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Abstract 

This review summarizes applications of some of the advanced materials. It included the 

synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, 

ZrOSO4,  MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide 

nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O,  Zn(OH)(NO3)·H2O, and 

Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials 

(graphene, graphene oxide (GO), reduced graphene oxide (rGO), graphitic carbon nitride 

(g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-

oxidized cellulose nanofibers (TOCNFs), alginate, and chitosan); organic polymers (e.g. 

covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic 

frameworks (MOFs)). These materials were applied in several fields such as 

environmental-based technologies (e.g., water remediation, air purification, gas storage), 

energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and 

biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be 

used as efficient adsorbents and catalysts to remove emerging contaminants such as metals, 

dyes, drugs, antibiotics, pesticides, and oils in water via adsorption. They can be also used 

as catalysts for catalytic degradation, reduction, and oxidation of organic pollutants. They 

can be used as filters for air purification by capture greenhouse gases such as carbon 

dioxide (CO2) and volatile organic compounds (VOCs).  They can be used for hydrogen 

production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Biomedical 

https://doi.org/10.26434/chemrxiv-2023-w78g3-v3 ORCID: https://orcid.org/0000-0002-3106-8302 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

mailto:hany.abdelhamid@aun.edu.eg
https://doi.org/10.26434/chemrxiv-2023-w78g3-v3
https://orcid.org/0000-0002-3106-8302
https://creativecommons.org/licenses/by/4.0/


2 
 

applications such as antibacterial, drug delivery, and biosensing were also reviewed. 

Keywords: Materials; MOFs; Energy; Environmental; Biomedicine. 

 

Introduction 

Materials are things that contain a variety of substances [1–7]. The term ‘material’ was 

coined mainly for solid-state substances that can be used to satisfy the requirement and 

needs of society. Liquid state substances e.g., petroleum oil/gases should not be considered 

as materials; because most of these substances are precursors for materials. There are 

several classes of materials based on strategies including; 1) physical  (e.g., solid-state 

matter or liquid) and chemical properties (organic and inorganic); 2)  sources (e.g., natural 

or synthetic); and 3) biological activity (e.g., biocompatible or toxic; living or non-living). , 

environmental, analytical techniques, and biomedical applications. Natural materials may 

be created from raw materials utilizing a variety of techniques, such as extraction, shape, 

and purification [7].  On the other hand, there are several ways to produce synthetic 

materials. Based on the sorts of materials used, humans divided their antiquity into the 

Stone Age, Bronze Age, and Iron Age. The 19th century, the middle of the 20th century, 

and the second half of the 20th century are all referred to as the "steel age," "plastic age," 

and "silicon age," respectively. Materials improved many applications, including energy 

[8–12], environmental and analytical [13–19],  and biological [20–23]. 

This review summarized the literature for several materials and resources.  Fe3O4, [24–27] 

ZnO [28–30], MoO3 [31,32], CuO [33,34], CeO2 [35,36], AgFeO2 [37], Co3O4 [38–42], 

SiO2 [43–45], and CuFeO2 [46] are examples of metal oxide nanoparticles. Metal 

hydroxide nanosheets include Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and 
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Zn5(OH)8(NO3). Nanomaterials e.g., Ag [47–50], Au [51–54], Pd [55,56], and Pt [57] are 

examples of metallic nanoparticles. Graphene (G) [58–60], graphene oxide (GO) [61,62], 

reduced graphene oxide (rGO)[63,64], and carbon dots (CDs) [65–67] are examples of 

carbon-based nanomaterials.  Biopolymers, such as chitosan [68–70], cellulose [71–73], 

nanocellulose [74–76], and alginate [77] are included. Organic polymers, such as 

conjugated polymers, covalent-organic frameworks (COFs) [78–82], and intrinsic 

microporous polymers (PIMs) [83–85] are covered. Other materials such as ionic liquids 

(ILs) [86–92]; metallodrugs [93]; and hybrid materials, such as metal-organic frameworks 

(MOFs) [94–97] are also reviewed. 

Materials: Synthesis and Characterization 

The matter has been defined as any substance with mass and volume. While Materials 

are terms for objects containing matter or substance. Materials are mainly solid-state 

substances. Most of the liquid or gas state substrates are precursors for materials. They can 

be classified based on 1) uses; 2) structure; 3) chemical properties; and 4) physical 

properties (Figure 1). Based on uses; materials can be classified into building materials 

(e.g. insulation materials for heat insulation),  refractory materials for high-temperature 

applications), nuclear materials, aerospace materials, and biomaterials. The structure of 

materials can be evaluated using microscopy or spectroscopy. The materials can be 

categorized based on the structure into microstructure, mesostructured, macrostructure 

(large-scale structure), and hierarchical structure. A special type of material was defined as 

a metamaterial for the materials that offer a property that is not found in naturally 

occurring materials [98]. Materials can be organic or inorganic (Figure 1). The solid-state 
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solid can be categorized into crystalline and amorphous materials (Figure 1). The materials 

can be classified based on the dimensional to 0D, 1D, 2D, and 3D.  

Material classification is important. Even though this shows major differences across 

different groups, there is frequently confusion over the correct taxonomy for a given item. 

A thin film, for instance, is less than 1 μm thick; but, if the thickness falls below 100 nm, 

the film may be more appropriately categorized as a 2D nanomaterial. In the same way that 

composite materials frequently contain both inorganic and organic components. The term 

for liquid crystals is best defined as having qualities that are transitional between 

amorphous and crystalline phases. 

https://doi.org/10.26434/chemrxiv-2023-w78g3-v3 ORCID: https://orcid.org/0000-0002-3106-8302 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-w78g3-v3
https://orcid.org/0000-0002-3106-8302
https://creativecommons.org/licenses/by/4.0/


5 
 

 

Figure 1 Materials classification. 

Materials can be synthesized using a wide number of methods [99–102]. Based on size, 

nanomaterials are the main focus of the current research interests. Nanomaterials are 

particles with a particle size of less than 200 nm. However, some reports call particles with 

a size less than 1000 nm still define as nanoparticles. Thus, they can be mainly synthesized 

via two approaches; bottom-up and top-down (Figure 2). The two approaches aim to 

decrease particle size via a top-down approach or increase size via bottom-up approaches 

(Figure 2). Physical, chemical, and biological methods can be used to achieve this target. 
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The top-down approach uses bulk materials or materials with big sizes. It aims to decrease 

particle size via physical and chemical methods. Synthesis of nanomaterials is state-of-art. 

There is no sharp classification between different methods.   

 

Figure 2 Summary of methods for nanomaterials synthesis with some examples. 

The materials should be characterized after synthesis to ensure the successful synthesis of 

the target materials and confirm their properties. There are a wide number of analytical 

methods used for materials characterization. The characterization techniques can be 

classified based on their principles, usage, and information received from their analysis 

(Figure 3). Data interpretation is tricky and sometimes misleading. Thus, experience is 

highly required to avoid misinterpretation. The data interpretation should be supported by 

other techniques. Most of these techniques can be also used to evaluate the performance of 

the material for specific applications. The standard recipe for the materials characterization 

should include the answer to the main questions of the study including these questions; 

what is the material composition?; what is the material structure, morphology, and particle 
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size?;  and what are the physical properties? Material is different from compounds or 

molecules. Thus, it is a difficult task to fully understand the materials with a limited number 

of characterization techniques. More techniques are highly desirable to decrease the gap 

that exists in material characterization. Simply, do more analysis to understand the 

material's properties. 

Table 1 shows most of the characterization techniques used in the literature. It summarized 

the common techniques that are widely used. We have to admit that there are an unlimited 

number of analytical techniques. Thus, a short list of the important techniques is included 

in this review (Table 1).  These sections will cover the techniques used for the 

characterization of the material's composition, phase, purity, structure, particle size and 

morphology, and porosity. The materials characterization should include qualitative and 

quantitative analysis. 

The chemical composition of nanomaterials is characterized using wide analytical 

methods. Elemental analysis (EA) is commonly used for the analysis of C, N, O, S, and X 

(halide, F, Cl, Br, and I)[103,104]. It is called also ‘CHNX’ analysis. It gives usually the 

ratio of the elements within organic-based nanomaterials with an acceptable standard 

deviation (SD) of 0.3%. EA using the combustion technique is mainly used for organic 

compounds. The chemical composition of organic moieties can be characterized using 

chemical methods such as the sodium fusion test (Lassaigne's test). Techniques such as 

mass spectrometry (MS) can be used for the chemical composition of organic species 

directly based on molecular weight via ionization (Table 1)[105–108]. Mass spectrometry 

can be used for organic and inorganic species with high ionization affinity. The ionization 

of inorganic species is hard. Thus,  powerful techniques are widely used for the ionization 
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of inorganic species via the conversion of the element in the material into the atom. The 

conversion or ionization of the target element into an atom can be achieved via different 

methods such as flame atomizers, plasma (temperature of 6000-10000 K), glow discharge 

atomizers, and others. The composition of inorganic-based nanomaterials is characterized 

using techniques such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-

optical/atomic emission spectrometry (ICP-OES/AES)[109,110], and atomic 

absorption/emission spectroscopy (AAS/AES)[111]. Most of these methods are used for 

the determination of the elements in solution. However, solid-state samples can be 

evaluated via methods such as electrothermal vaporization. The chemical composition of 

the surface can be determined using techniques such as X-ray photoelectron spectroscopy 

(XPS)[112,113], energy dispersive X-ray (EDX), and X-ray fluorescence (XRF)[114]. The 

important aspect of these analyses is the penetration depth of these techniques. EDX and 

XPS analysis is suitable for the thickness of 2 μm and 10-100 Å, respectively. Surface 

analysis techniques such as EDX are not suitable for light elements such as C, N, and O. 

They provide in most cases the ratio between the metals i.e. semi-quantitative analysis.  

Most of the current techniques display the average of the metal species without respect to 

the oxidation state of the metal species. Techniques such as thermogravimetric analysis 

(TGA) can be used to determine the ratio between two different components in composite 

materials [115]. 

The structure of nanomaterials can be evaluated using diffraction techniques such as  X-

ray diffraction (XRD), and electron diffraction (ED, selected area electron diffraction 

(SAED).  XRD is used for crystalline materials with sharp diffraction peaks at specific 

Bragg angles. The structure of poor crystalline materials can be solved via the pair 
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distribution function (PDF) using the XRD pattern. XRD requires a big crystal to perform 

single-crystal XRD (SXRD). Small crystals can be characterized using powder XRD 

(PXRD). The structure solution of small crystals such as nanoparticles using PXRD is a 

big challenge due to several reasons such as peaks overlap, and preferred orientation. Thus, 

techniques such as SAED are used to calculate the unit cell parameters that can be then 

used to refine the PXRD data for structure solution. XRD offers the structure for the 

crystal’s average. In some cases, the changes in the material take place in the point or plane 

of the crystal. Thus, it is hard to use XRD for the material characterization. This challenge 

can be solved using local structure techniques such as Mössbauer spectroscopy, X-ray 

absorption spectroscopy (XAS, e.g., extended XAS fine structure (EXAFS), electron 

energy loss spectroscopy (EELS), and X-ray absorption near edge structure (XANES)), 

and XPS. The connectivity can be also evaluated using techniques such as Fourier 

transform infrared (FT-IR), and nuclear magnetic resonance (NMR). The inner electronic 

structure (e.g. oxidation state and the ratio of multi-valence element) of specific atoms in 

a material can be characterized using techniques such as X-ray fluorescence 

(XRF), particle-induced X-ray emission, XPS, and Auger electron spectroscopy. 

Particle morphology can be determined via imaging using microscopy such as optical light 

microscopy (OM) or digital microscopy. However, the maximum magnification power of 

OM is 1000x due to the low resolving power of visible light. Thus, other techniques such 

as electron microscopy (transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM)) are widely used for the characterization of small particles such as 

nanoparticles (1-200 nm). The particle morphology can be determined via a physical probe 

using scanning probe microscopy  (SPM, e.g., atomic force microscopy (AFM), 
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STM, scanning tunneling microscopy (STM), and scanning probe electrochemistry (SPE)). 

These techniques offer two-dimensional images. However, several shots can be used, and 

a model can be built for a three-dimensional (3D) image. TEM is the widely used technique 

for 3D models via TEM tomography.  

Particle size is an important parameter for materials characterization. It can be determined 

using TEM, SEM, AFM, and other microscope techniques. These techniques are used for 

the solid-state form. Particle size distribution (PSD) can be obtained via the analysis of 

large particle numbers. The analysis of the particle size of a particle dispersed in a liquid 

can be evaluated using different techniques such as dynamic light scattering (DLS), and 

laser diffraction spectroscopy (LDS). Based on the sources i.e., light or laser, these 

techniques are named. DLS data is affected by several parameters such as temperature, and 

concentration.   The theory of the DLS analysis is based on the spherical particle. Thus,  it 

isn't reliable data for particles with other morphologies. Other techniques such as 

nanoparticle tracking analysis (NTA)  can be also used for visualizing and analyzing 

particles in liquids following Brownian motion. NTA can be used for the determination of 

a size distribution profile of particles with a diameter of 10-1000 nm. Both DLS and NTA 

are based on the Brownian motion. The main difference is in the analysis strategies.  NTA 

is based on video-individual particle positional changes, while, DLS visualizes the total 

particles using a digital correlator. 

The optical properties of nanomaterials are determined using absorption, emission, and 

scattering techniques. UV-Vis absorption spectroscopy for well-dispersed nanomaterials 

in liquid or via diffuse reflectance spectroscopy (DRS) in the solid state.  These techniques 

characterize the band gap of the nanomaterials suggesting their potential applications such 
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as photocatalysis. The emission techniques such as fluorescence (FL) and 

photoluminescence (PL) are the complementary data for absorption techniques. FL and PL 

are important for the characterization of the emission of the material suggesting the charge 

transfer within the materials.   
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Table 1 Summary of characterization techniques used for materials evaluation. 

Information Type Techniques Comments 

C
o
m

p
o
si

ti
o
n

 

  
  

Q
u
al

it
at

iv
e EA C, O, N, S, X analysis, combustion techniques; determining the ratio of elements from within the sample 

MS Ionization techniques for organic species; give information for molecular weight, and mass per charge 

(m/z); Can be extended for particle distribution into a material via imaging technique 

  
  
  
  
  
  
  
  
 

Q
u
an

ti
ta

ti
v
e 

AAF Measure element in solution as ppm; require digestion with an acid such as nitric acid 

ICP-MS Sensitive; for liquids; sample pretreatment via acidic dissolution is required 

ICP-

OES/AES 

XRF Use X-ray for element excitation; can detect ppb 

XPS For surface analysis  with a penetration depth of 10-100 Å 

EDX Surface analysis technique; Penetration depth of <1000 Å, not suitable for light elements 

TGA Determine the ratio between components; distinguish among components based on  temperature 

S
tr

u
ct

u
re

 

Crystal XRD SXRD for big crystal; PXRD for powder or small crystal; Avergae of the structure 

SAED Use for cell parameters determination; 3D diffraction can be achieved using different shots 

Local EXAFS Can be used for specific elements in a nanomaterial; require synchrotron facilities 

EELS TEM-based analysis using electron beam; complementary to EDX 

XPS Available; local structure of each element in the sample can be obtained via peak deconvolution 

Connectivity FT-IR Useful for bond changes or formation 

NMR Can be used for liquid and solid state 

Inner 

electronic 

EXAFS, 

EELS, XPS 

Determine oxidation state and element valences 

M
o
rp

h
o

lo
g
y

 

Light OM Maximum magnification 1000x;  

Electron TEM Offer 3D model via tomography; can be used for < 1 nm;  

SEM Surface imaging, perfect for morphology, particle size > 25 nm 
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Probe SPM e.g., AFM, STM,  and SPE 

  
  
  
  
  
  
  
 S

iz
e 

Solid TEM Can be used for particles less than 1 nm; High-resolution TEM can be used for lattice fringes determination 

SEM Particle size > 25 nm; can be used for the determination of 2D thickness 

AFM Use for the thickness determination of 2D nanomaterials 

liquid DLS Measure the light scatters in all directions; Rayleigh scattering; is used only for the particles smaller than 

the light wavelength (< 250 nm). 

LDS Record the diffraction of a laser beam due to a the interaction with ny particles.  

NTA Laser techniques;  10-1000 nm;   Brownian motion 

O
p

ti
ca

l 

P
ro

p
er

ti
es

 Absorption UV-Vis Liquid phase; characterize electronic transition within nanomaterials 

DRS Determine the optical band gap for solid-state nanoparticles 

Emission FL Characterize the excitation-emission transition; a useful technique for charge transfer characterization 

PL Similar to FL; used for particles with long-lifetime emission  

Notes: Atomic force microscopy, AFM;   atomic absorption/emission spectroscopy, AAS/AES; nanoparticle tracking analysis, NTA; 

STM, scanning tunneling microscopy, STM; Scanning Probe Electrochemistry, SPE; inductively coupled plasma mass spectrometry, 

ICP-MS; ICP-optical/atomic emission spectrometry (ICP-OES/AES); scanning probe microscopy, SPM. 

 

https://doi.org/10.26434/chemrxiv-2023-w78g3-v3 ORCID: https://orcid.org/0000-0002-3106-8302 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-w78g3-v3
https://orcid.org/0000-0002-3106-8302
https://creativecommons.org/licenses/by/4.0/


14 
 

Applications 

Our research group can test materials for several applications. Most of these applications are 

summarized as shown in Figure 3.  The materials were reported for three main areas of research 

including energy, environmental, and biomedicine. The applications in the energy field can be 

1) hydrogen generation via hydrolysis of sodium borohydride (NaBH4), 2) photocatalytic water 

splitting for hydrogen generation [116,117], 3) photocatalytic alcohol oxidation for hydrogen 

generation and carbonyl compounds synthesis [118,119]; 4) supercapacitors [120], 5) lithium-

ion battery,  and 6) dye-sensitizing solar cells (DSSCs) [121]. The applications for 

environmental-based technology can be 1) water treatment via pollutants removal e.g., 

adsorption and degradation, 2) air purification; removal of greenhouse gases via adsorption 

[122], 3) adsorption/photocatalytic oxidation of volatile organic compounds (VOCs)[123], 4) 

photocatalytic degradation of drugs, antibiotics, and pharmaceuticals [124], 5) heavy metal 

removal via adsorption [125], and 6) precious metal recovery [126]. Biomedical applications 

can be 1) cancer therapy; chemotherapy, photodynamic, and photothermal, 2) drug delivery 

[127,128], 3) gene delivery using cell-penetrating peptides (CPPs)[129,130], 4) antimicrobial 

agents; antibacterial, and antifungal [131–136], 5) nanotoxicity and environmental fate for 

nanoparticles [137–139], 6) bone regeneration, 7) wound healing, 8) tissue engineering, 9) 

nanozymes and MOFZyme (artificial enzyme based on MOFs materials), 10) biosensing of 

biomarkers, biological heavy metals, enzymes, and proteins; 11) detection and analysis of 

pathogenic bacteria; 12) proteomics and clinical research [140]; 13)  synthesis of biologically 

active compounds [141,142]; and 14) investigate effective matrix for matrix-assisted laser 

desorption ionization mass spectrometry (MALDI-MS) [143,144]. 
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Figure 3 The structure and application reviewed in this review.  

 

Over 80% of industrial processes use catalysis, accounting for $1.5 trillion in yearly global 

sales, or 35% of the global GDP [145]. The oxidation of organic compounds like 

alkenes/olefins, alcohol, and dyes is one of several catalytic processes that is crucial for 

environmental concerns and the production of fine chemicals like medications, paints, and 

surfactants. The chemical synthesis of useful and valuable compounds depends on the 

conversion of alcohols by an oxidation process to aldehydes. Additionally, some applications 

need the catalytic oxidation process, including the oxidation of air pollutants [146,147], volatile 

organic compounds (VOCs)[148–151], and aqueous pollutants for water treatment [152–154]. 
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Therefore, the goal of current research is to create a suitable catalyst for the oxidation reaction.  

Aldehydes, ketones, and other carbonyl compounds are often synthesized using a lot of 

oxidizing agents like potassium permanganate. However, these oxidants left behind residues 

that were harmful to the environment. Therefore, more research should be done to identify an 

appropriate oxidant with minimal adverse effects on the environment. For use in fine chemistry, 

the noble metal was said to catalyze alcohol oxidation [155–157]. They have great selectivity 

and strong catalytic activity. However, they are pricey and need to be used or recycled 

carefully. 

According to the Intergovernmental Panel on Climate Change (IPCC) study 

(https://www.ipcc.ch/), the average world temperature is predicted to climb by 1.9 °C in 2100. 

According to predictions made by the IPCC, the amount of CO2 in the atmosphere will rise 

from 400 parts per million (ppm) in 2019 to 950 ppm in 2100. The ecosystem and humanity 

are seriously threatened by the climate's irreversible temperature fluctuations. One of the main 

contributors to global climate change is the production of gases. 

Methane (CH4), ethane (C2H6), and ethene (C2H4) are examples of condensable organic gases. 

Inorganic gases, such as hydrogen (H2), carbon dioxide (CO2), carbon monoxide (CO), 

nitrogen (N2), oxygen (O2), and noble gases like He-Kr, are incondensable inorganic gases.  

Global climatic changes are mostly caused by greenhouse gases like CO2 and NOx. One of the 

main contributors to global warming among these gases is CO2 emissions from human 

activities including breathing, industrial operations, and the burning of fossil fuels [158–168].  

As a result, several techniques, including adsorption and sequestration, were described for CO2 

capture and utilization (CCU) [169]. 

Carbon dioxide (CO2) levels in the atmosphere have grown by 40% (from 280 ppm to 406 ppm 

in 1750 and 2017, respectively). According to the Intergovernmental Panel on Climate Change 
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(IPCC), atmospheric temperatures will rise by 2 °C by 2036 at the present CO2 emission rates. 

As a result, many methods to lower the amount of human CO2 in the atmosphere have been 

described. It is possible to employ metal-organic frameworks (MOFs) [79–85], including ZIFs 

for CO2 adsorption [177], to reduce the number of greenhouse gases in the atmosphere [178–

183]. MOFs [184] have been used as adsorbents [185,186] and as catalysts for the chemical 

fixation and photochemical reduction of CO2. ZIFs have excellent CO2 collection potential. 

Without experiencing a discernible decline, ZIF-8 demonstrated good selectivity for CO2 

adsorption over N2 [187–189]. 

The main greenhouse gas produced by humans and the main cause of climate change has been 

identified as carbon dioxide (CO2) [190]. The sequestration of CO2 from the flue gases 

produced by the burning of fossil fuels has been suggested using a variety of techniques, such 

as membrane separation, chemical absorption with solvents, and adsorption with solid 

adsorbents [100,101]. The creation of a low-cost adsorbent with high selectivity and capacity 

is necessary for this strategy to be successful [100,101]. An approach for sequestering carbon 

that shows promise is carbon dioxide adsorption in the solid-state adsorbent. Adsorption using 

solid adsorbents is simple to execute in a practical application and needs little energy. 

Due to their extreme toxicity and propensity to accumulate in living things, cadmium (Cd) and 

lead (Pb) are particularly concerning trace heavy metal ions that can contaminate water. They 

can neither be metabolized nor biodegraded. The neurological, renal, skeletal, nervous, 

digestive, and reproductive systems can all sustain direct harm from exposure to Cd(II) or 

Pb(II), in addition to cancer. Over the past few decades, a variety of techniques for Cd(II) and 

Pb(II) removal from aqueous solutions have been studied. Adsorption stands out among these 

techniques because of its beneficial attributes, including its high efficiency, straightforward 

design, easy regeneration, and cheap operational cost.  The need for clean drinking water is 

increasing exponentially as the world's population grows [193]. Several catalysts were reported 
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for oxidation via advanced oxidation processes (AOPs) [154]. Explore new materials that may 

advance AOPs for high catalytic performance and better selectivity toward the target 

molecules. Utilizing nanomaterials, AOPs are the name given to these reactions [194]. The 

interaction between a catalyst and H2O2 produces highly oxygen-reactive species (ROS) or 

hydroxyl radicals (•OH). For oxidation through AOPs, a variety of catalysts have been reported 

[60]. Investigate novel materials that might improve AOPs for improved selectivity towards 

the target molecules and higher catalytic performance [195]. 

Due to their special characteristics and usage in several modern industrial applications, rare 

earth elements (REEs) recovery is receiving increased attention [175,196]. Significant work 

has been put into the development of very efficient techniques for the recovery of REEs. For 

the recovery of REEs, several techniques have been used, including precipitation [197], solvent 

extraction [198], ionic liquids [199], and adsorption [200,201]. Adsorption is one of the most 

efficient methods for separating and recovering various metal ions from aqueous solutions due 

to its high selectivity, simplicity of use, and environmental friendliness. It is crucial to use the 

right adsorbents while removing REEs from aqueous solutions. A good adsorbent should be 

highly recyclable and have a high adsorption capacity. 

Hydrogen is a promising substitute for fossil fuels among the advanced energy technologies 

[202–209]. Atomic hydrogen includes metal hydrides (MH), such as alanetes (MAlH4) and 

borohydrides (MBH4), as well as molecular hydrogen, which is utilized for pressurized 

containers and liquid hydrogen tanks [210]. Several techniques can be used to create hydrogen 

for use in fuel cells [211–221]. The first study on the use of hydrogen as an energy source, 

titled The Hydrogen Economy-An Ultimate Economy?, was published in 1972 [222]. 

Hydrogen has the highest combustion calorific value (1.4 108 J/kg) compared to all fossil and 

biofuels [223]. 
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Due to its high energy density (142 MJ/kg) and ecologically favorable byproduct (water), 

hydrogen gas is a prospective source of clean energy [224]. Numerous processes, such as 

water oxidation or splitting [133] (electrolysis [225–229], thermolysis, and photocatalytic 

water splitting [230]), as well as the use of phototrophic microorganisms (biohydrogen, 

BioH2) [217], can be used to produce it. To provide hydrogen to end consumers on demand, 

the hydrolysis of hydrides, such as sodium borohydride (NaBH4), appears promising [231]. 

Direct borohydride fuel cells (DBFCs), proton exchange membrane fuel cells (PEMFCs), 

unmanned aerial vehicles, and low-temperature fuel-cell applications are among the portable 

and on-site hydrogen fuel systems that can use this method. 

The method is effective and secure for producing hydrogen. At normal temperatures, it 

produces hydrogen with a comparatively high capacity. NaBH4 hydrolysis produces hydrogen 

with a high purity level and a relatively large hydrogen capacity (10.8 wt.%) through a 

manageable procedure. NaBO2, a result of hydrolysis, is another intriguing option for 

hydrogen storage in solid states. As a result, many heterogeneous and homogeneous catalysts 

for the hydrolysis and alcoholysis of aqueous NaBH4 solution were described [224]. However, 

the procedure occasionally needs pricey metals like platinum and ruthenium as catalysts. Most 

modern catalysts are neither stable nor highly efficient [232,233]. Therefore, a catalyst that 

can perform several activities at a low cost is essential. 

Given the potential of hydrogen gas as a fuel shortly, several manufacturers, including Toyota, 

Hyundai, and Honda, have lately marketed hydrogen-powered automobiles [223]. For the 

creation of hydrogen, many techniques have been documented. Hydrolysis of hydrides is one 

of these ways that is appealing because it has several benefits, including high hydrogen storage 

(1 mol NaBH4 creates 4 mol H2), which is significantly more effective than other known 

hydrogen storage materials. NaBH4 is low in weight and volume and generates hydrogen with 

excellent purity. The technique yields a high rate of hydrogen generation and a high adequate 
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hydrogen storage capacity (10.8 wt.%), both of which are adjustable.  Although the process is 

sluggish, a catalyst is needed to speed it up. Thus, many catalysts were suggested for the 

hydrolysis of NaBH4 to liberate hydrogen. Ru, Pt, and Pd, which are pricey precious metal 

catalysts, are used less frequently as a catalyst for NaBH4 hydrolysis, which produces 

hydrogen. As a result, less costly transition metals have been proposed to take their place [234]. 

Additionally, to improve the performance of these catalysts, assistance is frequently needed. 

When compared to alternative supports including MXene, MoS2, and carbon nanotubes 

(CNTs), ZIF-8 showed superior support for transition metals like cobalt [235]. To produce 

hydrogen by hydride hydrolysis, many catalysts incorporating ZIF-8, including Co@ZIF-8 

[235], CoB@ZIF [236], and Ru@ZIF-67 [237], have been reported. Although these 

Due to environmental concerns and the scarcity of fossil fuels, there is a discernible interest in 

creating renewable energy sources [238–242]. Molecular hydrogen (H2) is a prospective energy 

carrier that can be produced from renewable sources and has a high energy density and power 

efficiency, among other innovative energy-based technologies [243]. It may be made in many 

ways, such as via electrolysis-based water splitting or photocatalysis[244–248]. There are 

various ways to split water, including electrocatalysis and photocatalysis [249–255]. Some 

reported photocatalysts, however, have drawbacks including poor catalytic sites and quick 

recombination of the produced electron-hole (e/h+). These semiconductors might be used to 

create a heterojunction photocatalyst, which could overcome some difficulties  [256,257]. 

A possible commercial method for creating hydrogen gas, aldehydes, and ketones is the 

dehydrogenation of alcohols [256–260]. For the synthesis of acetone and hydrogen, 

isopropanol dehydrogenation has promise. The method suggests hydrogen as a potentially 

clean and viable energy source [170,171]. Additionally, the other product, acetone, is a crucial 

chemical reagent for use in both industrial and laboratory settings. It may be utilized as a 

source of energy [263], as a solvent or reactant in the manufacture of medicines, and as 
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significant chemical reagents such as methyl methacrylate, bisphenol A, vinyl and acrylic 

resins, lacquers, paints, inks, cosmetics, and varnishes [264].   

Drug delivery and gene therapy may help with cancer treatment. Diseases treatment using 

gene-based therapies has gained significant attention over the past decades [265]. The 

fundamental idea of gene therapy is to alter or modify defective/missing gene sequences to 

cure inherited diseases, including cancer [266]. Gene delivery is considered an alternative 

method to traditional chemotherapy used in treating cancer. However, the transfection of the 

cell by oligonucleotides (ONs) is tedious due to cell degradation, and low efficiency of cell 

internalization. Therefore, there is an obvious demand for efficient nucleic acid delivery 

systems that would ideally promote intracellular delivery. Viral and non-viral vectors were 

reported as a carrier to improve the cell transfection of oligonucleotides. Among several types 

of non-viral vectors, cell-penetrating peptides (CPPs), short peptides with sequences less than 

30 amino acids, are promising [267]. CPPs show high biocompatibility and offer the potential 

for large-scale production. However, CPPs exhibit low transfection efficiency [268]. Hybrid 

conjugation of CPPs with inorganic nanomaterials improved their efficiency and may open 

new venues for multifunctional treatment [269–271]. 

Metallic Nanoparticles 

Metallic nanoparticles e.g., silver (Ag), gold (Au), palladium (Pd)[272], and platinum (Pt), 

advanced several applications. Silver nanoparticles have been used for many applications such 

as catalysis [273], energy [274], biosensing [275], laser desorption/ionization mass 

spectrometry (LDI-MS) and mass spectrometry imaging (MSI) [276], and others [277]. In our 

lab, we investigated Ag NPs' antimicrobial activity against bacterial flora of bull semen [278]. 

AgFeO2 exhibit high antibacterial activity against several bacteria species [279,280]. Ag NPs 

were used as a probe for the detection of the freshness of fruits and vegetables via graphene-

enhanced Raman spectroscopy (GERS) [281]. Silver nanoparticles can be used as a surface for 
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microextraction proteins and other analytes for the analysis using surface-assisted laser 

desorption-ionization mass spectrometry (SALDI-MS) [282]. It can be also modified with 

chitosan for the separation and detection of biothiols [37].  

The spermicidal effects of Ag NPs against flora bacteria were reported [278]. Silver salts were 

mixed with melamine. The mixture was then polymerized at 550 oC to generate graphitic 

carbon-embedded Ag NPs i.e. Ag@C NPs.  Analytical techniques such as XRD, XPS, AAFS, 

TEM, and HR-TEM confirm the material's phases, composition, morphology, and particle size. 

Ag@C NPs display a particle size of 1-5 nm with an average particle size of 2.5 nm. The 

nanoparticles were embedded into carbon. Ag@C NPs were investigated as antimicrobial 

agents in bacteriospermia of fresh semen collected from five fertile bulls. They exhibited high 

antibacterial activity against bacteria species found in semen such as Escherichia coli (E. Coli), 

Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa). It offered 

minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 

3.125-12.5  and 3.125 μg/mL, respectively. There was no detrimental effect (P ˃ 0.05) on the 

percentage of sperm motility, plasma membrane integrity, acrosome integrity, and normal 

sperm morphology at concentrations of 15-30 μg/mL. Ag@C NPs is a promising antibiotic 

agent for bull semen extender during cold storage. It can be used in applications such as the 

field of artificial insemination [278].  The antibacterial activity of silver ferrite (AgFeO2) was 

investigated. AgFeO2 was modified with polyethylene glycols (PEGs) to render their 

dispersion high [279,280]. The antibacterial activity against pathogenic bacteria was quantified 

using plate counting, and the turbidity using optical density at wavelength 600 nm (OD600). 

AgFeO2 nanoparticles exhibited high antibacterial activity [279,280]. 

Silver nanoparticles were modified with 1-octadecanethiol (1-ODT)/4-amino thiophenol (4-

AMP) and 1-ODT/1-thioglycerol (1-TG) to prepare Ag@ODT/AMP and Ag@ODT/TG, 

respectively [282].  The materials were used in microextraction as a pseudo-stationary phase 
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via single-drop microextraction (SDME). They can extract proteins and peptides e.g., insulin, 

ubiquitin,  cytochrome c, cysteine, homocysteine, and lysozyme. The separated proteins can be 

detected after extraction using MALDI-MS. The method can be used for the analysis of real 

samples e.g., urine and milk [282].  Silver ferrite iron oxide nanoparticles (AgFeO2 NPs) were 

reported for biothiols separation [37]. AgFeO2 and AgFeO2 modified chitosan (AgFeO2@CTS 

NPs) can be used for the separation of biological thiols e.g., sulfamethizole, thiabendazole, 

dithiothreitol, and glutathione before the analysis using MALDI-MS and surface assisted laser 

desorption/ionization mass spectrometry (SALDI–MS) [37]. 

Au NPs enhanced GERS detection of the freshness of fruits and vegetables [281]. It can be 

used as a probe for surface-enhanced Raman spectroscopy (SERS, Figure 4). Au or Ag 

nanoparticles were synthesized into reduced graphene oxide nanosheets (e.g., Au@G and 

Ag@G). The materials can be used as a probe for the analysis of the freshness of fruits and 

vegetables (e.g., Carrot, Wax apple, Lemon, Red pepper, and Tomato) [281]. One-pot synthesis 

of Au NPs@carbon dots was reported for the cytosensing of metals in cancer cells [283]. Au 

NPs enhanced the analysis of simple molecules to intact cells using SALDI-MS [284]. 
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Figure 4 Schematic representation for GERS analysis of fruits and vegetables using Ag and 

Au NPs. Figure reprinted with permission from Ref. [281]. 
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Noble metal-based catalysts with high hydrogen generation rates (HGR) have greater catalytic 

activity for the hydrolysis of NaBH4 [285–294].  For the hydrolysis of NaBH4, ruthenium-

based catalysts were often utilized. Different materials have been used to support noble metal-

based catalysts [285–293]. The HGR of the Ru catalyst was higher than that of the Ni3B and 

Co3B catalysts, which had HGRs of 1.3 mL/min•g and 6.0 mL/min•g, respectively [295]. 

Ti3C2X2 (X = OH, F) (a transition metal carbide that resembles graphene and is loaded with 

Ru) had an HGR of 59.04x103 mL/min•g [296]. At room temperature, Ru(0) nanoclusters 

displayed a maximum HGR of 96.8x103 mL/min•g [297]. Additionally, it may be supported 

by reduced graphene oxide (rGO) via polyvinylpyrrolidone (PVP) stabilization and 

electrostatic self-assembly  [298]. By employing an aqueous ammonia borane solution to 

reduce Ru3+, chitin-supported Ru was created [299]. The HGR for NaBH4 hydrolysis at 30 °C 

is as high as 55.290x103 mL/min•g with an activation energy of 0.07 wt.% Ru. Noble-based 

catalysts such as Ru–Ni exhibit good durability and excellent recyclaibility over 300 cycles 

[300].  

Pd has been reported in a variety of forms, including Pd-supported carbon powder (Pd/C) and 

Pd-C thin films [234]. NaBH4 was hydrolyzed using Co3O4 that had been treated with Ru, Pt, 

and Pd nanoparticles (NPs) [301]. In comparison to Pt-Co3O4 and Pd-Co3O4, which displayed 

HGRs of 4713 mL/min•g and 3445 mL/min•g, respectively, at 25 oC, Ru-Co3O4 demonstrated 

the greatest HGR of 6514 mL/min•g. These numbers depend on how much NaOH is present 

[301]. In comparison to Pt/LiCoO2, the HGR utilizing Ru/LiCoO2 is somewhat greater [302]. 

Single noble elements [303–309], and bimetallic nanoparticles [310–312] were reported. Noble 

elements [313–318] and be used as promoters for transition metal-based catalysts  [229–331]. 
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Carbon Nanomaterials and their Applications 

Zero-dimension carbon can be also known as carbon dots (CDs), carbon nanodots (C NDs), or 

carbon quantum dots (CQDs) [422–428].  CDs were applied for several promising applications 

such as drug delivery [429], imaging [430–434], sensing [423,435–437], biosensing [438],  

energy-based applications [439], biomedical [440], and theranostic [441]. Carbon nanodots, 

including CDs, graphene quantum dots (GQDs), or CQDs, are emerging new carbon allotropes 

nanomaterials [442–444].  Carbon nanomaterials have advanced electrochemical-based 

applications [434,445]. CDs have advanced electrochemical applications [446,447] such as 

O2  and H2O2 reduction [448], and biosensing of glucose [449–455]. 

C-dots can be doped with P [456], N [457], S [433], F [458], B [459], nitrogen and sulfur co-

doped carbon dots (N, S-CDs) [460,461], and N/B [462]. C dots exhibit good optical properties 

including photoluminescence in the visible range [463,464], and high quantum yields 

(QY)[424,465]. The photoluminescence properties of CDs can be tunable by changing their 

size, surface modification with functional groups at the graphitic edges of the materials, doping 

with heteroatoms, or selecting a suitable synthesis method [466,467]. They can be tuned 

offering fluorescence emission from blue to green [456,468]. It has been used for tackling 

COVID-19 [469], the virus [470]. It offered naked eye sensors [471]. N-doped CDs especially 

exhibit remarkable acid-evoked fluorescence enhancement under acidic conditions [472]. 

Two-dimensional carbon nanomaterials such as graphene, graphene oxide (GO), and reduced 

graphene oxide were intensively used for several applications. Graphene oxide was used for 

rare-earth metal adsorption [201]. It can be modified with thymine for selective detection of 

toxic heavy metals such as mercury (Hg(II)) [193]. The layer structure of GO enables the 

intercalation of an organic matrix such as sinapinic acid [473]. GO can be modified with SiO2 

for SALDI-MS [474]. It can use for heavy metal detection such as mercury ions [475], lipids 
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[476], and metallodrugs [477]. It exhibited high efficiency for bone and skin wound 

regeneration [478] and wound healing [479]. It can use for the drug delivery of in-soluble 

antibiotics such as gramicidin [480]. It can be used as a co-carrier to enhance the gene 

transfection of CPPs [271]. GO/cellulose nanocomposite accelerated skin wound healing [481]. 

2D carbon nanomateials such as g-C3N4 and GO were reported for repairing of bone defects in 

rabbit femurs [482]. Biological analysis of osteogenesis was performed using X-ray, 

computed tomography (CT) and qPCR analysis. The expression meeasurment 

for osteocalcin (OC) and osteopontin (OP) were also included. Based on the 

data analysis, g-C3N4 exhibit amount of OC and OP leading to bone defects 

repairing. Graphene can be used as a surface for SALDI-MS [483]. 

Metal Oxides 

Metal oxides such as CeO2 enabled the extraction and detection of pathogens proteins [484]. 

Fe3O4@SiO2 enabled rapid and direct identification of pathogenic bacteria from blood using 

[485]. Magnetic nanoparticles modified graphene oxide was reported for separation and 

preconcentration of pathogenic bacteria for sensitive detection using MALDI-MS [486]. 

Chitosan magnetic nanoparticles were reported for endotoxin separation and detection using 

SALDI-MS [487]. ZnO nanoparticle-modified polymethyl methacrylate (PMMA) was used for 

dispersive liquid–liquid microextraction for rapid analysis of pathogenic bacteria using 

MALDI-MS [488].  SnO2@GO exhibited high antibacterial activity [489]. 

Commercial MoO3 was used for the exfoliation to synthesize a few layers of MoO3-x (Figure 

5) [490]. The synthesis procedure involved the reflux of a bulk α-MoO3  at 80 °C in water for 

7 days. The prepared MoO3–x nanosheets displayed infrared plasmonic properties offering 

localized surface plasmon resonance (LSPR) peaks at 954 and 1160 nm due to the oxygen 
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vacancies upon light excitation.  The plasmonic properties of the nanosheets can be enhanced 

using visible light irradiation for only 10 min. The materials were used as photocatalysts for 

dye degradation under visible light irradiation [490]. 

 

Figure 5 The Exfoliation of α-MoO3 into MoO3–x Nanosheets. Figure reprinted from Ref. 

[490]. This is an Open Access Article. Copyright belongs to the American Chemical Society 

(ACS). 

 

Ruthenium oxide (RuO2) with mesopore was synthesized via a surfactant-assisted procedure 

[209]. The mesoporous structure of RuO2 was achieved using surfactants as a template. The 

materials exhibited higher catalytic oxidation activity of water using ceric ammonium nitrate 

(CAN). This is a chemical oxidation of water using CAN as oxidant. 

Magnetic nanoparticles can be synthesized via several procedures including laser techniques 

[491]. Abdelhamid reviewed the application of delafossite nanoparticles in energy, 

nanomedicine, and environmental applications [492]. Magnetic nanoparticles of  Fe3O4 were 
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incorporated into polyplexes of CPPs/oligonucleotides (ONs) for cell transfection [270]. Three 

different oligonucleotides (e.g., plasmid (pGL3), splicing correcting oligonucleotides (SCO), 

and small interfering RNA (siRNA)) and six CPPs (e.g. PeptFect220 (denoted PF220), PF221, 

PF222, PF223, PF224, and PF14) were investigated. Magnetic nanoparticles enhanced the cell 

transfection up to 4-fold compared to the noncovalent PF14-SCO complex, which exhibited 

higher efficiency compared to a commercial vector called Lipofectamine™2000 [270].  

Meta oxide of transition metals is an effective catalyst for the hydrolysis of NaBH4   [379,493]. 

Cobalt-based catalysts are frequently utilized as catalysts for the hydrolysis of NaBH4 to 

produce hydrogen. When NaBH4 pellets were combined with 5% CoCl2 to create H2 gas, 

Schlesinger et al. discovered the catalytic performance of cobalt boride (Co-B) in 1953 [494]. 

One of the often-used active metals for the hydrolysis of NaBH4 to produce hydrogen is cobalt 

[495]. The hydrolysis of NaBH4 is catalyzed by cobalt chloride at a rate that is ten times greater 

than that of an acid accelerator like boric acid. The solid black precipitate that was produced 

during the reaction had an atomic ratio of roughly 2 (Co: B) i.e., Co2B, according to chemical 

analysis. The active catalyst for the hydrolysis of NaBH4 was cobalt boride (Co2B). The 

catalysis can be performed using single transition metal [405,406], bimetallic [407], ternary 

[408,409], quaternary [382,501],  and multi-elements containing [502]. ZnO was synthesised 

via sol-gel procedure and was applied as catalyst for the hydrolysis of NaBH4 [503]. The 

synthesis procedure offer simple modification of ZnO nanoparticle with other metal oxides 

such as TiO2 and CeO2 [503]. 

Metal oxide based on transition metal nanomaterials can be used as effective catalysts and 

support materials  [504]. They exhibited high catalytic performance with low activation energy. 

Magnetic transition metal oxide can be recyclable after separation simply via an external 

magnet [505,506]. They can be synthesized in wide forms including alloy [507–510]. They 

offered high HGR 419–429].  Several transition elements were reported including Co-based 
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NPs [522,523], Ni-based nanomaterials [524–526], Mn [527], SiO2 [528], TiO2 [516],  and Ce–

Ni [529]. 

Quantum Dots (QDs) 

Quantum dots (QDs) are nanocrystals with particle sizes less than 10 nm [530]. Cadmium 

sulfide (CdS) quantum dots were used for selective biosensing of Staphylococcus aureus [531] 

and proteomics [532,533]. It can be used as a surface for the analysis of several analytes using 

SALDI-MS [534]. It enabled soft ionization offering the analysis of labile compounds such as 

metallodrugs [535]. It can also be used for fluorescence spectroscopy [536]. CdS QDs were in-

situ grown into chitosan (CTS) enabling CdS QDs@CTS [537,538]. The material CdS@CTS 

exhibited selective interaction with Cu2+ due to the formation of Cd1-xCuxS [537,538].  The 

positive charge on chitosan exhibited also high interaction with the negative charge on the 

bacteria cell membranes [539]. CdS@CTS was also reported as a carrier for drug delivery of a 

natural anticancer drug called sesamol [540].  

Biopolymers 

Biopolymers including polysaccharides are intensively applied for biomedical applications 

[77,541,542]. Polysaccharides were applied as excipients for tablet formulation, dental 

implants, bone/tissue engineering, and drug delivery [541,542]. They can also be used for 

antimicrobial textiles [543–545].  Silver ferrite (AgFeO2) can be modified with chitosan to 

render their external surface positive for biothiol separation [37]. Alginate can improve the 

gene delivery of oligonucleotides [77,546]. Modern technology such as 3D printing enabled 

simple processing of polylactic acid and hydroxyapatite for water treatment [547]. 

Anhydroglucose monomer is joined through β-(1-4) bond to form the natural linear-structural 

biopolymer known as cellulose (C6H10O5)n, where n is the degree of polymerization and ranges 
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from 1000–5000 depending on the source utilized to extract the cellulose) [548–556]. The most 

reliable sources of cellulose include plants, seaweeds, sugarcane bagasse, tunicate, marine 

algae, and bacteria [557–560]. Over a few hundred billion tonnes of cellulose are produced 

annually. Over time, the market's demand has been rising steadily. High stability in acidic 

environments, chirality, high tensile strength, good elastic modulus (130-150 GPa), low density 

or lightweight (density of 1.6 g/cm3), high biodegradability, and an abundance of hydroxyl 

functional groups on their surfaces all contribute to the excellent mechanical, physical, and 

chemical properties of cellulose. Cellulose also has good wettability and high tensile strength 

[561–571]. Thus, cellulose has sophisticated uses in the fields of energy, the environment, and 

health. 

Advanced biomedical uses exist for cellulose-based materials [572–587]. Antibacterial 

agents [588–593], wound dressing [594–600], medication delivery [568,601–604], tissue 

engineering [577,586,605], artificial blood vessels [606,607], and UV radiation protection 

[608,609] were among the applications documented. A variety of materials, including 

hydrogels [610,611], aerogels [612], membranes [613], and three-dimensional (3D) scaffolds 

[614,615], may be made from cellulose. They display many traits that make biomedical 

applications appealing. They provided decent binding qualities [616]. Both organic [617] and 

inorganic-based compounds can be conjugated with them. Numerous functional groups and 

substances can alter the surface chemistry of cellulose [618–621]. Recently, Abdelhamid and 

Mathew summarized the biomedicine applications of cellulose-based materials including drug 

delivery, tissue engineering, wound healing, antifouling, and antimicrobial agents (Figure 

6)[622].  
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Figure 6 Cellulose-based materials for biomedicine applications. Figure reprinted from Ref. 

[622], Open Access. 

 

Unlike other natural biopolymers like cationic chitosan, cellulose has no intrinsic biocidal 

action [623]. But it may be made into an antibacterial agent in several ways, such as surface 

modification and conjugation with other antibacterial agents, such as organic and inorganic 

substances [590,624].  

Investigations on the 2,3-dialdehyde nanofibrillated cellulose's (DANFC) antibacterial efficacy 

against methicillin-resistant S. aureus (MRSA) and S. aureus were conducted [625]. The 

aldehyde groups in DACNF are responsible for the pH reduction (5.7–6.2), which has an 

antimicrobial impact [625]. Dialdehyde microcrystalline cellulose (DAMC) has also been 

shown to have antibacterial properties [626]. Cellulose was extracted from ginger residual, 

denoted as GNFs (ginger nanofibers), via acid hydrolysis and high-pressure homogenization 
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[627]. GNFs were tested for antibacterial activity. The MIC values of GNF were 14±2, 13±1, 

18±0, and 31±0 µg/mL for B. cereus, E. coli, S. aureus, and S. Typhimurium, 

respectively  [627].  

A wound that was infected with the bacteria P. aeruginosa was prevented from growing by a 

gel of TOCNF (0.2-0.8 wt.% in water) [628]. Carboxylate CNF can undergo processing in an 

autoclave to change its physical, chemical, and antibacterial properties [629]. High 

antibacterial activity and low toxicity were demonstrated by autoclaved carboxylate CNF 

towards reconstructed human epidermis (RhE) and L929 murine fibroblasts [629]. P. 

aeruginosa and S. aureus were the targets of tests to determine the antibacterial activity of 

carboxylate CNF with various degrees of oxidation. Compared to non-oxygenated CNF 

dispersion, oxygenated CNF dispersion displayed greater antibacterial activity. 

Pure cellulose nanoparticles' antibacterial properties could be explained by several 

mechanisms, including a reduction in bacterial cell mobility encircling and trapping the 

bacteria through the creation of a network, and a lowered pH due to an increase in aldehydes 

groups in CNFs. It is vital to take into account the existence of alien species since they may 

generate antibacterial activity through inflammation, such as lipopolysaccharides or endotoxins 

[630]. The endotoxin level in CNF generated utilizing a modified TEMPO-mediated oxidation 

process using sodium hydroxide as a pre-treatment was 45 endotoxin units (EU) per g of 

cellulose [631].  At low doses, this number might not be harmful. High concentration, however, 

may need it [632]. 

Antibiotic-resistant bacteria may benefit from photo-based light radiation therapies [633–636]. 

They needed the presence of photosensitizer molecules that either generate reactive species 

(i.e., photodynamic treatment) such as reactive oxygen species (ROS), or absorb light radiation 

and convert it to heat energy (photothermal therapy).  Pure cellulose is devoid of the qualities 
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of the photosensitizer. To absorb light, it is often modified with tiny molecules through 

covalent and non-covalent interactions. Most of these photosensitizers are substances that are 

inert against bacteria. However, they work well to inactivate bacteria when employing low-

cost light sources like light-emitting diode (LED) lights [637]. 

The use of CNC [638] and hairy aminated nanocrystalline cellulose (ANCC) for 

photodynamical inactivation (PDI) against bacteria has been described [639]. Reactive oxygen 

species (ROS) can be generated under light via the modification of cellulose with molecules 

such as anthraquinone vat dyes [640], 3,3′,4,4′-benzophenone tetracarboxylic acid [641], 

ketoprofen [642], hypocrellin [643], BODIPY (Dipyrromethene boron difluoride) [633,644], 

chlorin-e6 [645], phthalocyanines [646,647], protoporphyrin-IX [648–650], and porphyrin 

[638,639,651–656]. Through the use of Cu(I)-catalyzed Huisgen-Meldal-Sharpless 1,3-dipolar 

cycloaddition, CNC was chemically changed to form CNC-Por (Figure 4a). The cellulosic and 

porphyrinic molecules' respective azide and alkyne groups engage in a reaction (Figure 4a). 

Under white light exposure (400-700 nm, 60 mW/cm2), the PDI of CNC-Por against 

Mycobacterium smegmatis, S. aureus, and E. coli was studied [544]. More than 99% of bacteria 

were resistant to the substance (99.9999% for S. aureus) [544]. Rose bengal (RB), a naturally 

occurring photosensitizer, was used to modify ANCC through a covalent link (Figure 7) [639]. 

For the pathogens, Listeria monocytogenes and S. Typhimurium, RB-ANCC demonstrated 

PDI over 80% when exposed to natural light. It's interesting to note that ANCC increased the 

free RB's PDI against S. Typhimurium [639]. 
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Figure 7 A) Synthesis of CNC-Porphyrine; B) Chemical modification of ANCC with Rose 

Bengal as photosensitizers. Figure A and B were reprinted with permission Ref. [638], and  

Ref. [639], respectively. Copyright belongs to the American Chemical Society. 

 

For scalable antibacterial treatment utilizing PDI, cationic porphyrin (Por(+)) conjugated 

cellulose was used as paper [81]. Using visible light with a wavelength and power of 400–700 

nm and 65–5 mW/cm2, respectively, Por(+)–the modified cellulosic paper was irradiated for 

30 minutes. Acinetobacter baumannii, P. aeruginosa, Klebsiella pneumoniae, vancomycin-

resistant Enterococcus faecium (VER), S. aureus, and other bacteria and viruses were tested 

A B
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for antibacterial and antiviral efficacies. For every species that was looked at, such as bacteria 

and viruses, the inactivation efficiencies were more than 99.9% [633]. 

One benefit of PDI utilizing cellulose-based materials is a high antibacterial efficacy of up to 

99.999% [633].  The technique can be used to treat germs that are resistant to antibiotics. With 

relative efficiencies of 99.995%, 99.5%, and 99%, photosensitizer-conjugated cellulose fibers 

may be employed to inactivate viruses such as the dengue-1 virus, influenza A, and human 

adenovirus-5 [539]. The creation of materials like paper [633], fibers [652], or textiles [657] 

using cellulose chemistry enables scalable and simple applications for antibacterial treatment. 

With the aid of cutting-edge techniques like photo-strain-triggered click ligation [658], it offers 

instant covalent modification. It may provide photoactive textiles with a new market [659]. 

Cellulose nanocrystals (CNCs) were reported as immune modulators [660].  

The antibacterial activity of cellulose can be improved using inorganic-based antimicrobial 

agents [570,571].  Antibacterial agents made of silver, including silver sulfadiazine (SSD), is 

often utilized. The preparation of BC/SSD involved ultrasonically impregnating SSD into the 

BC membrane [663].  Significant antibacterial activity was demonstrated by the BC/SSD 

membrane against many microorganisms, including P. aeruginosa, E. coli, and S. aureus [663]. 

High biocompatibility was shown by the membrane [663]. The dispersion of GO was enhanced 

by methylcellulose [481]. The cytocompatibility of EA.hy926 human endothelial cells (ECs) 

employing [3-(4,5-dimethylthiazol)-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and 

live/dead tests demonstrated good biocompatibility. Using an induced wound scratch model 

for EA.hy926 ECs, the cell migration under the influence of GO-cellulose was revealed 

(Figure 8). The cell migration was increased by GO-Cellulose. Rats with 8 mm-diameter full-

thickness wounds on their dorsum were used to test the in-vivo wound healing process [481]. 
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Figure 8 Biological acitity of GO/cellulose using A) cell migration, Scale bar = 200 μm, B) 

the skin wound, and C) The percentage of wound closure, Figure reprinted with permission 

from Ref. [481]. Copyright belongs to Elsevier (2021).  

 

To dress wounds, cellulose has various merits. It is inexpensive to do. Using inexpensive 

materials like wood, it may be made into useful structures like membranes [594]. When used 

as a wound dressing, cellulose-based membrane performs better than commercial porous 

regenerating membrane [500]. When compared to Suprathel® (a commercial lactocapromer-

based wound dressing), the epithelialization of a wood-based dressing like NFC demonstrated 

quicker healing [596].  Compared to traditional synthetic fiber dressings, BC dressings are less 

expensive[664]. 

Numerous techniques, including cross-linking with chemicals based on silanes, can be used to 

alter the surface characteristics of cellulose-based wound materials [665]. For femoral artery 
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and liver damage models, the material was examined for wounds. Organosilane's chemical 

alteration created a hydrophobic barrier that prevented blood from penetrating (blood loss was 

less than 50%) and hastened the blood clotting process.  It provided both models with a brief 

period of hemostasis [665].  The cellulose nanoparticles' high surface charges improved protein 

adsorption and may encourage cell adhesion. 

Since the cellulose-based dressing is often transparent, wound therapy may be assessed without 

removing or replacing it [594]. Due to the many hydroxyl groups prevalent in the cellulose 

structure, cellulose-based membranes adhere well to wet wound surfaces with no evidence of 

allergic or inflammatory reactions [594]. Compared to commercially available wound-healing 

dressing, cellulose-based dressing enables quicker self-detachment.  They are effective in 

treating infected wounds [666]. Third-degree burn wound healing can be managed using 

thymol-enriched BC hydrogel [667]. 

Drug delivery has progressed thanks to cellulose-based polymers [604,668–672].  To provide 

multifunctional applications, they can be coupled with nanomaterials like magnetic 

nanoparticles (MNPs) [673]. Drugs can be capsuled in cellulose. Due to the functional groups 

of carboxymethyl cellulose (CMC), a selective release of an anticancer drug like 2,4-

dihydroxy-5-fluorpyrimidin (5-FU) was made possible [674]. Folic acid surface modification 

of cellulose promotes selective cell absorption and binding via a cellular mechanism controlled 

by the folate receptor [675,676]. For the administration of hydrophobic medicines including 

docetaxel, paclitaxel (PTX), and etoposide, cellulose serves as an efficient drug carrier [677]. 

Curcumin (CUR) treatment for prostate cancer cells was made more effective by 

hydroxypropyl methylcellulose [678]. Comparing CUR alone to CUR-conjugated cellulose, 

substantial apoptotic alterations were observed. Comparing cellulose to other carriers including 

-cyclodextrin (CD), poly(lactic-co-glycolic acid) (PLGA), MNPs, and dendrimer, cellulose 
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likewise demonstrated the maximum cellular absorption [678]. For the medication delivery of 

CUR, TOCNF, and MOFs such as zeolitic imidazolate frameworks (ZIF-8) and material 

institute of Lavoisier (MIL-101 (Fe)) were utilized (Figure 9) [679]. The composite of 

TOCNF/ZIF-8 allowed 3D printing to transform the material into a 3D network [679].  MOF 

powder may be printed using cellulose. In-situ synthesis uses it as a template and binder for 

MOFs.  Under physiological pH (5.5), the materials can release the CUR medicine [679]. A 

simple procedure of 3D printing of cellulose/ZIF-8 was also reported using a binder-free 

procedure (Figure 10) [680]. The synthesis procedure is simple and can be commercialized. 

The loading of ZIF-8 can reach 70 wt.%. The printed materials can be used as adsorbent and 

catalyst for water treatment via adsorption and catalytic degradation of organic pollutants. They 

can be also adsorbed heavy transition metals with high adsorption capacities. They were also 

applied as filter for CO2 adsorption [680].   
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Figure 9 In preparation and 3D printing of cellulose-ZIF8. Figure reprinted with permission 

from Ref. [679]. Copyright belongs to John Wiley & Sons (2019). 

 

 

Figure 10 3D printing procedure of CelloZIF-8 using a binder-free procedure. Figure 

reprinted from the Open Access Ref. [680].   

Gene delivery of oligonucleotides like siRNA was also accomplished using cellulose-based 

materials [681,682]. You may think of them as non-viral vectors [589]. To deliver pDNA, 

CNCs were modified with poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) via atom 

transfer radical polymerization (ATRP) (Figure 10). The disulfide (SS) bond is formed during 

the polymerization process to produce CNC-SS-PDs (Figure 10) [590]. (Figure 11) [684]. The 

CNC-SS-PDs demonstrated high transfection effectiveness with minimal cytotoxicity. Non-

viral gene delivery vectors are promised by cellulose-based materials [590,591]. 
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Figure 11 The preparation of CNC-SS-PD and their use for the gene delivery process. Figure 

reprinted with permission from  Ref. [684]. Copyright belongs to ACS (2015). 

 

For medication delivery, cellulose-based materials provide many benefits [687–689][690–

699]. They can be utilized to release medicines that are hydrophobic, ionizable, water-soluble, 

and insoluble [677,700]. They make it possible to give two medications simultaneously [701]. 

Locally tailored medication release with long-lasting qualities was made possible using CNC 

hydrogels [702,703]. Without the use of gelatin, cellulose can be produced as capsules [704]. 

It can be used to give medications orally [705]. It is possible to model cellulose-based 

hydrogels' drug delivery under pH- and temperature-responsive conditions. Cellulose and other 

biopolymers such as alginate can be 3D printed into cartilage structures such as a human ear 

and sheep meniscus (Figure 11)  [706]. They can be also used for bone regeneration [707,708]. 
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Figure 12 3D printing of cellulose/alginate into A) small grids (7.2 × 7.2 mm2), B) after 

squeezing, C) restored after squeezing, D-F) 3D printed human ear in different views. Figure 

reprinted with permission from Ref. [706]. Copyright belongs to ACS (2015). 

 

Cellulose-based advanced several applications such as biomedicine including antifouling 

[570,622,709,710]. They improved bioengineering [711] and water treatment via pollutants 

adsorption [563]. Cellulose/ZIF-8 composite was used for water remediation via adsorption 

and catalytic degradation of organic pollutants such as dyes [569]. Cellulose enabled three-

dimensional printing of porous materials such as leaf-like zeolitic imidazolate frameworks 

(ZIF-L), denoted as CelloZIF-L. Direct ink writing (DIW) or robocasting was used to proceed 

with the materials. The materials with a ZIF content of 84% were achieved. The materials were 

used for the adsorption of carbon dioxide (CO2) and heavy metals offering capacities of 0.64-

1.15 mmol/g (at 1 bar, 0 °C) and 554.8±15 mg/g, respectively. The adsorbent exhibited 

selectivity toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+ of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, 

and 0.19%, respectively [712]. Cellulose enabled also the processing of ZIF materials into filter 
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paper [713,714] and foams [715]. Most of these biopolymers are biodegradable [716,717] 

compared to synthetic polymers [718]. They can proceed into the membrane for oil separation 

[716]. 

Chitosan improved gene delivery [683]. It can stabilize magnetic nanoparticles that enabled 

high-cell transfection [269]. Magnetic nanoparticles modified chitosan was used for surfactant 

capture and analysis using SALDI-MS [719]. Chitosan can be modified with thymine to enable 

specific preconcentration of mercury (II) before analysis using SELDI-MS [720]. It can be used 

as a porogen for creating mesopores inside microporous materials [686]. The created 

hierarchical porous materials can be then used for oligonucleotide delivery offering efficient 

gene treatment. Chitosan mitigates the toxicity of CdS QDs offering efficient drug delivery of 

the anticancer drug sesamol [540]. 

Metal-organic frameworks (MOFs) 

Materials that are organic-inorganic crystalline and porous are known as metal-organic 

frameworks (MOFs) [629–664]. They have low density (0.2-1 g/cm3), large specific surface 

areas (> 10,000 m2/g in some cases), and well-defined pore structures with high porosity up to 

50% of the crystal volume [757]. Reticular synthesis can be used to create them, resulting in 

framework structures or organized networks with solid connections connecting organic and 

organic moieties [758]. By constructing secondary building units (SBUs) with appropriate 

organic linkers, the construction networks between the two moieties can adjust the geometry 

of MOFs [759]. MOFs can have their functional groups and porosity altered using techniques 

like post-synthetic modification (PSM) [760]. It is also possible to create multivariate MOFs 

(MTV-MOFs) with various metal nodes or clusters and additional organic functions [761]. 

Strong bonding between the moieties in many MOF materials provides for exceptional 

chemical and thermal stability in the 250 oC to 500 oC temperature range [762]. For applications 
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like the gas adsorption of CO2 from the atmosphere or hot-flue gases, MOFs' excellent chemical 

stability, particularly against water molecules, is often necessary [92]. MOFs were applied for 

several applications, including chemical conversion/fixation of CO2 [671–678], catalysis [771–

773], photovoltaic devices [774], sensors [683], theranostic platform [776], hydrogen 

production [684], dye sensitizing solar cells (DSSCs) [121], water treatment [661,662], 

osmotic power generators [778], and other [686].   

MOFs were reported for treating water. MOFs, a unique class of porous materials, have drawn 

a lot of interest in the past 10 years due to their enormous promise in a wide range of 

applications. High surface area, high porosity, and chemical and thermal stability are typical 

features of MOFs. It has been reported that MOFs have been investigated for the removal of 

heavy metal ions from aqueous solutions. The necessity for a filter or centrifuge to extract 

MOFs following the adsorption process makes large-scale application of MOFs still difficult. 

For its extensive uses, it will be crucial to design and create readily separable MOFs that can 

effectively remove heavy metal ions from aqueous solutions while overcoming the drawbacks 

of current adsorbents. 

MOFs are porous materials that self-assemble and have a variety of topologies, large surface 

areas, and customizable pore structures  [757,780]. A subclass of microporous MOFs known 

as zeolitic imidazolate frameworks-8 (ZIF-8) is made up of 2-methylimidazole (Hmim) as an 

organic linker and zinc metal ions as coordination centers [688,689] . Microporous ZIF-8 has 

attracted a lot of research interest for heavy metal adsorption because of its desirable properties 

such as high surface area, high chemical and thermal stability, adjustable pore structure, and 

ease of synthesis [783–786]. However, the limited applicability of microporous ZIF-8 is due to 

its small pore size (3.4 and 11.4 ) and lack of an acido-basic site [688]. This challenge can be 

solved using hierarchical porous ZIF crystals [694,695]. 
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MOFs advanced several applications including biosensing [696]. Lanthanide MOF was 

reported for the detection of ferric ions and vitamin C [175]. The material was stable and can 

form high dispersion with high fluorescence emission signals. Fe(III) ions can selectively 

quench the fluorescence signal enabling a linear relationship in the concentration range of 

16.6–167 μM with a limit of detection (LOD) of 16.6 μM (S/N ratio of >3) [175]. Explosive 

materials such as nitroaromatic were detected using Zn-MOF [176]. 

A composite of hierarchical porous bimetallic of (Co, Zn)‐ZIF-8, and semiconductor 

photocatalyst TiO2 (Co@ZIF‐8/TiO2) was reported for hydrogen generation via photocatalytic 

water splitting [789]. Co@ZIF‐8/TiO2 showed a photocatalytic hydrogen generation rate 

(HGR) of  13 mmol•h−1•g−1 representing a 151‐fold high catalytic performance of pristine TiO2 

[789]. Co@ZIF‐8 improved also hydrogen generation via the hydrolysis of NaBH4 [790]. 

Carbonized MOF enabled selective dehydrogenation of isopropanol [779].  

We reported several procedures to prepare hierarchical porous zeolitic imidazolate frameworks 

(ZIFs)[322,791]. Template-free and template-based procedures were reported [792]. Dye 

encapsulation and one-pot synthesis of hierarchical porous (microporous–mesoporous) ZIF-8 

were reported for CO2 sorption and adenosine triphosphate biosensing [793]. A cobalt ZIF 

material, ZIF-67, was used for hydrogen generation via the hydrolysis of NaBH4 [726,794]. 

The generated hydrogen can be used for dye degradation [794]. ZIFs-based materials were 

reviewed as efficient adsorbents and catalysts for CO2 removal via adsorption and conversion 

into value-added compounds [703,704]. ZIF-8 and ZIF-67 can be in-situ grown into cellulosic 

filter paper that was used as an efficient catalyst for the reduction of water pollutants such as 

nitrophenols [571]. Our synthesis procedures offered several advantages including the 

formation of a hierarchical porous structure with fast and potential to use for large-scale 

production [739]. 
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ZIFs materials including ZIF-8 are biocompatible materials [730]. Thus, ZIF-8 was widely 

used for biomedical applications [727] including gene delivery [685]. However, our recent 

study showed the transfer of the metal ions into the environment that caused a significant effect 

on the colonization and decomposition of shaded outdoor mice carrions by arthropods [797]. 

A zirconium-based MOF, UiO-66, can enhance bone generation offering induction of bone 

defects in rabbit femoral condyles [798]. UiO-66 catalyzed the hydrogen formation via the 

hydrolysis of NaBH4 [320]. It was also reported as a precursor for the synthesis of ZrOSO4@C 

for hydrogen generation [242] and dimethyl ether formation [170].  

A cerium MOF (Ce-MOF) exhibited Fenton-like properties that enabled catalytic oxidation of 

olefins, alcohol, and dyes degradation [799]. It offered 100% and 53% conversion of cinnamyl 

alcohol and styrene, respectively. It provided high selectivity of 75% and 100% towards styrene 

oxide and benzaldehyde, respectively. It can catalytically degrade organic pollutants such as 

dyes [799]. Ce-MOF was also used probe for fluorescence detection of ferric ions and hydrogen 

peroxide [775]. 

A copper-based MOF (Cu and 1,4-benzene dicarboxylic acid as metal nodes and linker, 

respectively) was in-situ grown into the fiber of cotton textile via a solvothermal procedure 

[800]. CuBDC@Textile was investigated as a solid sensor and adsorbent for volatile organic 

compounds (VOCs). It offered selective detection of pyridine via the colorimetric method. 

Pyridine turned the turquoise color of the prepared materials into deep blue color. It offered a 

pyridine adsorption capacity of  137.9 mg/g [800]. Lanthanide MOFs were also incorporated 

into cotton textiles for the photodegradation of stains for smart textiles [174]. 

Three-dimensional (3D) printing can be used to proceed MOF materials such as leaf-like 

zeolitic imidazolate frameworks (ZIF-L) into 3D objects with custom porosity and dimension 

(Figure 13)[712]. DIW was used to proceed with the materials. The printed materials with a 
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ZIF content of 84% were achieved. The materials can adsorb CO2 and heavy metals. 3D 

CelloZIF-L exhibited adsorption capacities of 0.64-1.15 mmol/g for CO2 gases at 1 bar (0 °C). 

They showed adsorption capacities of 389.8-554.8 mg/g for Cu2+ ions with a selectivity of 

86.8% toward Fe3+ ions [712].  A filter paper containing cellulose and ZIF-8 were reported 

[713,714]. The prepared filter paper, denoted as CelloZIFPaper, was used for heavy metal 

adsorption. The materials offered adsorption capacities of 66.2–354.0 mg/g. CelloZIFPaper 

was also tested as a flexible electrode for toxic heavy metal detection [713,714].  The reader 

can directly go to our recent Review on the topic of cellulose-MOF composite (denoted as 

CelloMOF) and their applications [724]. CelloMOF enabled multifunctional applications being 

efficient adsorbents and catalysts [569]. ZIF-8 was also reported for the recovery of rare-earth 

elements [733]. 

 

Figure 13 Schematic representation for the synthesis of ZIF-L in TEMPO-oxidized cellulose 

nanofibers (TOCNF) and 3D printing into cubes and filaments. Figure reprinted with 

permission from Ref. [712]. 

 

Magnetic nanoparticle-modified MOF materials were reported for heavy metal adsorption and 

removal [723]. Fe3O4@ZIF-8 and Fe3O4@UiO-66–NH2) were investigated for the adsorption 

of Cd2+ and Pb2+ ions. Fe3O4@UiO-66–NH2 and Fe3O4@ZIF-8 offered adsorption capacities 

of 714.3 mg/g, and 370 mg/g for Cd2+, respectively, and 833.3 mg/g, and 666.7 mg/g for Pb2+, 

respectively [723].  
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CuBDC was applied as a catalyst for the reduction of nitrophenol into aminophenol [754]. It 

was also used as a precursor for the synthesis of CuO-embedded C i.e. CuO@C [171,801]. 

CuO@C exhibits a particle size of 36-123 nm [801]. It can be used as an antifungal agent 

against Alternaria alternata, Fusarium oxysporum, Penicillium digitatum, and Rhizopus 

oryzae with inhibition zones of 36, 20.2, 16, and 10.2 mm, respectively [801]. CuO@C was 

also used as a photocatalyst for pharmaceuticals e.g. paracetamol degradation [802]. It offered 

an efficiency of 95% within 60 min [802]. It can also be used for the reduction of 4-nitrophenol 

into 4-aminophenol [753]. In the presence of NaBH4, CuO@C undergoes catalytic degradation 

of organic dyes [735]. 

ZIF-67 was carbonized into Co3O4@N-doped C [803]. The materials after carbonization were 

used as electroactive material for electrode fabrication.  Co3O4@N-doped C electrode offered 

a specific capacitance of 709 F/g at 1 A/g [803]. It can be also used as a co-catalyst to enhance 

the photocatalytic water splitting of semiconductor TiO2 [777]. ZnO@C was prepared via 

carbonization of ZIF-8 [804]. It was used as a supercapacitor [804]. ZIF-8 was used to prepare 

a ZnO@C photocatalyst that can degrade dyes [722,805]. ZnO@C can be also used as an 

efficient catalyst for methanol dehydration forming dimethyl ether that can be used as energy 

fuel [725]. 

Covalent Organic Frameworks (COFs)  

COFs were used as support for the in-situ growth of palladium nanocrystals (Pd NCs@COF) 

[806,807]. Pd NCs@COF was used as the catalyst for carbon-carbon coupling reactions with 

high efficiency and excellent selectivity [806,807]. A composite of COFs material with two-

dimensional nanoparticles e.g., graphene oxide, boron nitride, and graphitic carbon nitride (g-

C3N4) was synthesized via a one-pot procedure [736]. The nanocomposites were used in water 

treatment via organic pollutants adsorption [736]. 
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COFs have an advanced energy sector [808,809]. A triazine COF was synthesized via in-situ 

and ex-situ procedures in the presence of graphene oxide (GO, Figure 14) [810,811]. The 

composite was used to synthesize N-doped carbon (N-doped C)/reduced GO (rGO) after 

carbonization. N-doped C/rGO displayed a specific capacitance of 234 F/g at the current 

density of 0.8 A/g. The electrochemical performance of two symmetric supercapacitor devices 

displayed specific energy and specific power of 14.6 W·h·kg−1 and 400 W·kg−1, respectively 

(Figure 14) [810]. A one-pot synthesis of COFs/graphitic carbon nitride (g-C3N4) 

nanocomposite was also reported in our lab [812,813]. The synthesis procedure involved the 

polycondensation of melamine and benzene-1,3,5-tricarboxyaldehyde in the presence of g-

C3N4. COF/g-C3N4 was used as a precursor for the synthesis of N-doped carbon and N-doped 

carbon/g-C3N4. The prepared materials were used as electrode materials for supercapacitors 

and lithium-ion batteries (LIBs). COF, COF/g-C3N4, N-doped carbon, and N-doped carbon/g-

C3N4 exhibited specific capacitance of 211, 257.5, 450, and 835.2 F/g, respectively. N-doped 

carbon/g-C3N4 was used to assemble asymmetric devices that offered energy density and 

power density of 45.97 Wh·kg–1 and 659.3 W·kg–1, respectively [812,813].  
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Figure 14 A) Synthesis procedure of the materials and B) electrochemical performance of the 

prepared electrode using a) CV curves at 50 mV/s scan rates b) GCD curves, and c) capacitance 

over current density. Figure reprinted with permission from Ref.[810]. 

 

Conclusions 

A summary was reported for materials and their applications in several fields such as 

environmental trends e.g., water remediation, air purification, and gas storage; energy e.g., 

production of hydrogen, dimethyl ether, solar cells, and supercapacitors; and biomedical 

A

B
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sectors e.g., sensing/biosensing, cancer therapy, and drug delivery. We can synthesize materials 

that can be used as efficient adsorbents and catalysts to remove emerging contaminants such 

as metals, dyes, drugs, antibiotics, pesticides, and oils in water via adsorption. The materials 

can be also used as catalysts for pollutants degradation, synthesis of new organic compounds, 

reduction, and oxidation of organic pollutants. They have been applied as filters for air 

purification by adsorption of greenhouse gases such as carbon dioxide (CO2), volatile organic 

compounds (VOCs), and particulate matter (PMs).  They can be used for hydrogen production 

via water splitting, oxidation of alcohol, and hydrolysis of NaBH4. They can be applied for 

biomedical applications such as antibacterial, drug delivery, and biosensing.  
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