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Abstract

Structural studies using x-ray scattering methods for investigating molecules in solution are
shifting focus towards describing the role and effects of the surrounding solvent. However,
forward models based on molecular dynamics (MD) simulations to simulate structure factors
and x-ray scattering from interatomic distributions such as radial distribution functions (RDFs)
face limitations imposed by simulations, particularly at low values of the scattering vector
q. In this work, we show how the value of the structure factor at q = 0 calculated from
RDFs sampled from finite MD simulations is effectively dependent on the size of the simulation
cell. To eliminate this error, we derive a new scheme to renormalize the sampled RDFs based
on a model of the excluded volume of the particle-pairs they were sampled from, to emulate
sampling from an infinite system. We compare this new correction method to two previous RDF-
correction methods, developed for Kirkwood-Buff theory applications. We present a quantitative
test to assess the reliability of the simulated low-q scattering signal, and show that our RDF-
correction successfully recovers the correct q = 0 limit for neat water. We investigate the
effect of MD-sampling time on the RDF-corrections, before advancing to a molecular example
system, comprised of a transition metal complex solvated in a series of water cells with varying
densities. We show that our correction recovers the correct q = 0-behaviour for all densities.
Furthermore, we employ a simple continuum scattering model to dissect the total scattering
signal from the solvent-solvent structural correlations in a solute-solvent model system to find
two distinct contributions: a non-local density-contribution from the finite, fixed cell size in
NVT simulations, and a local contribution from the solvent shell. We show how the second
contribution can be approximated without also including the finite-size contribution. Finally, we
provide a ’best-practices’-checklist for experimentalists planning to incorporate explicit solvation
MD simulations in future work, offering guidance for improving the accuracy and reliability of
structural studies using x-ray scattering methods in solution.

Introduction

The term solvation describes the processes of how solvent molecules interact with solute molecules in
a solution. Solvation and solvation dynamics can significantly influence the properties and function
of a solute. Since so much chemistry takes place in solution, studying the role of solvation dynamics
on a molecular level can be the key to obtaining a complete understanding of reaction mechanisms
that are central within (photo)chemical processes with sought-after applications such as light-
harvesting [1–5], charge-transfer [6–8], catalysis [9,10], or photoswitching [11–14]. Lastly, studies of
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the neat solvent alone [15] are especially pertinent when that solvent is water [16,17], simply because
of its unquestionable importance both in biology, chemistry, and elsewhere. Direct structural
probes such as (time-resolved) x-ray scattering have proved a crucial tool for obtaining mechanistic
understanding on an atomic scale [10, 18–21]. However, the random orientation of solutes in a
solution results in the scattered signal being comprised of an average of all possible orientations
of the solute and its solvation shell, which thus reduces the extractable information content in
the recorded signal, necessitating support from theoretical and computational modeling. Often,
classical molecular dynamics (MD), driven by either quantum [22–24], classical [8, 18, 23, 25, 26],
or mixed potentials [23, 27, 28], provide molecular structures or trajectories that evolve in time,
predicting the process of interest. These predictions need to be linked to experiment through
a forward model, calculating the theoretical experimental signal from the molecular simulations
[29,30]. As the focus moves further towards the role of the solvent [8,19,26,31–35], it should be noted
that the structural changes of solvation shells are more diffuse than for, say, covalent bond-lengths
in a molecule. This necessitates more accurate forward models that fully capture these subtle
effects across the entire range of the scattering vector q. Furthermore, the models need to be able
to discern between real changes in distributions of interatomic distances and artificial contributions
to the predicted scattering signals. Such artificial contributions arise from approximations in the
simulations, such as the finite size of the simulation cell, and density fluctuations in the solvent
that cannot fully be averaged out within reasonable simulation times.

In a previous study, we presented the fundamentals of deriving a forward model for calculating
coherent x-ray scattering signals from solute-solvent systems, based on pairwise radial distributions
(RDFs) sampled from molecular dynamics simulations [29]. In the present work, we investigate
how finite-size simulation cells introduce errors in the long-range behaviour of the sampled RDFs
(finite-size artefacts), and what effects this has on the predicted scattering signal. We present a
new method for eliminating these artefacts by re-normalizing the RDFs based on an estimation of
the excluded volume of the particle-pairs the RDFs are sampled between, to emulate them being
sampled from infinite systems. We then critically asses this new correction scheme alongside two
previous methods developed for correcting the RDFs for Kirkwood-Buff Integrals, here employed
instead for scattering. We present methods to discern features in the simulated signal corresponding
to real interatomic structure from finite-size artefacts, and analyse a method to obtain contributions
to the total x-ray scattering term from solvent-solvent correlations within solvation shells [26].

The paper is structured as follows: First, we present the theoretical background for calculating x-ray
scattering from RDFs sampled from finite-size systems and introduce our new correction. Then, we
briefly introduce two previously developed correction methods. We then test the performance of all
the corrections on systems of increasing complexity, going from a simple Lennard-Jones liquid, to
neat water, to a single-atom solute in water, before ending up with a many-atom complex solvated
in water. Finally, we go into detail in analysing further contributions to the total x-ray scattering
signal from solvent shells, before presenting a best-practices recipe for future forward modeling.

The methods described and used in this work have been implemented in Python and is available
from the The Python Package Index [36]. The data, plots, and code to reproduce them can be
found in an online data-repository [37].

Background

It is well known that the isotropic x-ray scattering can be simulated from radial distribution func-
tions (RDFs) which describe the ratio of local probability density to the bulk density, g(r) = ρ(r)/ρ
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[38–40]. We define an ’atom type’ as an element belonging to a certain region w of the system.
Thus, e.g. an Oxygen belonging to the solute can be a different atom type than an Oxygen be-
longing to the solvent. For a pair of atom types l,m the pairwise RDF, glm(r) can be sampled
from molecular dynamics (MD) trajectories of i ∈ l and j ∈ m atom positions, sampled in spherical
shells along r from the i’th particle to every j’th particle, δ(|ri − rj | − r):

glm(r) =
1

ρm

〈
Nm∑
j 6=i

δ(|ri − rj | − r)

〉
i

= lim
dr→0

Nlm(r)

ρm4πr2dr
=
ρ(r)

ρm
, (1)

where ρm = Nm/V is the average density of m-type particles in a simulation cell of volume V , and
Nlm(r) is the number of m-type atoms found at distance r + dr from atoms of type l, most often
averaged over a set of MD frames. As we want to separate the various contributions to the total
scattering signal, we introduce the indices wl, wm, since for a solute in a solvent, the atom types
can be further classified as belonging to either the solute, wl = u, or the solvent: wl = v. Then,
the total scattered x-ray intensity I(q) as a function of the scattering vector q from a solute in a
solvent can be calculated as the double sum of the individual terms (the form of which we shall
return to in eq. 3):

I(q) =

{u,v}∑
wl

{u,v}∑
wm

Iwlwm(q) = Iuu(q) + Iuv(q) + Ivu(q) + Ivv(q). (2)

As discussed previously [29], the diagonal terms constitute solute-solute scattering Iuu(q), which will
not be addressed further in this work, and solvent-solvent scattering, Ivv(q). The off-diagonal, or
”cross” terms constitute the scattering terms from the solute-solvent correlations, Iuv(q)+Ivu(q) =
Ic(q). These terms are sometimes also called ”solvent cage” scattering, which is misleading, as the
total scattering signal from the solvent cage also includes scattering from solvent-solvent correlations
in e.g. a denser solvent shell around a solute. This part of the ”cage” is encoded in the solvent-
solvent term, Ivv(q) = Iv(q). In addition, the solvent-solvent term includes the bulk signal (which
resembles the signal from a neat liquid), as well as the solvent-solvent interactions across the solute,
which will constitute a ’hole’ in the solvent, which we will return to in the second part of this work.

The Iwlwm(q) terms can be calculated from the RDFs via [29,40]:

Iwlwm(q) = δwlwm

∑
l

Nlfl(q)
2 +

∑
l

∑
m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π

∫ ∞
0

(glm(r)− g0
wlwm

)
sin(qr)

qr
r2dr,

(3)

where l (m) runs over all atom types belonging to wl (wm). The atomic form factors fl(q), fm(q)
can be parameterized within the Independent Atom Model (IAM) [41] and Nl (Nm) the number
of atoms of type l (m) in the simulation cell. g0

wlwm
= 0 when wl = u and wm = u, and 1

otherwise [29]. The equation is split up in two terms: the first term is the self-scattering and the
second term contains the interatomic structure. The Kronecker delta, δwlwm , assures there is no
double-counting of self-scattering terms.

For this work, the two relevant contributions are the solvent and cross terms, Ivv(q) and Ic(q), i.e.
with g0

wlwm
= 1. The fundamental measurable quantity for these two terms, agnostic to the nature

of the scatterer, is the structure factor Slm(q), which for uniform, isotropic systems comprised of
particles of type m and l (with at least one type within the solvent) can be defined as [42]:

Slm(q) = 1 + ρm4π

∫ ∞
0

(glm(r)− 1)
sin(qr)

qr
r2dr. (4)
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We can express the x-ray scattering signal as a function of structure factors for the different pairs
of atom types in our simulation. Keeping in mind that Nl(Nm − δlm) = (Nl − δlm)Nm, we can
rewrite eq. 3 as:

Iwlwm(q) = δwlwm

∑
l

Nlfl(q)
2 +

∑
l

∑
m

fl(q)fm(q)(Nl − δlm)(Slm(q)− 1) (5)

Note that with the definition of the structure factor in eq. 4, this expression is only valid for the
cross- and solvent-solvent terms. Lastly, while glm(r) = gml(r), the same is not true for Slm(q)
and Sml(q), as Nm and Nl should also switch place, and thus we have not reduced the double sum
further. In the following, we will use the shorthand index c to label the total cross-term scattering
and structure factors, and v for the solvent-solvent term. Note that since the first term in eq. 3 is
zero for Ic(q), this term can be negative.

Figure 1: Illustration of the central concepts of volume and densities in a finite (periodic) system
with volume Vcell. Particle l takes up space in the simulation cell, where the other particles cannot
exist. This volume is dependent on the extension of both of the particle types, as the volume is
defined by the interaction potential between the particles. Thus, for a potential of non-interacting
hard spheres, the volume would be a sphere with radius Rlm = Rl +Rm, but for all other differen-
tiable potentials, the volume will be less well defined. When scaling the RDF to ρm, the excluded
volume of particle type-pair l,m, Vlm, is included in Vcell, even though it is not available to the
m-type particles. Instead, the ”effective volume”, i.e. the total volume of the simulation cell mi-
nus Vlm should be used to obtain an ”effective” density ρm,eff with which ρ(r) in eq. 1 should be
normalized.

If we let q → 0, the integral term in eq. 4, except for the density ρm, is recognized as the Kirkwood-
Buff Integral (KBI) [43]:

Glm = 4π

∫ ∞
0

(glm(r)− 1) r2dr = V
〈NlNm〉 − 〈Nl〉〈Nm〉

〈Nl〉〈Nm〉
− δlm

ρl
. (6)

The KBI links atomic scale interactions - as expressed through RDFs - to fluctuations (r.h.s of eq.
6), and therefore also to thermodynamic properties of fluids [44]. For a single atom-type system,
l = m, we can combine eqs. 4 and 6 to relate the structure factor at q = 0 to fluctuations in the
liquid:

S(0) =
〈N2〉 − 〈N〉2

〈N〉
= ρkBTχT , (7)
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for ρ = 〈N〉/V . The r.h.s of eq. 7 above equates fluctuations to the experimentally measurable
isothermal compressibility χT (at temperature T , where kB is the Boltzmann constant), and has
been derived elsewhere [45,46].

The problem arises as KBIs are only defined for infinite systems [43]. In infinite systems, the
theoretical long-r limit of the RDF is 1. This means, that for the integrals in eqs. 3, 4, and 6, when
the RDF has converged to this limit at some distance r = R, we can safely truncate the integral at
R, since the integrand above this R will be 0. However, the limit of the RDF when sampled in a
finite-size system of N particles, even if periodic, becomes different from 1. As an example of this,
statistical mechanics analysis show that for an ideal gas system, g(r) = 1− (1/N) [46,47].

Finite-size corrections

Our interpretation of why the deviation from 1 arises is because the statistical mechanics analysis
that leads to the g(r) = 1 − (1/N) result for a ideal gas does not take into account that in a real
system, the particles have a finite volume. Thus, the probability of finding a particle in the volume
element drj , given that another particle is in the element dri must take into account the (excluded)
volume taken up by particle i, since the two particles cannot occupy the same volume (see fig.
1). As the system size increases, the ratio between the excluded volume and the total simulation
volume decreases, which makes the limit approach the infinite-size limit of 1. This means that
when we sample RDFs from finite-system molecular dynamics simulations, we must modify the
calculation scheme to obtain the infitite-size limit of 1. For RDFs sampled in finite systems, gNlm(r),
the RDF in eq. 1, the RDF is normalized to the average density of particles m, ρm = Nm/Vcell.
We must therefore rescale the RDF with the difference between the cell volume and the effectively
accessible volume to recover the RDF as if sampled from an infinite system, g∞lm(r):

g∞lm(r) =
ρm
ρeff

gNlm(r) = gNlm(r)ρm
Vcell − Vlm
Nm − δlm

, (8)

where Vlm is the excluded volume, i.e. the volume taken up by particle of type l in which particles
m cannot be found. This volume is nontrivial to obtain exactly, but as a first-order approximation,
we assume it to be spherical Vlm = (4/3)πR3

lm, with a radius Rlm that has to be estimated either
by inspection of the RDFs or by fitting (vide infra). Note that Vlm is the volume inaccessible to the
remaining particles, and not just the total volume divided by the total number of particles (which
would be larger than Vlm, c.f. close-packing of equal spheres only uses 74% of the total volume).

An alternative route is presented by P. Ganguly and N. F. van der Vegt, developed for correcting
KBIs. The authors state that ”excess (depletion) of particles of type m around particles of type l
at a local scale is compensated by depletion (excess) of particles of type m at long distances, as the
total number of particles is fixed.” [48] Based on this observation, the authors propose to correct
the error in the ρ-normalization of the RDF by correcting the number N of particles throughout r:

g∞lm(r) = gNlm(r)
Nm

Nm −
[
(∆Nlm(r) + δlm)

(
1− (4/3)πr3

Vcell

)−1
]

= gNlm(r)
Nm

(
1− (4/3)πr3

Vcell

)
Nm

(
1− (4/3)πr3

Vcell

)
− (∆Nlm(r) + δlm)

, (9)
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The parameter ∆Nlm(r) is defined as ”the excess number of particles of type m within a sphere of
radius r around particle of type l”. Usually [49–51] one estimates this quantity via:

∆Nlm(r′) = 4πρm

∫ r′

0
(gNlm(r)− 1)r2dr, (10)

for r′-values less than half the simulation box length.1

Another N -focused correction uses a Taylor expansion of the difference between the finite- and
infinite-system RDF long-r behaviour [53], using an unknown function to describe the deviation,
which is estimated from two simulations with differing number of molecules [49, 54]. This method
thus requires twice the amount of simulations, and relies on the difference between RDFs sampled
from almost identical systems, making it very sensitive to sampling noise. Thus, we will not be
employing this method here.

Lastly, Perera et al propose a more heuristic correction to the RDF between particles of type l and
m [55]:

g∞lm(r) = gNlm(r)

[
1 +

1− gN,0lm

2

(
1 + tanh

(
r − κlm
αlm

))]
. (11)

The difference between the correct asymptotic limit, 1, and the sampled, gN,0lm , 1− gN,0lm is used in

a smooth switching function, where αlm controls the smoothness of the switch from gN,0lm to 1. κlm
represents an effective diameter with which particle of type l and m displace each other, as it is
taken to be twice the distance at which glm(r) starts to be different from zero. This RDF-correction
grows in at larger r, and leaves the local structure untouched. However, from the definition of the
RDF in eq. 1, the 1/ρm normalization should be applied over the entire r-range. This correction is
more akin to the often applied ”damping” or ”windowing” functions used ubiquitously in forward
modeling as well as in inversion methods [8, 9, 16, 26, 56–58], which we will address in the next
section.

Damping functions

As we shall see in the following sections, none of the above physics-based corrections are guaranteed
to make the RDF go exactly to 1 at long r, we thus cannot be certain that the integral in eq. 3
(or in eq. 4) will converge. Therefore, in practice, we must often employ a window function (or
’damping function’) to the integral in eq. 3, ω(r), which is not grounded in physical considerations
about the RDF. One such window function is used by Lorch [59]:

ωLorch(r) =
sin(πr/R)

πr/R
, (12)

where R is the largest r-value of the sampled RDF (most often half of the simulation cell sides).
However, to ensure optimal results when combined with any of the previously mentioned RDF-
corrections, one should take care that the applied damping function minimally alters the structure
encoded in the RDF, avoiding excessive adjustments to it.

1Some programs, such as VMD [52] uses an average density in the normalization of the RDF that does not count
the particle from which the histogramming starts, in cases of l = m, i.e. ρm = (Nm−δlm)/V . If such a normalization
is used, then the Kronecker delta should be omitted from eq. 9.
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Dhabal and coworkers compared the correlation functions of water simulated using the TIP4P/2005
potential with experimental results using the following windowing function:

ωDhabal(r) =


1− 3(r/R)2, if r < R/3

3/2
(
1− 2(r/R) + (r/R)2

)
, if R/3 < r < R

0, if r > R

(13)

which was later modified into an smooth step function from Rcut to Rcut + R, which leaves the
RDF completely untouched before Rcut [5]:

ωZK(r) =



1, if r < Rcut

1− 3
(
r−Rcut
R−Rcut

)2
, if Rcut < r ≤ 2Rcut+R

3

3
2

(
1− r−Rcut

R−Rcut

)2
, if R > r > 2Rcut+R

3

0, if r > R,

(14)

Which reduces to ωDhabal(r) for Rcut = 0. For large cells, the Lorch-like damping might be most
appropriate, as a very slow change in the RDF is less aggressive than a more abrupt cut provided
by a smooth step function, but in other cases, where e.g. smaller cells have been sampled, it might
in some cases be more important to avoid damping the local structure encoded at shorter r values
in the RDF, than to enforce a smoothly changing damping window. See fig. 2 for a comparison of
the shapes of the functions.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.00

0.25

0.50

0.75

1.00

ω
(r

)

Rcut

Lorch

ZK

Dhabal

Figure 2: Illustration of the shapes of the three window functions described in the main text, with
R = 1, and in the case of the ZK-damping, Rcut = 0.8

In the last two decades, much work has gone into developing corrections for the RDF that recovers
the correct KBI [48–51, 53, 54, 60–69]. In this work, we will analyse our own correction-scheme
based on the excluded volume, as well as the van der Vegt- and Herera-corrections, focusing on
x-ray scattering. MD simulations and subsequent RDF sampling are often carried out in a ”black
box”-fashion as just one of many steps in a complex structural modeling strategy. Thus, we have
limited ourselves to corrections that can be applied to RDFs sampled from MD simulations carried
out in readily available and highly efficient MD codes, and RDFs sampled from already available
codes, where no (cost-increasing or otherwise) modifications have to be implemented in either
methodology in order to apply the correction.
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Testing the Corrections

Based on the considerations in the previous sections, we can devise a useful test of the various
corrections by evaluating

Slm(q;R) = 1 + ρm4π

∫ R

0
ω(r) (g∞lm(r)− 1)

sin(qr)

qr
r2dr (15)

at q = 0 Å−1, for increasing values of R, since a successful recovery of g∞lm(r) from gNlm(r) will make
this integral converge, as previously discussed. The test systems in the following are chosen to
gradually increase in complexity, starting from a neat LJ liquid, a solute-solvent LJ liquid system,
then switching to liquid water before finally ending up with solute-solvent water systems. For the
systems with many l,m-combinations, we will use eq. 5 at q = 0 instead, to judge the overall
convergence.

Computational Details

The test systems were chosen to gradually increase in complexity, starting from a neat LJ liquid, a
solute-solvent LJ liquid system, then switching to liquid water before finally ending up with solute-
solvent water systems.

All MD simulations were carried out in OpenMM [70]. The LJ simulations were set up using
OpenMMTools [71], placing 20713 particles in a (100 x 100 x 100) Å cell with the LJ-parameters
σsolvent = 3.4 Å and ε = 0.238 kcal/mol. The σsolute values were manually changed before starting
each separate simulation. All simulations were equilibrated for 1 ns each in the NVT ensemble
using a Langevin thermostat with a 2 fs timestep at 94.4 K. Each production run was carried out
with the same thermostat for 100 ns, as recommended elsewhere [48], saving all particle positions
every 0.5 ps. The RDFs were sampled using VMD with a numerical dr of 0.05 Å.

The neat water system was created using Packmol [72] to place 4095 water molecules in a (50 x
50 x 50) Å cell, and AmberTools22 [73] to generate the topology for the TIP4PEW potential [74].
The simulation was equilibrated for 1 ns, and sampled for 99 ns, both in the NVT ensemble at 300
K, using a Langevin thermostat with a 2 fs timestep. Then two simulations were spawned from
the end of the first: one in which the cell side lengths were reduced each by 0.2 Å, and the other
where they were increased by the same amount. The new simulations were again equilibrated for
1 ns, and sampled for 99 ns. The process was then repeated for further reductions and expansions
of the cell. The RDFs were sampled using VMD with a numerical dr of 0.01 Å.

The first water-based solute-solvent system was chosen to be a single Ag+ in water, but could have
been any single-atom ion. The Ag+-Water cells were created with AmberTools22 [73], placing a
single ion in 17535 water molecules, using the non-bonded Ag+ parameters optimized for TIP4PEW

from Li & Merz [75]. Since the solvent-cell routine in AmberTools creates water with a very low
density, the system was equilibrated for 2 ns in the NPT ensemble at 1 bar, maintained by a Monte
Carlo barostat, and then propagated in 2 fs timesteps at 300 K by the Langevin integrator. The
final cell dimensions for the production runs were 85.8 Å x 85.8 Å x 85.8 Å . The RDFs were
sampled using VMD with a numerical dr of 0.05 Å.

For the final solute-solvent system, we chose the [Fe(bpy)3]2+ (bpy = 2,2’-bipyridine) complex in
water, as it has been central to many previous x-ray solution scattering experiments [21,25,76] and
theoretical studies of solute-solvent interactions [22,24,77]. The complex was parameterized within
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the General AMBER (GAFF) potential, using the ’MCPB.py’ method, as described elsewhere [78].
The complex was then solvated in a box of 7329 water molecules modelled with the TIP4PEW

potential [74], using the ’leap’ program from the ’Ambertools’ toolbox [73]. Two Cl− counterions
were also added using leap, to charge-neutralize the system. The complex was restrained in the
center of the box, and the counterions were restrained roughly 22 Å away from the complex using
positional restraints with 500 kcal/mol force constants. The NPT equilibration resulted in a final
cell size of (58.7 x 61.1 x 61.4) Å. The density and temperature were equilibrated using OpenMM
for 500 ps in the NPT ensemble, using a Monte Carlo Thermostat to keep the pressure at 1 bar,
and a Langevin propagator to keep the temperature at 300 K [70]. As with the previous set of
simulations the simulation cell size was changed to sample each global density in the NVT ensemble
for 20 ns.

Results and Discussion

Test System 1: The Lennard-Jones Liquid

This section analyses the effects on calculating the cross-term structure factor from finite-system
sampled RDFs of Lennard-Jones (LJ) liquids, and tests the ability of the chosen corrections to
eliminate finite-size artefacts. The liquid structure of LJ liquid is governed by the well-known
potential between particles i and j:

E(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (16)

where σij determines the distance at which the potential becomes repulsive, and ε the depth of the
minimum. Each atom type (element) are assigned their own σ and ε parameters, and are combined
via simple geometric combination rules, σij = (σi + σj)/2 and εij =

√
εiεj , also called the Lorentz-

Berthelot combination rules [79, 80]. By employing the LJ potential, we prioritize computational
conveniences such as differentiability over a completely well-defined hard-sphere excluded volume,
meaning that pressure and density will affect the resulting excluded volume.

First, we simulate a ’neat’ LJ liquid where all particles are assigned σ = 3.4 Å, sample the RDFs,
and calculate the structure factor using eq. 15 at q = 0 Å−1 for gradually increasing truncations of
the integral, R, Slm(0;R), towards convergence if the correction is successful. This type of plot is
therefore a helpful tool in judging whether the low-q behaviour of the structure factor (and thus the
scattering signal) will be influenced by finite-size sampling errors of the RDF. Since l ∈ v,m ∈ v,
we label this structure factor Sv(0;R). The top plot in fig.3 shows the LJ-potential (red line) used
in sampling the RDF shown in black. The middle plot in the figure shows the structure factor
Sv(0;R), using the ’raw’ RDF in the top plot, before applying any RDF-corrections (black dashed
line). The plot also shows structure factors calculated from RDFs corrected with the three main
methods described previously (solid lines). The uncorrected Sv(0;R)-value starts a smooth increase
from around roughly 40 Å, while the structural correlations die out. This indicates that the RDF
is converging towards a value slightly above 1 such that the value of the integral truncated at R is
increasing proportionally to R3, and the low-q structure factor intensity will be entirely dependent
on when one chooses to stop sampling the RDF, a choice often governed by the size of the MD
simulation cell. For the Perera-correction, klm is simply set to the first r-value that gives glm(r) > 0,
as suggested in the original paper [55]. Due to the finite bin-size of 0.05 Å in sampling the RDF,
as well as the fact that an LJ particle is not completely hard, the value is associated with some
inaccuracy. Having this in mind, we set the value to 2.925 Å. For the volume correction, Rlm was
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4

6

8

S
v
(0

;
R

)

×10−2

Undamped Damped

−1

0

1

E
L

J
(r

)

×10−2

Figure 3: Top: The RDF of a neat Argon LJ liquid with σ = 3.4 Å. The RDF is sampled for
100 ns in a 100 Å box. The red curve shows the energy from the corresponding LJ potential.
Middle: Sv(0;R) for the corrections presented in the previous section, calculated without damping
(ω(r) = 1), as well as from the uncorrected (’raw’) RDF. The R represents the truncation length
of the integral in eq. 15. The dash-dotted line shows the average Sv(0;R)-value for r > 40 Å of the
van der Vegt-corrected result. Bottom: Zooming in on the R > 40 Å region, and comparing two
Volume-corrected results, the same, undamped calculation as found in the main bottom plot, and
a calculation that also employed the Lorch-like damping with L = 50 Å.

set to 2.8240 Å using a simple fitting-method to find the excluded volume which we will describe
in the next section on solute-solvent LJ systems. The volume- and van der Vegt correction both
flatten out Sv(0;R) at R-values roughly above 40 Å to slightly oscillate around their average value
in this region. The Perera-correction seems to have slightly overcorrected the RDF such that the
Sv(0;R)-value starts to systematically decrease at long R-values. This small overcorrection can
most likely be eliminated by further tuning the involved parameters.
The volume- and van der Vegt correction both make the Sv(0;R)-value converge. However, in
practice, the small oscillations still present even at these large distances will cause an unwanted
truncation-distance dependence of the resulting predicted scattering signal. The bottom plot in the
fig. 3 shows how employing the Lorch-like damping window converges the integral to a constant
value such that it can be safely truncated. This procedure will be used throughout the rest of this
work.

Fig. 4 shows the low-q behaviour of the structure factor, with and without corrections, as well
as the structure factor up to q = 4 Å−1 in the inset. The uncorrected structure factor artificially
increases as q goes toward zero, consistent with Sv(0;R) from fig. 3. The black dashed curves
with gradually increasing opacity represents results from integral-truncation distances ranging from
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q (Å−1)

0.0

0.1

0.2

0.3

S
(q

)

Volume
Raw, damped

Perera
Raw, undamped

Vegt

0 1 2 3 4

q (Å−1)
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Figure 4: The performance of the three corrections on the low-q behaviour of the structure factor.
The structure factor calculated from the uncorrected RDF artificially increases as q goes toward
zero, as a result of the finite-size RDF-sampling. The dashed black curves increase in opacity
according to R values going from 30 Å to 50 Å. Note that the Volume- van der Vegt corrections
produce results that are almost identical, which means the green curve is hidden behind the blue.

30 Å to 50 Å, showing how the low-q amplitude is entirely dependent on the (arbitrarily) chosen
truncation distance. By correcting the RDFs for their finite-sampling, these low-q artefacts can be
removed. The van der Vegt- and the volume-corrections are in closest agreement on the q < 0.2
Å−1 signal shape and magnitude, whereas the Perera-correction produces a slightly smaller signal
in this region. For these large 100 Å cells, the artificial increase in the uncorrected signal sets in
around 2π/(50 Å) = 0.125 Å−1, with some ringing (i.e. truncation oscillations) present up until
∼0.2 Å−1. However, not all types of simulation are inexpensive enough to allow cells of these sizes to
be employed, making corrections crucial, even at higher q. Especially ab initio molecular dynamics
(AIMD) simulations, where the particles are classically propagated from gradients of ab initio
potentials [21, 22, 24], are still too expensive to perform using such large cells. Multiscale methods
that couple Quantum Mechanical / Molecular Mechanical (QM/MM) potentials can employ larger
(MM) cells [3,10,81,82], but not without increasing the coupling cost in evaluating the interactions
between the two subsystems, and introducing approximations in how the coupling is carried out [83].

Solute-Solvent LJ systems

We now extend the analysis by systematically varying the σ-value of a single ’solute’ particle in a
series of separate MD simulations, to simulate how an increase of the effective particle-size affects
the resulting estimated excluded volume, RDF convergence, and corrections. To find the excluded
volume for an l-type particle in anm-type solvent, we fitted Vlm = 4/3πR3

lm of the volume-correction
in eq. 8 by optimizing R3

lm to produce an RDF that minimizes the residual between glm(r > rmax)
and 1, where the the parameter rmax was chosen such that correlations within the liquid have died
out. This will circumvent the limit imposed by the finite bin-size when numerically sampling the
RDF, but the fit will be sensitive to the numerical sampling noise, which even for 100 ns trajectories
is relatively large compared to the difference between the actual asymptotic limit of the RDF and
1. The first 5 rows of fig. 5 again uses the S(0;R) method to analyse the results, this time labeled
Sc(0;R), since l ∈ u and m ∈ v. Since the differences between the RDF value and 1 are so small,
the sampling noise makes the fit sensitive to the choice of rmax, but generally, 7σ proved adequate
in fitting volumes that converges Sc(0;R). The bottom plot shows a linear increase in the excluded
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10 20 30 40

σi j= 5.20 Å

10 20 30 40

R (Å)
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Raw
r at first glm(r) > 0

Fitted

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

r (Å)
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Figure 5: Top 5 rows: Comparing the volume-correction for Sc(0;R) for a selection of the entire
set of simulations. The excluded volume is either approximated with a sphere with radius r equal
to the r at which g(r) > 0 (yellow curves), or via the fitting procedure described in the main
text (blue curves). Note that we only calculate the cross-term. The actual measured signal would
also contain both particle self-scattering and all the other terms apart from the term shown here.
Middle: Solute-solvent RDFs used in the plots above. Bottom: Fitted radii of the excluded volume
Vlm as a function of solute-solvent σ values (blue circles). The blue dashed lines show linear fits to
the two regions σsolute < σsolvent and σsolute > σsolvent (with σsolvent = 3.4 Å). The yellow crosses
represent the radii used for the yellow curves in the top 5 rows.
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volume with increasing σsolute, with two distinct slopes depending on whether σsolute > σsolvent or
vice versa: When the solute is smaller than the solvent, the extension of the neighbouring solvent
molecules play a larger role in how close they can pack around the solute, as their own extensions
in space hinder closer packing, showing the m-dependence on Vlm.

Test System 2: Water
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Figure 6: Top: The three corrections of the S(0;R)-value, for each density of 4095 molecules of
TIP4PEW water sampled for 100 ns each, in cells of decreasing size. The leftmost plot also shows
the uncorrected curves as dashed lines. Middle: The fitted radius of the excluded volume as a
function of density, where the fit minimizes the residual of g(r > rmax)− 1, where an rmax-value of
22 Å was used. Bottom: The isothermal compressibility χT as a function of the water density.

We now focus on neat water as a test system. As shown in eq. 7, the isothermal compressibility
can be obtained from S(q = 0). Therefore, we can calculate the isothermal compressibility χT from
the simulations and compare to its experimental value. Fig. 6 collects the results from simulating
neat water at a range of densities.
As the main contribution to the scattering will come from the O-O correlation, we calculate the
q = 0 structure factor of this atom-type pair, and correct it with the three previous corrections,
again fitting the excluded volume as explained in the previous section. The middle plot shows
how the excluded volume decreases as expected with increasing the density. The lowest plot shows
how this translates into a linearly decreasing isothermal compressibility. Heuristically, the more we
have already compacted the water, the less it is willing to be further compacted. As we are only
using the O-O pair, and using the relatively simple TIP4PEW water model that e.g. employs rigid
water molecules, we cannot expect a complete agreement with the experimental value, yet both
the van der Vegt- and volume correction produces compressibilities very close to the experimental
value of ambient water density at room temperature [84, 85]. This shows that the corrections not
only make the integral converge, but also reproduce the experimental value, whereas the Perera
correction seems to slightly overestimate it. This does not change whether we set κlm from eq. 11
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to the value found using our excluded-volume fitting method, or the first non-zero glm(r) r-value,
but we cannot rule out that further adjustments would increase the accuracy with respect to the
experimental result. However, our result is consistent with the previous finding that the van der
Vegt- and Perera- methods give different KBIs [48], most likely since the Perera-correction leaves
the RDFs unchanged at shorter r-values, even though the sampled RDF should be corrected across
all r.

Test System 3: A Single-atom Ion in Water - Sampling Convergence

In the previous section we took advantage of the fact that there are N(N − 1) water-water cor-
relations in the simulation cell, which greatly increases the sampling statistics. However, many
scenarios involve a single solute molecule in solution, where the cross term RDFs are then sampled
on only N correlations per independent MD frame. Fig. 7 tests the three corrections on a simple
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Perera

15 20 25 30 35 40

R (Å)
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Figure 7: Top row: Performance of the volume, Perera, and van der Vegt corrections on the Ag+-
O RDF, with respect to sampling time. Middle: the average Sc(0;R > 39Å) as a function of
sampling time. The Perera correction converges fastest, but our Volume-correction also reaches
convergence if sampled more than roughly 20 ns. The dashed blue line shows the total average of
all Sc(0;R > 39Å) averages for sampling times of 60 ns or more. Bottom: The structure factor at
low q as a function of sampling time, calculated from RDFs corrected using the Volume correction.
The dashed line shows the result of reducing the sampling noise of the 1 ns sample by calculating
the scattering using a numerical dr of 0.2 Å.

solute-solvent system comprised of a single Ag+ ion in water, with RDFs sampled from between
1 ns to 133 ns. If the sampling is too short, the corrections cannot converge the integral. The
Sc(0;R > 39Å) values converge with simulation time when either the Volume- and Perera correc-
tion is applied, whereas the van der Vegt correction is more unstable. For the 1 ns sampling, the
bottom plot shows large artificial oscillations at low q with some ringing even above 1 Å−1. The
dashed curve represents scattering calculated from an RDF sampled with dr = 0.2 Å instead of
0.05 Å, showing that a 4 x increase in numerical bin size of dr in eq. 1 only affects the oscillatory
artefacts significantly at q < 0.2 Å−1.
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Molecular Solutes: Simulation cell sizes
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Figure 8: Top row: Performance of the three corrections tested on the total coherent cross-scattering
term Ic(q = 0) as a function of the integral truncation distance R, calculated from all solute-solvent
pairwise RDFs of the [Fe(bpy)3]2+ molecule in water. Middle: The fitted excluded volume of the
different solute atom types as a function of water density. Bottom left: the cross-term at low q
as a function of water density. Bottom right: Illustration of the (hydrogen bonded) network of
intercalated water molecules in the first solvation shell of the molecule.

Real systems, like a molecule in solution, will most often be comprised of many different elements.
This section will use the transition metal complex [Fe(bpy)3]2+ as an example, as it has been
the center for many experimental studies using x-ray techniques [76, 86, 87], including scattering
[18, 21, 25], as well as computational investigations [22, 24, 77]. The complex is shown in the lower
right corner of fig. 8. From the geometry of the complex, it is evident that the simple spherical
approximation of the excluded volume will be much less accurate than previously. The complex is
comprised of a single Fe atom, plus atoms of the elements C, N, and H, and according to eq. 3
the coherent cross term scattering signal Ic(q) is a stoichiometrically weighed sum of the integrals
over the cross-term RDFs, each term multiplied with the atomic form factors of the atom types
of the RDF. It is thus clear that each pairwise correlation does not contribute equally to the
recorded signal, but that its intensity is dependent on the number of atoms of each type present
in the system, as well as the number of electrons in each atom type. But Ic(0;R) will show the
same behaviour as Sc(0;R), as the form of the integral is the same. Therefore, to make a single
assessment of the convergences of all the integrals that are evaluated to obtain Ic(q), taking into
account how much each term contributes to the total cross-term signal, we use Ic(0;R) instead of all
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the individual Sc(0;R) terms. The top three plots in fig.8 shows the results of applying each of the
three corrections to each of the cross-term RDFs. For the volume-correction, the excluded volume
was fitted separately for each RDF. For this relatively large molecule, the first thing we observe is
how the two first corrections struggle to make the running integral reach convergence within the
limited box size. However, close inspection of the results from the van der Vegt correction shows
that the curves seem to flatten out above ∼27 Å, indicating that convergence might be reached for
this correction. We repeated the strategy of performing the simulations at increasing densities in
order to study the robustness of the fitted excluded volume from the long-r RDF asymptote. The
middle plot shows the result of these fits. We first note that the excluded-volume values are larger
than expected for a single atom of the same type in a solution. This is because the rest of the
particles in the solute will hinder access of the solvent molecules. Yet, in spite of the now somewhat
crude spherical approximation of the excluded volume, we still observe the expected behaviour of
the volume decreasing with increased density, no matter which of the solute-solvent RDFs we fit.
While all pairs produce excluded volumes of similar sizes for each water density, the intercalation of
water molecules between the ligands of the complex (see the inset in fig. 8) means that the waters
of the first solvation shell can get closer to especially the carbon atoms of the complex. This effect
causes the smaller fitted excluded volume values from those correlations.

The solid curves in the bottom plot show the total cross-term scattering signal at low q-values,
corrected using the van der Vegt correction. The signal is negative since there is no atomic self-
scattering for this term in eq. 3, but while this term can easily be calculated, it evidently cannot
be measured without also measuring the rest of the scattering terms, which make the total signal
positive for all q.

We conclude this section by emphasizing that larger solute molecules create larger excluded volumes,
which again require larger total simulation cell sizes if one is to robustly assess and correct the RDFs
to calculate reliable signals in the low-q region. Overall, this section has given examples on how to
use evaluation of S(0;R) and I(0;R) to assess how artefacts from finite-size sampling affects the
low-q region, and how well one can correct for them. We thus put forward the strategy presented in
the above analysis as an effective way to gauge the trustworthiness of simulated scattering signals
and discern artifacts from physical information, in work where high accuracy in the low-q region is
required. The strategy is summarized in the summary and outlook section of this work.

Solvent-Solvent Contributions to Scattering

Since our RDF-correction is based on an estimation of the excluded volumes in a finite simulation
cell, we will now try to isolate the contribution of the excluded volume itself to the total scattering
signal. For a solute-solvent system, we can choose to tally up contributions to the scattering arising
from the interaction between the two subsystems in the following terms: (1) Iuv(q) + Ivu(q) = Ic(q)
from the solute-solvent RDFs (see eq. 2), (2) The part of the solvent-solvent scattering term
Ivv(q) = Iv(q) that encodes the local structure in the shell around the solute, and (3) the part of Iv
due to the excluded volume ’hole’. While the second and third contributions aren’t directly available
in isolation from eq. 2, both contributions are encoded in the solvent-solvent RDFs and thus in Iv(q).
However, the hole, and the subtle changes in average pairwise particle distances within the solvation
shell compared to the bulk solvent are averaged out over the bulk-solvent average pairwise particle
distances, and are thus extremely sensitive to numerical sampling noise. Furthermore, calculating
Iv(q) from RDFs sampled in fixed-cell simulations can give rise to an additional finite-size effect,
separate from the one discussed in the previous sections. Let us suppose one wishes to analyse a
system where the overall extension of the solute changes upon some perturbation to it (for example
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an electronic excitation), such that the solvation shell expands. For fixed cell (NVT) simulations,
such a local expansion will lead to a decrease in effective volume available to the solvent, resulting
in a bulk-solvent density increase. The scale of this effect is dependent on the size of the simulation
cell, as in a(n equilibrium) simulation of an infinite system, the solvent would have space (and
time) to reorganize itself to its preferred density. If preferred, such an effect could be eliminated
by re-equilibrating the system after the solvent shell expansion in the NPT ensemble. However,
the density fluctuations in such runs will make it difficult to eliminate this effect in a systematic
manner. Instead, we will focus on a different route that does not rely on the solvent-solvent RDFs.

Small-Angle X-ray Scattering (SAXS) methods estimate the scattering from the excluded volume
by constructing form factors from an average density of the surrounding solvent to model the
scattering from it [88–91]. The same central principle has been employed elsewhere [26, 35] by
using the cross-term RDFs to construct an ’excluded volume’ form factor fl∈u,EV(q):

fl∈u,EV(q) = 4π
∑
m∈v

fm(q)
Nm

V

∫
(glm(r)− 1)

sin(qr)

qr
r2dr, (17)

which was then used in the discrete Debye-formulation on all solute distances [26], effectively using
the solute-atomic positions to approximate the size and shape of the excluded volume. The solute
in the original study of Panman et al. was comprised of particles of a single atom type, but as we
observed in fig.8, when different atom types make up the solute, the excluded volume experienced
by each atom type can be slightly different, thus requiring an fl,EV(q) per atom type l ∈ u. Due to
the equivalence of the discrete Debye equation and eq. 3 [29], we can generalize this procedure to
obtain the excluded-volume scattering from solute-solute radial distribution functions:

IEV (q) =
∑
l∈u

Nlfl,EV(q)2 +
∑
l∈u

∑
m∈u

fl,EV(q)fm,EV(q)
Nl(Nm − δlm)

V
4π

∫ R

0
glm(r)

sin(qr)

qr
r2dr. (18)

We can assess this method by comparing it to the direct solvent-solvent term Iv(q) for our simple
LJ liquid with varying solute sizes. We thus return to the LJ liquid system and calculate Iv(q),
as well as the scattered intensity using fl,EV(q). As our system only contains a single particle, the
excluded-volume intensity is simply the self-scattering term.

IEV(q) =
∑
l∈u

Nlfl,EV(q)2 = fl,EV(q)2. (19)

The contribution of the solvation shell to the total solvent-solvent term Iv(q) will be completely
overshadowed by the bulk solvent signal. Thus we first calculate the difference-scattering signal
from a solute-expansion by subtracting the solvent-scattering of the ’neat’ LJ liquid from that of the
system with the biggest solute: ∆Iv(q) = I6.7

v (q)− I3.4
v (q), where both simulations were performed

with identical box sizes.
The black curve in fig. 9 shows this calculated signal. The signal has two distinct features, a
q < 1 Å−1 peak and a 1 Å−1 < q < 3 Å−1 oscillation, which we call the ’low-q’ and ’high-q’ feature,
respectively. As mentioned in the introduction to this section, there are two events that affect Iv(q):
(I) The increase in the excluded volume inaccessible to the solvent due to the increase in solute
size, and (II) the increase in average density of the bulk solvent as the effectively accessible volume
to the solvent decreases as the excluded volume of the solute increases. The latter can be isolated
by simply running a simulation of ’neat’ σij = 3.4 Å-particles in a smaller box, where we have
reduced the volume with the same amount as the total accessible volume has decreased for σ = 3.4
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Figure 9: Difference-scattering curves of the individual contributions to the solvent-solvent term
(black curve), calculated from the difference of the scattering of the LJ RDFs containing the σij =
6.7 Å solute, and the ’neat’ LJ liquid, where all particles have a σij of 3.4 Å. The blue curve shows
the global density difference from calculating ∆I(q) from reducing the NVT box volume with the
same amount as we estimate the excluded volume increases in the σ = 6.7 Å case. The orange
curve shows the excluded volume term calculated via eq. 17.

Å-particles in the original box, due to the single σij = 6.7 Å-solute. We estimate this volume by
using the fitted radius of the excluded volume in fig. 5. For 100 Å box sides, this change constitutes
a reduction of the total volume by less than 0.1 %. Yet, this minute change gives the difference-
scattering signal ∆Iρ(q), displayed with blue in fig. 9. There is a noticeable agreement between the
high-q solvent-solvent feature in Iv(q) and the global average density increase, indicating that this
feature arises from the global density increase of the bulk solvent. The differences between the black
and blue curve in the high-q feature must arise from the the inaccuracies in exactly determining
the excluded volume from the simple model discussed previously (see fig. 5 and accompanying
text), as well as the fact that the signal from the global density increase does not contain any local
solvent shell structure. We thus conclude that the high-q feature is a finite-size effect due to the
fixed volume of the simulation cell.

The low-q feature of Iv(q) is not present in the global density term ∆Iρ(q), but it is present in
∆IEV(q) = I6.7

EV(q)−I3.4
EV(q). Thus, the excluded-volume scattering expression in eq. 18 describes the

local structural changes in the shell and of the ’hole’ left by the solute, for this simple test system.
We can test this characterization by comparing the absolute IEV term to an analytical ’hole’-shell
model, inspired by SAXS-methodologies [90]. This approach is based on homogeneous volumes,
and not scattering from distributions of discrete particles with preferred interatomic distances, so
we cannot expect a 1:1 agreement between scattering from an analytic hole-shell model and the
IEV term. Nevertheless, we re-purpose a well-known core-shell model [90]. Here, the analytical
form factor F (q) of a core particle with scattering length density ρc and volume Vc, surrounded by
a shell of scattering length density ρs and volume Vs, is [90] (see fig. 10):

F (q) =
3

Vs

(
Vc(ρc − ρs)Ψ(qrc) + Vs(ρs − ρbulk)Ψ(qrs)

)
, (20)

with

Ψ(qr) =
sin(qr)− qr cos (qr)

(qr)3
,
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Core-Shell

Residual

0 5 10 15 20

r (Å)
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Figure 10: Top left: The blue curve shows the excluded volume term for the σij = 4.7 Å LJ solute
system, calculated with eq. 22. The dashed black line shows scattering from the analytical core-
shell model, calculated from fitting the scattering length densities and shell radii in eq. 21, as well
as the overall scaler α in eq. 19 to minimize the difference (red dashed curve) to the EV term. The
inset shows a zoom-in on the high-q features. The analytic model can capture the low-q feature,
but not the later oscillations. Top right: Core-hole continuum model scattering densities, made
from subtracting a core sphere with the same scattering length density as in the shell, ρs from a
bigger sphere of ρs, such that ρc = 0. Bottom plot: Comparison of the RDF used to obtain the EV
form factor in eq. 17 to the fitted scattering length densities and radii of the core-hole rc, as well
as the shell rs.

where ρbulk is the scattering length density of the bulk solvent. In our case, the scattering length
density of the core particle is zero, since the solute particle scattering should not be included twice
(both here, and in the solute-term). Thus, the form factor becomes:

F (q) =
3

Vs

(
Vs(ρs − ρbulk)Ψ(qrs)− VcρsΨ(qrc)

)
, (21)

and we see that the second term indeed gives the negative scattering length density of the ’hole’
left in the shell. Since the local density of particles in the shell will differ slightly from the bulk
solvent, the first term of the form factor needs to reflect the change in scattering contrast between
these two (albeit not very well-defined) regions of solvent, ρs − ρbulk, as is indeed the case in eq.
21. The model is illustrated in the top right part of fig. 10. We calculate the scattered intensity as

I(q) = αF (q)2, (22)

with α being a free parameter to scale the total intensity to account for the number of particles
used in the MD simulations. We can thus now fit the core (hole) and shell radii, rc and rs, as well
as the scattering length densities to the excluded volume scattering signal, to see if the fitted values
give reasonable estimates while reproducing IEV . Fig. 10 shows this for the absolute scattering of
the solute-σij = 4.70 Å LJ liquid, which was chosen since the both its high- and low-q features are
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visible within the same scale. The top left plot in fig. 10 shows the results of this fit. The plot
shows the I4.7

EV(q) signal (blue curve) and the scattering from the analytical form factor as dashed
black lines. The bottom plot shows the fitted radii and scattering length densities. The fitted
radii corresponds well with the structure of the shell encoded in the RDF, even for this simple
description. The difference in fitted scattering length densities between the bulk solvent and the
shell is only around 1%, which is to be expected as the two regions are made up of the same type
of particles. Returning to the top left plot, we observe how the model captures the low-q increase
arising from the excluded volume, but not the oscillations at longer q (see also the inset). We thus
assign them to the non-homogeneous structure of the solvent shell, which cannot be captured by a
continuum model, but is encoded in the cross-term RDF from which the excluded volume signal is
constructed.

In conclusion, this analysis has identified the two main contributions of the excluded volume term
of eq. 18 as the solvent-solvent scattering from the excluded volume created by the solute, as well as
the local structure of the solvent shell. The excluded volume formulation thus provides a method for
calculating the local solvent-solvent scattering from the shell (and hole). For difference-scattering
analyses, this method can prove advantageous for fixed-cell simulations, since it is free from the
finite-size effect of global density changes that arise from changes in the excluded volume changing
the average solvent-solvent distances in the bulk solvent.

Summary and Outlook

With this work, we have analysed the effect of the excluded volume on the global density normal-
ization in the sampling of RDFs from finite systems on the low-q behaviour of the structure factor
and the coherent x-ray scattering signal. We have done so in order to design a robust set of best
practices for the forward modelling of coherent x-ray scattering across the entire q-range, all the
way to 0 Å−1. We showed how the density normalization of the RDFs sampled from particles l
in finite size systems does not take into account the excluded volume of the l-type particles them-
selves, and how this makes the RDFs converge to a value different from 1. This causes the integral
in the central scattering equations (3, 4) to diverge if the RDFs are not corrected for this type of
finite-size artifacts. We developed a conceptually simple way of correcting finite-size sampled RDFs,
by accounting for this excluded volume in the density normalization of the RDF. Our correction
was then evaluated alongside two previously published corrections which we repurposed for x-ray
scattering. We have also shown the evaluation of S(0;R) and I(0;R) at increasing cutoff-values R
of the central integral in the scattering equations as a robust way of assessing whether or not the
low-q region of the resulting scattering signal has converged to its final value, as these quantities
converge to a constant value with increasing R. We hope that this method will be used to include
more of the low-q region in future work that focuses on the solvent-shell structure and changes
therein.

In simple test-systems, we were able to use the volume-correction to identify the size of the ex-
cluded volume and correct the RDFs to provide converged scattering signals across the entire q-
range. However, both the volume-correction and the correction provided by Perera and coworkers
are reliant on parameters that have to be fitted or estimated, whereas the van der Vegt correction
is parameter-free. We have used the isothermal compressibility of water to test the corrections
against experimental results, and found the volume- and van der Vegt correction to recover the
experimental isothermal compressibility with the best accuracy.

We also assessed the effects of MD-sampling time on the effectiveness of the RDF corrections, and
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have shown that for the cross-term RDFs, the significant reduction in particle-pairs that can be
sampled for each frame compared to the solvent-solvent RDFs necessitates higher requirements on
sampling-time for the corrections to make S(0;R) converge. For the Ag+ ion in water, roughly 20
ns sampling time was needed. Water correlations are on the 1-10 ps range, meaning that roughly
2,000-20,000 uncorrelated frames were needed for robust evaluations of the corrections. Since the
computational cost of classical MD simulations has been greatly reduced with the advent of per-
forming calculations on GPUs, it has become a routine operation to produce >20 ns trajectories on
a single GPU node, and we therefore recommend always assessing the convergence of the correc-
tions against sampling time, before continuing to employ the simulated signal in further modeling,
if the computational cost of the employed potential allows for it.

We furthermore evaluated the corrections on a more intricate system, namely the [Fe(bpy)3]2+

complex in water. We observe that larger excluded volumes require larger R-values to reach con-
vergence, thus requiring larger simulation cells. For this system, only the van der Vegt correction
managed to flatten out the I(0;R)-signal within the limits of the range of the sampled RDF. This
system also illustrated the intricate nature and m-extension dependence of the excluded volume
concept for real systems.

While there only exists a single correct RDF, the differences between the RDFs after applying the
various corrections are so small that it can be advantageous to test multiple corrections from an
operational perspective, before deciding on which to use going forward.

Finally, we analysed IEV (q) as an alternative to the solvent-solvent term Iv(q) for including scat-
tering from the local structure of the solvation shell and its excluded volume. We identified two
different features of the IEV (q) term, arising from (1) the scattering from the contrast between the
solvent and the hole left by the excluded volume, and (2) from the local structure in the solvent
shell around the solute. We showed that, for analysis of difference scattering signals, e.g. from
time-resolved experiments, the IEV (q) term is less affected by pertubations in the bulk solvent
density that can manifest themselves when the overall extension of the solute is modified but the
simulation cell is kept constant over both simulations.

Based on our findings in this work, we propose the following best-practices guidelines to minimize
low-q oscillations from finite size systems:

1. Perform MD (equilibrium) production runs in the NVT ensemble if possible, to keep the cell
volume fixed throughout the simulation. Non-equilibrium simulations should be carried out
in the NVE ensemble [92].

2. If computationally tractable (i.e. as with classical MD), thoroughly sample the RDFs to avoid
buildup of statistical noise - i.e. test convergence of S(0;R) as a function of sampling time as
in fig. 7 - and use simulation cells big enough to allow for the S(0;R) analysis.

3. If using ’black-box’ RDF-sampling codes and the van der Vegt correction, use a density-
normalization for the RDF-sampling consistent with the correction (or vice versa). Similarly,
if NPT production runs were performed, the Nlm(r) histograms of the RDFs should be
normalized with the current volume of the cell at each frame.

4. Perform the S(0;R) or I(0;R)-analysis to ascertain converged integrals at long R-values and
to benchmark the corrections.

5. Various window functions should be tested in conjunction with the RDF-corrections. There
unfortunately isn’t a ’one-size-fits-all’ solution to all simulation cell sizes and systems, so their
influence on the entire scattering signal should be minimized.
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6. If reliability all the way to q = 0 is desired, either the calculated value should be tested
against the isothermal compressibility if such an experimental quantity is available, or the
S(q = 0)-dependence on density should be assessed to ensure that the S(q = 0) limit exhibits
the expected behaviour with respect to density changes.

7. If modeling dynamics or large structural changes of a solute in a solvent in the NVT ensemble,
any significant changes to the size of the solute will be reflected in an overall change of
the average solvent-solvent distances, creating a ’density’-contribution in the solvent-solvent
scattering signal, as shown in fig. 9. Further treatment of this term is highly dependent on
the specifics of the desired analysis. For ultra-fast studies of, say, an expanding solute, the
surrounding solvent molecules might not have had time to re-arrange themselves to re-obtain
the density it had before the expansion of the solute, and the term might also be present in
experimental data. One can imagine other cases where the solvent has had enough time to
re-equilibrate, and thus including the density term can be avoided by calculating IEV (q) from
eq. 22 instead. The density term can also be eliminated by expanding the simulation cell with
the increase in excluded volume, or by re-equilibrating the cell size in an NPT simulation,
stopping at the same density for the previous simulation of the non-expanded solute.

The software package ’grsq’ has been developed to apply the corrections and simulate the signals.
It is available through the Python Package Index [36]. Further examples on how to use it apart
from the ones already included can be found in the data-repository accompanying this work [37].
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K. Atkovska, E. Gustavsson, A. Nimmrich, A. O. Dohn, M. Laursen, D. B. Zederkof, A. Honar-
far, K. Tono, T. Katayama, S. Owada, T. B. van Driel, K. Kjaer, M. M. Nielsen, J. Davidsson,
J. Uhlig, K. Haldrup, J. S. Hub, and S. Westenhoff, “Observing the structural evolution in the
photodissociation of diiodomethane with femtosecond solution x-ray scattering,” Phys. Rev.
Lett., vol. 125, p. 226001, 2020.

[27] T. B. van Driel, K. S. Kjær, R. W. Hartsock, A. O. Dohn, T. Harlang, M. Chollet, M. Chris-
tensen, W. Gawelda, N. E. Henriksen, J. G. Kim, K. Haldrup, K. H. Kim, H. Ihee, J. Kim,
H. Lemke, Z. Sun, V. Sundström, W. Zhang, D. Zhu, K. B. Møller, M. M. Nielsen, and
K. J. Gaffney, “Atomistic characterization of the active-site solvation dynamics of a model
photocatalyst,” Nature Communications, vol. 7, no. 1, 2016.

[28] T. Katayama, T.-K. Choi, D. Khakhulin, A. O. Dohn, C. J. Milne, G. Vankó, Z. Németh,
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A. Bardow, and T. J. Vlugt, “How to apply the kirkwood–buff theory to individual species in
salt solutions,” Chemical Physics Letters, vol. 582, pp. 154–157, 2013.

27

https://doi.org/10.26434/chemrxiv-2023-69m82-v2 ORCID: https://orcid.org/0000-0002-5172-7168 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-69m82-v2
https://orcid.org/0000-0002-5172-7168
https://creativecommons.org/licenses/by/4.0/
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[77] H. Zulfikri, M. Pápai, and A. O. Dohn, “Simulating the solvation structure of low- and high-
spin [Fe(bpy)3]2+]: long-range dispersion and many-body effects,” Physical Chemistry Chem-
ical Physics, vol. 24, no. 27, pp. 16655–16670, 2022.

[78] P. Li and K. M. Merz, “MCPB.py: A python based metal center parameter builder,” Journal
of Chemical Information and Modeling, vol. 56, no. 4, pp. 599–604, 2016.

[79] H. A. Lorentz, “Ueber die anwendung des satzes vom virial in der kinetischen theorie der
gase,” Annalen der Physik, vol. 248, no. 1, pp. 127–136, 1881.

[80] D. Berthelot, “Sur le mélange des gaz,” Comptes rendus hebdomadaires des séances de
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