to be relatively small (i.e., -0.2 to 0.4 kcal/mol). In 

contrast, ΔΔ𝐺eff
‡

 has been observed to change over 3-7 kcal/mol when mediated by the change of 

interior electric field through mutagenesis.59 To experimentally test the severity of unfavorable 

substrate positioning effects, we characterized the kinetic parameters for S48N (Figure 5b). This 

mutant involves a favorable electrostatic environment (a ΔEFC–H  of 5.68 MV/cm), but a small SPI 

value (1.23) that substantially deviates from the predicted optimal range (1.56). The ΔΔ𝐺eff
‡

 value 

of S48N was measured to be +1.56 kcal/mol, which is >10-fold slower than the wild-type enzyme 

at room temperature. This negative impact of substrate-positioning dynamics is projected to be 

even worse if the electrostatic contribution is entirely factored out in S48N.  

Notably, Xie and Warshel83 recently reported that the statistical energy (EMaxEnt) displays 

a strong anti-correlation (correlation values are -0.88 and -0.89 for log(kcat/KM) and logkcat, 

respectively) to the corresponding activity (log(kcat/KM) or logkcat) in the KE variants reported by 
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Bhowmick et al.35 The statistical energy EMaxEnt quantifies the fitness of a specific sequence in 

evolution, which is different from SPI that is derived from MD simulations. Although not within 

the scope of the current study, further investigations into the relationship between substrate 

positioning dynamics and the evolutionary profile of sequences may inform the synergy between 

the free energy landscape and fitness landscape that mediates enzyme catalysis in evolution.61  

3.5 Substrate Positioning Dynamics Mediates the Sampling of Reactive Conformations 

We hypothesized that the non-electrostatic component of SPD mediates enzyme kinetics 

by perturbing the population of reactive conformation. To validate this hypothesis, we calculated 

the mass-weighted RMSD relative to the active site of the idealized transition state (iTS),65 i.e., 

RMSDiTS, for each KE variant. This iTS was constructed by maximizing both the stability of the 

active site conformation and the affinity to the transition state while maintaining protein stability. 

The structural model of iTS is shown in Figure 6a. Using this structure as the reference, we 

calculated the mass-weighted RMSD of each MD snapshot as RMSDiTS = √∑ 𝑚𝑖(𝑋𝑖−𝑋iTS)
2N

𝑖=1

𝑀
, 

where X represents the coordinate of an atom, i denotes the ith atom in this snapshot, and iTS 

denotes the corresponding atom in the reference iTS structure. mi is the mass of the ith atom. N is 

the total number of heavy atoms and M is the total mass. We have confirmed that RMSDiTS is an 

effective descriptor for with a decent linear correlation (a Pearson coefficient of 0.82, Figure S5).  

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

17 

 

 

Figure 6. The impact of substrate positioning dynamics on the reaction conformation. (a) Structure 

of the idealized transition state optimized from QM calculations.65 The carbon of the amino acid 

residues and the substrate are shown in gray and green, respectively. Nitrogen and oxygen are 

shown in blue and red, respectively. The polar hydrogen is shown in white. The dashed lines 

indicate the breaking or forming bonds. (b) Scatter plots for the root-mean-square deviation from 

the idealized transition state, i.e., RMSDiTS versus the substrate positioning index of the KE 

variants selected within the electric field range of ±2.88 MV/cm. The horizontal dashed line 

indicates the value of WT RMSDiTS (0.94 Å). The vertical dashed line indicates the position of 

SPI = 1.56 where the most beneficial mutant, i.e., R154W locates. The vertical dashed line is also 
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the boundary of the two-segment piecewise linear fitting. The fitted lines are shown in red and 

labeled with the corresponding Pearson correlation coefficient. 

As shown in Figure 6b, the correlation between the average RMSDiTS and SPI values also 

follows a valley-shaped, two-segment piecewise linear trend. The RMSDiTS decreases from 1.14 

Å (H201A) to 0.88 Å (K132M) as SPI increases from 1.17 (H201A) to 1.56 (R154W) whereas 

RMSDiTS starts to increase beyond the SPI value of 1.56 and reaches a local maximum of 1.03 Å 

in D14F. The Pearson coefficients for the two fitting lines are -0.87 and 0.36. This result informs 

more physical details behind the valley-shaped correlation pattern. During the first linear segment, 

the increase of SPI leads to the reduction of active-site pocket space, which enhances the sampling 

of reactive conformations that resemble the active-site geometry of an idealized TS. However, 

when the pocket further shrinks and surpasses the optimal SPI range, the active site tends to 

populate in a non-reactive conformation that deviates significantly from the iTS. As such, the non-

electrostatic component of SPD promotes enzyme kinetics by shifting the conformation ensemble 

towards TS-like geometries. This may help lower the conformational entropy cost during the 

transition from reactant to transition state. We hypothesize that this two-segment piecewise linear 

correlation trend, which is similar to the “volcano plot” broadly observed in catalysis,84 may exist 

universally in enzymes when the electrostatic contributions are factored out. The specific SPI value 

for optimal enzyme kinetics, however, is likely to be case-dependent.  

3.6 The Molecular Mechanism Underlying the Impact of R154W on Substrate Positioning 

To understand the molecular mechanism of how mutations mediate substrate positioning 

dynamics, we conducted conformational analyses on R154W (SPI: 1.56) and compared it against 

the results of WT (SPI: 1.42). As shown in Figure 7a, R154W is a remote mutation which locates 
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on the surface of the enzyme and is spatially distant from the active site (i.e., ~19.4 Å away from 

the active site). Compared to WT, the SASApkt of R154W decreases by 18.30 Å2. To identify 

which residue contributes the most to the change of active-site pocket, we decomposed the 

SASApkt into contributions of individual residues (Table S5). The decomposition shows that Trp50 

contributes over 84% of the overall decrease. As shown in Figure 7b, the large reduction in 

SASApkt is driven by the shortening of spatial proximity between Trp50 and Ser144. This is 

supported by the downshift of distance distribution between Ser144 Oγ and Trp50 Hε (𝑑Oγ−Hε) 

upon mutation (average 𝑑Oγ−Hε values: 4.45 Å in R154W; 6.87 Å in WT, Figure 7c). Furthermore, 

the formation of hydrogen bond between Ser144 Oγ and Trp50 Hε is observed in R154W (around 

2.72 Å) but is absent in WT. 

Compared to WT, the close contact between Ser144 and Trp50 eliminates the accessible 

space of the substrate, forcing it to adopt a conformation that is parallel to the sidechain of Trp50 

(Figure 7b). This conformation directs the breaking C–H bond towards the carboxylic group of 

Glu101. The RMSDiTS distribution of R154W shifts towards smaller values, generating more 

conformations that resemble the iTS (Figure 7c). This likely reduces the activation entropy cost, 

which ultimately reduces the activation barrier. Notably, a similar phenomenon has been observed 

in HG3, another member of the Kemp eliminase family.61 Otten et al. showed that the evolved 

HG3 variants have more ordered side-chain orientations, leading to optimal positioning of the 

residues crucial to the chemical transformation and constraining of the ligand in the reactive pose.  

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

20 

 

 

Figure 7. The molecular mechanism underlying the impact of R154W mutation on substrate 

positioning dynamics. (a) Structure overlay of WT (gray) and R154W (orange) with the residues 

at the sites of 50, 144, and 154 shown in stick. (b) Surfaces of Trp50 and Ser144 in WT and R154W. 

The distance between Ser144 Oγ and Trp50 Hε, 𝑑Oγ−Hε , is shown as the red dashed line. The 

opaque substrate indicates its favorable position in the active site, while the transparent substrate 

illustrates a potentially unfavorable position in the WT. (c) Distribution of the distance between 

Ser144 Oγ and Trp50 Hε, 𝑑Oγ−Hε in the WT and R154W (left) and RMSD to the idealized transition 

station (right). In the 𝑑Oγ−Hε distribution, the gray vertical dashed line represents the sum of van 

der Waals radii for oxygen and hydrogen (2.72 Å). 

4. Conclusions 
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In this work, we combined computational and experimental approaches to investigate the 

non-electrostatic component of substrate positioning dynamics (SPD) in mediating enzyme 

kinetics using Kemp eliminase (KE) as a model system. To quantitatively describe SPD, we 

introduced a molecular dynamic-derived descriptor, substrate positioning index (SPI), which is 

defined using the ratio of solvent-accessible surface area between the substrate and the enzyme 

active site residues. We designed a high-throughput computational workflow to identify stable KE 

variants that involve similar interior enzyme electrostatics but distinct SPI values.  

The resulting KE variants were characterized using kinetic assays. The correlation between 

activation free energies and SPI values demonstrates a valley-shaped, two-segment piecewise 

linear relationship. The trend was validated using additional KE data reported by Bhowmick et al. 

The presence of an optimal SPI value was observed in R154W, which corresponds to the lowest 

activation free energy among the selected mutants. We further investigated the relationship 

between SPI and the root-mean-square deviation of each conformational ensemble from an 

idealized active-site transition state model. The results show that the non-electrostatic component 

of SPD promotes enzyme kinetics by shifting the conformation ensemble towards TS-like 

geometries. To understand the molecular details behind how mutation reshapes the SPD, we 

performed conformational analyses on R154W and compared the results against the WT. We 

found that this distal mutation has a significant impact on the conformational distribution at the 

active site, where the mutation enables a hydrogen bonding between Ser144 and Trp50, limiting 

the accessible space of the substrate and positioning the substrate towards chemical activation.  

These results indicate the presence of a non-electrostatic component of SPD in mediating 

enzyme catalysis. To promote catalysis, SPD has to position the substrate in an optimal active-site 

cavity to favor barrier crossing. The study implies that SPD should be considered as an independent 
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factor in developing strategies for pinpointing rate-enhancing mutants for biocatalysis. The study 

also highlights SPI as a descriptor that informs the impact of the mutation on substrate positioning 

dynamics. SPI can be easily calculated from molecular mechanics modeling and implemented in 

high-throughput computational workflows for computational enzyme engineering.  

ASSOCIATED CONTENT 

Supporting Information. Detailed computational and experimental methods; folding free energy 

change upon mutation for 80 randomly generated single mutants of KE07-R7-2; restraints applied 

in the MD simulation; values of molecular dynamics-derived descriptors and computed kinetic 

parameters for the 15 variants; primer sequences used in this study; Sanger sequencing 

chromatograms depicting site-directed mutagenesis in KE07-R7-2 variants; SDS-PAGE analysis 

of the purified KE07-R7-2 variants; scatter plots for the efficiency-enhancing free energy barrier 

changes upon mutation versus the substrate positioning index calculated using solvent-exclusive 

surface area; experimentally characterized kinetic parameters of the purified KE07-R7-2 variants; 

scatter plots for the correlation between the change of activation free energy versus the root-mean-

square deviation from the idealized transition state; solvent-accessible surface area decomposition 

of KE07-R7-2 and its R154W mutant. 

AUTHOR INFORMATION 

Corresponding Author 

*Email: zhongyue.yang@vanderbilt.edu Phone: 615-343-9849 

Notes 

The authors declare no competing financial interest.  

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

23 

 

Acknowledgments 

This research was supported by the startup grant from Vanderbilt University. Z. J. Yang, Y. Jiang, 

N. Ding, and Q. Shao are supported by the National Institute of General Medical Sciences of the 

National Institutes of Health under award number R35GM146982. Z. J. Yang thanks the 

sponsorship from Rosetta Commons Seed Grant Award and the Dean’s Faculty Fellowship in the 

College of Arts and Science at Vanderbilt. S. L. Stull acknowledges financial support from the 

Vanderbilt Undergraduate Summer Research Program and the Department of Computer Science. 

This work used SDSC Dell Cluster with AMD Rome HDR IB at Expanse from the Advanced 

Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is 

supported by National Science Foundation grants BIO200057.85 

For Table of Contents Only 

 

 

References 

(1) Koeller, K. M.; Wong, C.-H. Enzymes for Chemical Synthesis. Nature 2001, 409 (6817), 

232-240. DOI: 10.1038/35051706. 

(2) Strohmeier, G. A.; Pichler, H.; May, O.; Gruber-Khadjawi, M. Application of Designed 

Enzymes in Organic Synthesis. Chem. Rev. 2011, 111 (7), 4141-4164. DOI: 10.1021/cr100386u  

From NLM Medline. 

(3) Petchey, M. R.; Grogan, G. Enzyme-Catalysed Synthesis of Secondary and Tertiary Amides. 

Adv. Synth. Catal. 2019, 361 (17), 3895-3914. DOI: 10.1002/adsc.201900694. 

(4) Austin, H. P.; Allen, M. D.; Donohoe, B. S.; Rorrer, N. A.; Kearns, F. L.; Silveira, R. L.; 

Pollard, B. C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and Engineering 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

24 

 

of a Plastic-Degrading Aromatic Polyesterase. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (19), 

E4350-E4357. DOI: 10.1073/pnas.1718804115. 

(5) Knott, B. C.; Erickson, E.; Allen, M. D.; Gado, J. E.; Graham, R.; Kearns, F. L.; Pardo, I.; 

Topuzlu, E.; Anderson, J. J.; Austin, H. P.; et al. Characterization and Engineering of a Two-

Enzyme System for Plastics Depolymerization. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (41), 

25476-25485. DOI: 10.1073/pnas.2006753117  From NLM Medline. 

(6) Tiso, T.; Narancic, T.; Wei, R.; Pollet, E.; Beagan, N.; Schroder, K.; Honak, A.; Jiang, M.; 

Kenny, S. T.; Wierckx, N.; et al. Towards Bio-Upcycling of Polyethylene Terephthalate. Metab. 

Eng. 2021, 66, 167-178. DOI: 10.1016/j.ymben.2021.03.011  From NLM Medline. 

(7) Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; 

Wierckx, N.; Beckham, G. T. Chemical and Biological Catalysis for Plastics Recycling and 

Upcycling. Nat. Catal. 2021, 4 (7), 539-556. DOI: 10.1038/s41929-021-00648-4. 

(8) Chundawat, S. P.; Beckham, G. T.; Himmel, M. E.; Dale, B. E. Deconstruction of 

Lignocellulosic Biomass to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121-

145. DOI: 10.1146/annurev-chembioeng-061010-114205. 

(9) Yang, B.; Dai, Z.; Ding, S.-Y.; Wyman, C. E. Enzymatic Hydrolysis of Cellulosic Biomass. 

Biofuels 2011, 2 (4), 421-449. DOI: 10.4155/bfs.11.116. 

(10) Sweeney, M. D.; Xu, F. Biomass Converting Enzymes as Industrial Biocatalysts for Fuels 

and Chemicals: Recent Developments. Catalysts 2012, 2 (2), 244-263. 

(11) Horn, S. J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V. G. Novel Enzymes for the 

Degradation of Cellulose. Biotechnol. Biofuels 2012, 5 (1), 45. DOI: 10.1186/1754-6834-5-45  

From NLM PubMed-not-MEDLINE. 

(12) Gordon, S. R.; Stanley, E. J.; Wolf, S.; Toland, A.; Wu, S. J.; Hadidi, D.; Mills, J. H.; Baker, 

D.; Pultz, I. S.; Siegel, J. B. Computational Design of an Alpha-Gliadin Peptidase. J. Am. Chem. 

Soc. 2012, 134 (50), 20513-20520. DOI: 10.1021/ja3094795. 

(13) Sun, S.; Jiang, D.; Fan, M.; Li, H.; Jin, C.; Liu, W. Selection of a Versatile Lactobacillus 

Plantarum for Wine Production and Identification and Preliminary Characterisation of a Novel 

Histamine-Degrading Enzyme. Int. J. Food Sci. Technol. 2020, 55 (6), 2608-2618. DOI: 

10.1111/ijfs.14514. 

(14) Samadi, N.; Heiden, D.; Klems, M.; Salzmann, M.; Rohrhofer, J.; Weidmann, E.; Koidl, L.; 

Jensen-Jarolim, E.; Untersmayr, E. Gastric Enzyme Supplementation Inhibits Food Allergy in a 

BALB/c Mouse Model. Nutrients 2021, 13 (3). DOI: 10.3390/nu13030738  From NLM Medline. 

(15) Schwartz, S. D. Protein Dynamics and Enzymatic Catalysis. J. Phys. Chem. B 2023. DOI: 

10.1021/acs.jpcb.3c00477. 

(16) Welborn, V. V. Structural Dynamics and Computational Design of Synthetic Enzymes. 

Chem. Catalysis. 2022, 2 (1), 19-28. DOI: 10.1016/j.checat.2021.10.009. 

(17) Petrovic, D.; Kamerlin, S. C. L. Molecular Modeling of Conformational Dynamics and Its 

Role in Enzyme Evolution. Curr. Opin. Struct. Biol. 2018, 52, 50-57. DOI: 

10.1016/j.sbi.2018.08.004. 

(18) Kamerlin, S. C. L.; Warshel, A. At the Dawn of the 21st Century: Is Dynamics the Missing 

Link for Understanding Enzyme Catalysis? Proteins 2010, 78 (6), 1339-1375. DOI: 

10.1002/prot.22654. 

(19) Henzler-Wildman, K. A.; Lei, M.; Thai, V.; Kerns, S. J.; Karplus, M.; Kern, D. A Hierarchy 

of Timescales in Protein Dynamics Is Linked to Enzyme Catalysis. Nature 2007, 450 (7171), 

913-U927. DOI: 10.1038/nature06407. 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

25 

 

(20) Radkiewicz, J. L.; Brooks, C. L. Protein Dynamics in Enzymatic Catalysis: Exploration of 

Dihydrofolate Reductase. J. Am. Chem. Soc. 2000, 122 (2), 225-231. DOI: 10.1021/ja9913838. 

(21) Saen-oon, S.; Quaytman-Machleder, S.; Schramm, V. L.; Schwartz, S. D. Atomic Detail of 

Chemical Transformation at the Transition State of an Enzymatic Reaction. Proc. Natl. Acad. 

Sci. U. S. A. 2008, 105 (43), 16543-16548. DOI: 10.1073/pnas.0808413105. 

(22) Schwartz, S. D.; Schramm, V. L. Enzymatic Transition States and Dynamic Motion in 

Barrier Crossing. Nat. Chem. Biol. 2009, 5 (8), 552-559. DOI: 10.1038/nchembio.202. 

(23) Henzler-Wildman, K. A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz, M.; Fenn, T.; Pozharski, 

E.; Wilson, M. A.; Petsko, G. A.; Karplus, M.; et al. Intrinsic Motions Along an Enzymatic 

Reaction Trajectory. Nature 2007, 450 (7171), 838-U813. DOI: 10.1038/nature06410. 

(24) Hanson, J. A.; Duderstadt, K.; Watkins, L. P.; Bhattacharyya, S.; Brokaw, J.; Chu, J. W.; 

Yang, H. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics. Proc. Natl. 

Acad. Sci. U. S. A. 2007, 104 (46), 18055-18060. DOI: 10.1073/pnas.0708600104. 

(25) Bhabha, G.; Lee, J.; Ekiert, D. C.; Gam, J.; Wilson, I. A.; Dyson, H. J.; Benkovic, S. J.; 

Wright, P. E. A Dynamic Knockout Reveals That Conformational Fluctuations Influence the 

Chemical Step of Enzyme Catalysis. Science 2011, 332 (6026), 234-238. DOI: 

10.1126/science.1198542 (acccessed 2023/04/26). 

(26) Agarwal, P. K.; Billeter, S. R.; Rajagopalan, P. T. R.; Benkovic, S. J.; Hammes-Schiffer, S. 

Network of Coupled Promoting Motions in Enzyme Catalysis. Proc. Natl. Acad. Sci. U. S. A. 

2002, 99 (5), 2794-2799. DOI: 10.1073/pnas.052005999. 

(27) Cannon, W. R.; Singleton, S. F.; Benkovic, S. J. A Perspective on Biological Catalysis. Nat. 

Struct. Biol. 1996, 3 (10), 821-833. DOI: 10.1038/nsb1096-821. 

(28) Epstein, D. M.; Benkovic, S. J.; Wright, P. E. Dynamics of the Dihydrofolate-Reductase 

Folate Complex - Catalytic Sites and Regions Known to Undergo Conformational Change 

Exhibit Diverse Dynamical Features. Biochemistry 1995, 34 (35), 11037-11048. DOI: 

10.1021/bi00035a009. 

(29) Hur, S.; Bruice, T. C. The near Attack Conformation Approach to the Study of the 

Chorismate to Prephenate Reaction. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (21), 12015-12020. 

DOI: 10.1073/pnas.1534873100. 

(30) Watney, J. B.; Agarwal, P. K.; Hammes-Schiffer, S. Effect of Mutation on Enzyme Motion 

in Dihydrofolate Reductase. J. Am. Chem. Soc. 2003, 125 (13), 3745-3750. DOI: 

10.1021/ja028487u. 

(31) Hammes-Schiffer, S. Impact of Enzyme Motion on Activity. Biochemistry 2002, 41 (45), 

13335-13343. DOI: 10.1021/bi0267137. 

(32) Ramanathan, A.; Agarwal, P. K. Evolutionarily Conserved Linkage between Enzyme Fold, 

Flexibility, and Catalysis. Plos. Biol. 2011, 9 (11). DOI: 10.1371/journal.pbio.1001193. 

(33) Norberg, A. L.; Dybvik, A. I.; Zakariassen, H.; Mormann, M.; Peter-Katalinić, J.; Eijsink, 

V. G. H.; Sørlie, M. Substrate Positioning in Chitinase a, a Processive Chito-Biohydrolase from 

Serratia Marcescens. FEBS Lett. 2011, 585 (14), 2339-2344. DOI: 10.1016/j.febslet.2011.06.002. 

(34) Bhowmick, A.; Sharma, S. C.; Head-Gordon, T. The Importance of the Scaffold for de 

Novo Enzymes: A Case Study with Kemp Eliminase. J. Am. Chem. Soc. 2017, 139 (16), 5793-

5800. DOI: 10.1021/jacs.6b12265. 

(35) Bhowmick, A.; Sharma, S. C.; Honma, H.; Head-Gordon, T. The Role of Side Chain 

Entropy and Mutual Information for Improving the de Novo Design of Kemp Eliminases KE07 

and KE70. Phys. Chem. Chem. Phys. 2016, 18 (28), 19386-19396. DOI: 10.1039/c6cp03622h  

From NLM Medline. 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

26 

 

(36) Ruscio, J. Z.; Kohn, J. E.; Ball, K. A.; Head-Gordon, T. The Influence of Protein Dynamics 

on the Success of Computational Enzyme Design. J. Am. Chem. Soc. 2009, 131 (39), 14111-

14115. DOI: 10.1021/ja905396s. 

(37) Thielges, M. C.; Chung, J. K.; Fayer, M. D. Protein Dynamics in Cytochrome P450 

Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy. J. 

Am. Chem. Soc. 2011, 133 (11), 3995-4004. DOI: 10.1021/ja109168h. 

(38) Liao, Q. H.; Kulkarni, Y.; Sengupta, U.; Petrovic, D.; Mulholland, A. J.; van der Kamp, M. 

W.; Strodel, B.; Kamerlin, S. C. L. Loop Motion in Triosephosphate Isomerase Is Not a Simple 

Open and Shut Case. J. Am. Chem. Soc. 2018, 140 (46), 15889-15903. DOI: 

10.1021/jacs.8b09378. 

(39) Hong, N. S.; Petrovic, D.; Lee, R.; Gryn'ova, G.; Purg, M.; Saunders, J.; Bauer, P.; Carr, P. 

D.; Lin, C. Y.; Mabbitt, P. D.; et al. The Evolution of Multiple Active Site Configurations in a 

Designed Enzyme. Nat. Commun. 2018, 9 (1), 3900. DOI: 10.1038/s41467-018-06305-y  From 

NLM Medline. 

(40) Hamre, A. G.; Jana, S.; Reppert, N. K.; Payne, C. M.; Sorlie, M. Processivity, Substrate 

Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase. 

Biochemistry 2015, 54 (49), 7292-7306. DOI: 10.1021/acs.biochem.5b00830. 

(41) Patra, N.; Ioannidis, E. I.; Kulik, H. J. Computational Investigation of the Interplay of 

Substrate Positioning and Reactivity in Catechol O-Methyltransferase. Plos One 2016, 11 (8). 

DOI: 10.1371/journal.pone.0161868. 

(42) Hu, S. S.; Offenbacher, A. R.; Thompson, E. M.; Gee, C. L.; Wilcoxen, J.; Carr, C. A. M.; 

Prigozhin, D. M.; Yang, V.; Alber, T.; Britt, R. D.; et al. Biophysical Characterization of a 

Disabled Double Mutant of Soybean Lipoxygenase: The "Undoing" of Precise Substrate 

Positioning Relative to Metal Cofactor and an Identified Dynamical Network. J. Am. Chem. Soc. 

2019, 141 (4), 1555-1567. DOI: 10.1021/jacs.8b10992. 

(43) Mehmood, R.; Qi, H. W.; Steeves, A. H.; Kulik, H. J. The Protein's Role in Substrate 

Positioning and Reactivity for Biosynthetic Enzyme Complexes: The Case of SyrB2/SyrB1. ACS 

Catal. 2019, 9 (6), 4930-4943. DOI: 10.1021/acscatal.9b00865. 

(44) Yabukarski, F.; Biel, J. T.; Pinney, M. M.; Doukov, T.; Powers, A. S.; Fraser, J. S.; 

Herschlag, D. Assessment of Enzyme Active Site Positioning and Tests of Catalytic Mechanisms 

through X-Ray-Derived Conformational Ensembles. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 

(52), 33204-33215. DOI: 10.1073/pnas.2011350117  From NLM Medline. 

(45) Mehmood, R.; Vennelakanti, V.; Kulik, H. J. Spectroscopically Guided Simulations Reveal 

Distinct Strategies for Positioning Substrates to Achieve Selectivity in Nonheme Fe(II)/Alpha-

Ketoglutarate-Dependent Halogenases. ACS Catal. 2021, 11 (19), 12394-12408. DOI: 

10.1021/acscatal.1c03169. 

(46) Jiang, Y.; Yan, B.; Chen, Y.; Juarez, R. J.; Yang, Z. J. Molecular Dynamics-Derived 

Descriptor Informs the Impact of Mutation on the Catalytic Turnover Number in Lactonase 

across Substrates. J. Phys. Chem. B 2022, 126 (13), 2486-2495. DOI: 10.1021/acs.jpcb.2c00142  

From NLM Medline. 

(47) Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A. R.; Clair, J. L. S.; 

Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B. L.; et al. Computational Design of an 

Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science 2010, 329 

(5989), 309-313. DOI: 10.1126/science.1190239. 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

27 

 

(48) Blomberg, R.; Kries, H.; Pinkas, D. M.; Mittl, P. R. E.; Grutter, M. G.; Privett, H. K.; Mayo, 

S. L.; Hilvert, D. Precision Is Essential for Efficient Catalysis in an Evolved Kemp Eliminase. 

Nature 2013, 503 (7476), 418-+. DOI: 10.1038/nature12623. 

(49) Broom, A.; Rakotoharisoa, R. V.; Thompson, M. C.; Zarifi, N.; Nguyen, E.; 

Mukhametzhanov, N.; Liu, L.; Fraser, J. S.; Chica, R. A. Ensemble-Based Enzyme Design Can 

Recapitulate the Effects of Laboratory Directed Evolution in Silico. Nat. Commun. 2020, 11 (1). 

DOI: 10.1038/s41467-020-18619-x. 

(50) Khersonsky, O.; Kiss, G.; Rothlisberger, D.; Dym, O.; Albeck, S.; Houk, K. N.; Baker, D.; 

Tawfik, D. S. Bridging the Gaps in Design Methodologies by Evolutionary Optimization of the 

Stability and Proficiency of Designed Kemp Eliminase KE59. Proc. Natl. Acad. Sci. U. S. A. 

2012, 109 (26), 10358-10363. DOI: 10.1073/pnas.1121063109. 

(51) Haataja, T.; Gado, J. E.; Nutt, A.; Anderson, N. T.; Nilsson, M.; Momeni, M. H.; Isaksson, 

R.; Valjamae, P.; Johansson, G.; Payne, C. M.; et al. Enzyme Kinetics by GH7 

Cellobiohydrolases on Chromogenic Substrates Is Dictated by Non-Productive Binding: Insights 

from Crystal Structures and MD Simulation. FEBS J. 2023, 290 (2), 379-399. DOI: 

10.1111/febs.16602. 

(52) Offenbacher, A. R.; Sharma, A.; Doan, P. E.; Klinman, J. P.; Hoffman, B. M. The Soybean 

Lipoxygenase-Substrate Complex: Correlation between the Properties of Tunneling-Ready States 

and Endor-Detected Structures of Ground States. Biochemistry 2020, 59 (7), 901-910. DOI: 

10.1021/acs.biochem.9b00861. 

(53) Hanoian, P.; Liu, C. T.; Hammes-Schiffer, S.; Benkovic, S. Perspectives on Electrostatics 

and Conformational Motions in Enzyme Catalysis. Acc. Chem. Res. 2015, 48 (2), 482-489. DOI: 

10.1021/ar500390e. 

(54) Warshel, A. Electrostatic Origin of the Catalytic Power of Enzymes and the Role of 

Preorganized Active Sites. J. Biol. Chem. 1998, 273 (42), 27035-27038. DOI: 

10.1074/jbc.273.42.27035. 

(55) Welborn, V. V.; Head-Gordon, T. Computational Design of Synthetic Enzymes. Chem. Rev. 

2019, 119 (11), 6613-6630. DOI: 10.1021/acs.chemrev.8b00399. 

(56) Vaissier, V.; Sharma, S. C.; Schaettle, K.; Zhang, T.; Head-Gordon, T. Computational 

Optimization of Electric Fields for Improving Catalysis of a Designed Kemp Eliminase. ACS 

Catal. 2018, 8 (1), 219-227. DOI: 10.1021/acscatal.7b03151. 

(57) Yang, Z. Y.; Liu, F.; Steeves, A. H.; Kulik, H. J. Quantum Mechanical Description of 

Electrostatics Provides a Unified Picture of Catalytic Action across Methyltransferases. J. Phys. 

Chem. Lett. 2019, 10 (13), 3779-3787. DOI: 10.1021/acs.jpclett.9b01555. 

(58) Wu, Y. F.; Fried, S. D.; Boxer, S. G. A Preorganized Electric Field Leads to Minimal 

Geometrical Reorientation in the Catalytic Reaction of Ketosteroid Isomerase. J. Am. Chem. Soc. 

2020, 142 (22), 9993-9998. DOI: 10.1021/jacs.0c00383. 

(59) Fried, S. D.; Boxer, S. G. Electric Fields and Enzyme Catalysis. Annu. Rev. Biochem. 2017, 

86, 387-415. DOI: 10.1146/annurev-biochem-061516-044432. 

(60) Fried, S. D.; Boxer, S. G. Measuring Electric Fields and Noncovalent Interactions Using the 

Vibrational Stark Effect. Acc. Chem. Res. 2015, 48 (4), 998-1006. DOI: 10.1021/ar500464j. 

(61) Otten, R.; Padua, R. A. P.; Bunzel, H. A.; Nguyen, V.; Pitsawong, W.; Patterson, M.; Sui, 

S.; Perry, S. L.; Cohen, A. E.; Hilvert, D.; et al. How Directed Evolution Reshapes the Energy 

Landscape in an Enzyme to Boost Catalysis. Science 2020, 370 (6523), 1442-1446. DOI: 

10.1126/science.abd3623. 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

28 

 

(62) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H. B.; Olsson, M. H. M. Electrostatic 

Basis for Enzyme Catalysis. Chem. Rev. 2006, 106 (8), 3210-3235. DOI: 10.1021/cr0503106. 

(63) Lameira, J.; Bora, R. P.; Chu, Z. T.; Warshel, A. Methyltransferases Do Not Work by 

Compression, Cratic, or Desolvation Effects, but by Electrostatic Preorganization. Proteins 2015, 

83 (2), 318-330. DOI: 10.1002/prot.24717. 

(64) Jindal, G.; Warshel, A. Misunderstanding the Preorganization Concept Can Lead to 

Confusions About the Origin of Enzyme Catalysis. Proteins 2017, 85 (12), 2157-2161. DOI: 

10.1002/prot.25381. 

(65) Rothlisberger, D.; Khersonsky, O.; Wollacott, A. M.; Jiang, L.; DeChancie, J.; Betker, J.; 

Gallaher, J. L.; Althoff, E. A.; Zanghellini, A.; Dym, O.; et al. Kemp Elimination Catalysts by 

Computational Enzyme Design. Nature 2008, 453 (7192), 190-195. DOI: 10.1038/nature06879. 

(66) Shao, Q.; Jiang, Y.; Yang, Z. J. EnzyHTP: A High-Throughput Computational Platform for 

Enzyme Modeling. J. Chem. Inf. Model. 2022, 62 (3), 647-655. DOI: 10.1021/acs.jcim.1c01424. 

(67) Amber 2018; University of California, San Francisco, 2018. 

(68) Park, H.; Bradley, P.; Greisen, P.; Liu, Y.; Mulligan, V. K.; Kim, D. E.; Baker, D.; DiMaio, 

F. Simultaneous Optimization of Biomolecular Energy Functions on Features from Small 

Molecules and Macromolecules. J. Chem. Theory Comput. 2016, 12 (12), 6201-6212. DOI: 

10.1021/acs.jctc.6b00819. 

(69) Frenz, B.; Lewis, S. M.; King, I.; DiMaio, F.; Park, H.; Song, Y. F. Prediction of Protein 

Mutational Free Energy: Benchmark and Sampling Improvements Increase Classification 

Accuracy. Front. Bioeng. Biotech. 2020, 8. DOI: 10.3389/fbioe.2020.558247. 

(70) Gaussian 16 Rev. C.01; Wallingford, CT, 2016. 

(71) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 3. 

Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. 

J. Chem. Theory Comput. 2009, 5 (10), 2619-2628. DOI: 10.1021/ct9003004  From NLM 

PubMed-not-MEDLINE. 

(72) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. Generating Efficient Quantum 

Chemistry Codes for Novel Architectures. J. Chem. Theory Comput. 2013, 9 (1), 213-221. DOI: 

10.1021/ct300321a  From NLM PubMed-not-MEDLINE. 

(73) The Pymol Molecular Graphics System, Version 2.4; 2015. 

(74) Graphpad Prism Version 8.3.1 for Macos; 2019. 

(75) Alexandrova, A. N.; Rothlisberger, D.; Baker, D.; Jorgensen, W. L. Catalytic Mechanism 

and Performance of Computationally Designed Enzymes for Kemp Elimination. J. Am. Chem. 

Soc. 2008, 130 (47), 15907-15915, Article. DOI: 10.1021/ja804040s. 

(76) Khersonsky, O.; Rothlisberger, D.; Dym, O.; Albeck, S.; Jackson, C. J.; Baker, D.; Tawfik, 

D. S. Evolutionary Optimization of Computationally Designed Enzymes: Kemp Eliminases of 

the KE07 Series. J. Mol. Biol. 2010, 396 (4), 1025-1042. DOI: 10.1016/j.jmb.2009.12.031. 

(77) Caselle, E. A.; Yoon, J. H.; Bhattacharya, S.; Rempillo, J. J. L.; Lengyel, Z.; D'Souza, A.; 

Moroz, Y. S.; Tolbert, P. L.; Volkov, A. N.; Forconi, M.; et al. Kemp Eliminases of the Alleycat 

Family Possess High Substrate Promiscuity. ChemCatChem 2019, 11 (5), 1425-1430. DOI: 

10.1002/cctc.201801994  From NLM PubMed-not-MEDLINE. 

(78) Wang, P. Y.; Zhang, J.; Zhang, S. Y.; Lu, D. N.; Zhu, Y. S. Using High-Throughput 

Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination 

Enzymes. J. Chem. Inf. Model. 2023, 63 (4), 1323-1337. DOI: 10.1021/acs.jcim.3c00002. 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/


 

 

29 

 

(79) Jiang, Y. Y. K.; Stull, S. L.; Shao, Q. Z.; Yang, Z. J. Convergence in Determining Enzyme 

Functional Descriptors across Kemp Eliminase Variants. Electron. Struct. 2022, 4 (4). DOI: 

10.1088/2516-1075/acad51. 

(80) Baath, J. A.; Jensen, K.; Borch, K.; Westh, P.; Kari, J. Sabatier Principle for Rationalizing 

Enzymatic Hydrolysis of a Synthetic Polyester. JACS Au 2022, 2 (5), 1223-1231. DOI: 

10.1021/jacsau.2c00204. 

(81) Schaller, K. S.; Molina, G. A.; Kari, J.; Schiano-di-Cola, C.; Sørensen, T. H.; Borch, K.; 

Peters, G. H. J.; Westh, P. Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and 

Kinetics. ACS Catalysis 2022, 12 (12), 7427-7435. DOI: 10.1021/acscatal.2c02305. 

(82) Kari, J.; Schaller, K.; Molina, G. A.; Borch, K.; Westh, P. The Sabatier Principle as a Tool 

for Discovery and Engineering of Industrial Enzymes. Current Opinion in Biotechnology 2022, 

78, 102843. DOI: https://doi.org/10.1016/j.copbio.2022.102843. 

(83) Xie, W. J.; Warshel, A. Natural Evolution Provides Strong Hints About Laboratory 

Evolution of Designer Enzymes. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (31). DOI: 

10.1073/pnas.2207904119. 

(84) Wodrich, M. D.; Sawatlon, B.; Busch, M.; Corminboeuf, C. The Genesis of Molecular 

Volcano Plots. Acc. Chem. Res. 2021, 54 (5), 1107-1117. DOI: 10.1021/acs.accounts.0c00857. 

(85) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; 

Lathrop, S.; Lifka, D.; Peterson, G. D.; et al. XSEDE: Accelerating Scientific Discovery. 

Comput. Sci. Eng. 2014, 16 (5), 62-74. DOI: 10.1109/MCSE.2014.80. 

 

https://doi.org/10.26434/chemrxiv-2023-5510r-v2 ORCID: https://orcid.org/0000-0002-6424-2231 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1016/j.copbio.2022.102843
https://doi.org/10.26434/chemrxiv-2023-5510r-v2
https://orcid.org/0000-0002-6424-2231
https://creativecommons.org/licenses/by/4.0/

