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Abstract

Allostery is involved in innumerable biological processes and plays a fundamental role

in human disease. Thus, exploration of allosteric modulation is crucial for research on bi-

ological mechanisms and in the development of novel therapeutics. Development of small

molecule allosteric effectors can be used as tools to probe biological mechanisms of in-

terest. One of the main limitations in targeting allosteric sites, however, is the difficulty

in uncovering them for specific receptors. Furthermore, upon discovery of novel allosteric

modulation, early lead generation is made more difficult as compared to orthosteric sites,

because there is likely no information about the types of molecules that can bind at the site.

In the work described here, we present a novel drug discovery pipeline, FASTDock, which

allows one to uncover ligandable sites, as well as small-molecules that target the given site,

without requiring pre-existing knowledge of ligands that can bind in the targeted site. By us-

ing a hierarchical screening strategy, this method has the potential to enable high through-

put screens of an exceptionally large database of targeted ligand space.
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Introduction

Allostery plays a key role in the regulation of protein activity, and as such, plays an impor-

tant role in human disease. Thus, exploration of allosteric modulation is crucial for research

on biological mechanisms and the development of novel therapeutics; however, identification

remains a challenge. Allosteric sites are often hidden, or cryptic, and do not have clear geo-

metric or chemical features. Additionally, these sites can oftentimes be structure-dependent;

for example, a cryptic site may be absent in the apo structure of a protein, but appear once a

ligand is complexed. In these cases, searching a single, static structure may not elucidate all

possible allosteric sites. There exist various computational methods to enable cryptic site dis-

covery,1–5 One common approach is probe mapping.3,5–7 Briefly, this technique maps small

molecule probes (e.g. benzene, phenol, methane) to the entire surface of a given protein target.

Sites with a variety of probes are binding ‘hot spots,’ or regions of the surface with major con-

tributions to the ligand binding free energy.8 While this method enables relatively fast cryptic

site discovery, uncovering small-molecules that bind to the identified site in a high-throughput

manner remains a problem.

Virtual screening aims to speed up the drug discovery process by computationally searching

through a library of potential organic molecules in order to identify a number of ‘hits’ that can

be tested in the laboratory for their activity against the desired target. Specifically, structure-

based drug discovery, which makes use of the 3D structure of a target protein and knowledge

about the disease at the molecular level, has become an essential component in modern drug

discovery. One of the primary methods employed in structure-based drug discovery is molecu-

lar docking. Generally speaking, docking predicts the orientation and conformation of a small-

molecule ligand in the binding site of the target protein and estimates its binding affinity. While

powerful, docking comes with a non-negligible computational cost. The evaluation of each

small molecule requires consideration of its various low energy three-dimensional conforma-

tions. As the size of a small molecule increases so does the number of conformers that must

be considered. While the development of high-throughput docking, facilitated by the dramatic
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Figure 1: Overview of the FASTDock workflow. Firstly, 18 different probes are mapped onto the
rigid input protein structure using FFT-based docking methods.13 Then, probes are clustered
and clusters ranked based on the druggability of the identified site. Once a site of interest is
identified, the FASTDock cluster at that site is used to generate a chemical fingerprint. This
fingerprint is then used as a reference to screen a database of chemical compounds. Finally, a
subset top of ranked compounds from the ligand screening step are used for docking.

growth in availability and power of computers, has brought down some of the computational

cost, the emergence of larger and larger compound libraries has made an exhaustive search

with this process growingly difficult.9

It is attractive to search large screening libraries since, in theory, such large scale searches

will improve both the number and quality of the hits identified.10 This, in turn, increases the

downstream chances of success. While docking campaigns in the billion-compound range have

been completed,11,12 they require significant computational resources. Furthermore, in the

case of allosteric drug discovery, searching ultra-large libraries is made more difficult as com-

pared to orthosteric sites, because there is likely no information about the types of molecules

that can bind at the site. Thus, there is a need for a rapid, high-throughput work-flow which

can identify selective and potent binders from a large library of small molecules in an efficient

manner.

We present a novel drug discovery pipeline, FASTDock, for this purpose (Figure 1). Briefly,

FASTDock is a computational pipeline that leverages the use of small fragment probes (e.g.,

benzene, phenol, methane) to identify binding hot spots. Docking of small fragment probes
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to a rigid protein structure is used to identify allosteric binding sites. Once a site is identified,

the fragment probes bound to that site can be used to create a 2D chemical fingerprint that

emphasizes the important chemical features rather than the explicit chemical structure. This

resulting chemical fingerprint can be used as a reference to screen a large database of commer-

cially available chemical compounds. The subset of this database which matches the reference

fingerprint is then used for docking, where molecules are aligned to the binding site. Top ranked

compounds from this docking phase can then be tested for activity.

Our methodology provides enhanced throughput in two ways. Firstly, using the same probes

which locate the novel allosteric site to search for appropriate ligands offers a starting point

from which to find such ligands. This removes the needle-in-a-haystack aspect that would

otherwise be present when trying to find potent and selective binders from a small molecule

database that is millions (or billions) of molecules large. Secondly, the use of a hierarchical

screening strategy that entails the addition of a two-dimensional representative of the ligands

prior to the docking step allows for fewer molecules to be docked while still delivering robust

results. As the most computationally intensive portion of a typical lead discovery pipeline is the

ligand docking step, this work-flow has the potential enable high throughput screens of excep-

tionally large databases of targeted ligand space. We demonstrate this by employing FASTDock

on a range of diverse datasets that include multiple receptors and ligands.

Methods

Outline of the Pipeline

1. Probe Mapping

For each structure, as described in the section “Benchmark Data Set Generation” below,

we use 18 small molecules as probes (ethane, ethanol, isopropanol, acetone, t-butanol,

acetonitrile, methyl-amine, methyl-ammonium, dimethylformamide, benzaldehyde, ben-

zene, cyclohexane, phenol, acetamide, urea, acetate, acetaldehyde). These probes are
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chosen as they are small enough to reduce the computational load of docking because

they have no (or few) flexible bonds; thus simple FFT-based docking methods13 can be

utilized. Furthermore, despite their small size, they are chemically diverse enough to

sample a variety of protein-ligand interactions. This is illustrated in Figure S1, where

we depict the functional annotation of our probes compared with that from the ligand

database we ultimately search, which represents a diverse chemical space. It is clear from

this figure that the chemical space covered by our chosen probes is representative of that

comprising the ligands that dock to a varied set of receptor types.

For each probe, thousands of docked poses are sampled and the best 2000 are retained

for further processing. The poses are then clustered using an RMSD-based K-means clus-

tering algorithm, and this, along with the docking (scoring) energy data, representing the

interaction between the probes and the receptor of interest, is used to score each probe.

Clusters with more than 10 members are retained for further analysis.

2. Probe Clustering and Ranking

After the initial probe docking stage, probes from the various chemotypes are clustered

together based on a spatial cut off. We combine the chemotypes together at this stage

to locate sites with multiple probes docked, since these are the sites that are binding hot

spots.8 Using the top ranking pose from each chemotype (18 total) as a starting point for

cluster generation, we calculate all the contacts made with different chemotype probe

poses. A contact at this step is defined as any heavy atom within 4Å of heavy atoms of the

probe used for the cluster starting point. All chemotype probes making such contacts are

added to the cluster. The geometric center of this cluster is then used to add additional

probes that are within a 9Å distance from the center. Clusters are ranked according to the

ratio of contacts made with the protein divided by the number of probes in that cluster.

Here, again, a FASTDock cluster is considered to be making contact with the protein if any

heavy atoms of the FASTDock cluster are within 4Å of any heavy atom of the protein. To
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ensure that a variety of protein-ligand interactions are present in a given site, only sites

with clusters containing 5 or more different chemotypes are retained for further analysis.

The cluster at a given site from this step is hereafter referred to as the FASTDock cluster.

3. Fingerprint Generation and Screening

Once a site has been identified, the FASTDock cluster is used to generate a chemical fin-

gerprint, employing the MACCS fingerprint generation in RDKit (see “Fingerprint Gener-

ation and Screening” below), highlighting the different chemical features present in the

cluster. To screen small-molecule databases using the FASTDock cluster fingerprint as a

reference, chemical fingerprints are generated for each molecule in the database. Sim-

ilarity of a given molecule to the reference is calculated as a TANIMOTO coefficient. A

subset of the top ranked molecules based on the TANIMOTO coefficient are used for fur-

ther screening.

4. Rigid Receptor- Flexible Ligand Docking

Molecules with high similarity to the reference FASTDock cluster, as determined in the

previous step, are used in rigid receptor - flexible ligand docking to further rank com-

pounds. Molecules are scored using the FACTS implicit solvent model.14

Generation of Benchmark Dataset

We used 9 different receptors covering different receptor classes, as listed in Table 1, to bench-

mark different steps in the FASTDock pipeline. Each receptor contains several ligands. All co-

crystal structures from the same receptor class share the same binding pocket, except for the

Abl dataset, which we used to test allosteric sites. Receptor datasets were obtained from the

binding MOAD.15 All structures were retrieved from the RCSB PDB database.16 Only structures

with a resolution of 2Å or better are used in analyses. Prior to docking, cofactors, waters, and

any ligands were stripped. Missing residues were added using PDBFixer17 in python. Protona-

tion states were determined using PROPKA.18,19
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To determine the performance of FASTDock in discriminating between binders (actives)

and non-binders (decoys), we used ligand datasets of actives and decoys downloaded from the

Database of Useful Decoys-Enhanced (DUD-E).20 This database contains a large number of ex-

perimentally verified actives and decoys and has been widely used in testing different screen-

ing methods.20 Decoys are defined as molecules that are physico-chemically similar to known

binders, but topologically different.20,21 Molecules were protonated at a pH of 7.4 using MOE

(Molecular Operating Environment).22 Ligands were parameterized using ParamChem with the

CHARMM general force field (CGenFF).23,24

Table 1: Receptors used in the benchmarking of different steps in the FASTDock workflow.

Receptor Name Co-crystal structures PDB ID∗ Receptor Class
Elastase 10 1ELA Serine Protease
PDE10A 44 – Kinase
MDM2 41 – E3 Ligase
HIVPT 50 1BK6 Retroviral Protease
AmpC 40 1XGI Beta-lactamase
AKT1 22 3QKM Kinase
CXCR4 50 5TZR G protein-coupled Receptor
GCR 68 3MNE Glucocorticoid Receptor
ABL 25 2HYY Kinase

* The PDB ID of a specific structure is listed if docking or probe mapping results were reported for a
specific receptor.

Below, we briefly summarize our rationale for choosing each of the datasets.

Elastase was chosen to benchmark the ability of our pipeline to discover experimentally

known sites via probe mapping. This dataset consists of 10 structures, one co-crystallized with

an inhibitor and nine structures from co-crystallization in organic solvent. The inhibitor com-

plexed structure (PDB: 1ELA) was stripped of the inhibitor and used in the FASTDock pipeline.

This structure has been used as a model enzyme in the design and development of methods

that allow mapping of the binding surface of a protein, both computationally and experimen-

tally.6,25

PDE10A and MDM2 were chosen to benchmark the ability of our site scoring function to

locate the active site. The PDE10A dataset consists of 44 different holo structures of the ki-
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nase phosphodiesterase 10A (PDE10A). Each receptor contains either two nickel or one zinc

and one magnesium ion as cofactors in the binding pocket. Since all cofactors are stripped

prior to probe mapping, this dataset was constructed to determine whether removing cofactors

will impact site discovery and ligand recovery. The MDM2 dataset consists of 41 different holo

structures of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase. These

receptors have a more open binding site. This dataset was chosen to test the performance of

FASTDock for large, solvent-exposed binding pockets. Abl kinase was chosen to benchmark the

ability of the probe mapping stage of our pipeline to locate allosteric sites. This dataset consists

of 25 different holo structures of the kinase domain spanning 4 different binding sites. A holo

structure complexed with an active site inhibitor (PDB: 2HYY) was stripped and used for probe

mapping.

The remaining five datasets were chosen from the DUD-E website, and are a part of their

subset of diverse receptors. These receptors encompass a variety of ligand binding environ-

ments. Additionally, their dataset of actives and decoys sample a diverse chemical space as a

whole (Figure S2). These receptors were chosen to test the performance of FASTDock over a

diverse chemical space.

Probe Mapping with FFTDock

Probe docking is done using Fast Fourier Transform (FFT) Dock13 on GPUs in the CHARMM

molecular simulation package.26,27 Scripting is all Python based using pyCHARMM.28 The pro-

tein and probes are each represented using 1Å grids. Grid dimensions are set to be 10Å larger

than the largest dimension of the protein, which is set with its center of geometry at the origin

and its axes of inertia pointed along the X, Y, and Z Cartesian axes. The grid is generated with

parameters of Emax(vd w)= 2 kcal/mol, Emax(at t )= -20 kcal/mol, and Emax(r ep) = 40 kcal/mol,

to describe the soft-core van der Waals, electrostatic attractive, and electrostatic repulsive in-

teractions, respectively. Each probe is docked independently onto the protein, such that the

different probes do not “see” each other during docking. For each probe, we sample 4,608 rota-

8

https://doi.org/10.26434/chemrxiv-2023-7c43h ORCID: https://orcid.org/0000-0002-8149-5417 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-7c43h
https://orcid.org/0000-0002-8149-5417
https://creativecommons.org/licenses/by-nc/4.0/


tional points and save 2,000 docked poses. Each of the poses generated for a given fragment are

minimized in the presence of the protein grid used for docking. The poses are then clustered

using an RMSD-based K-means clustering algorithm from the MMTSB toolset29 to produce the

localized positions of clusters of each probe type and the populations of each cluster. This data,

together with the grid energy data for each pose is used to construct a score for the probe clus-

ter. Energies are calculated using the CHARMM general force field.24 The best scores are those

with the lowest mean cluster member energies and the largest cluster size.

Fingerprint Generation and Screening

Fingerprints are generated as MACCS keys using the RDKit30 package in python. Briefly, MACCS

keys are a 166 bit vector, with each bit representing a different chemical feature; for a given

molecule, if the molecule has a pre-defined feature, the bit position corresponding to this fea-

ture is set to 1. Otherwise, it is set to 0. To screen small-molecule databases using the FASTDock

cluster fingerprint as a reference, MACCS keys are generated for each molecule in the database.

Similarity of a given molecule to the reference is calculated as a TANIMOTO coefficient,

Tc (A,B) = c

a +b − c
, (1)

where a is the number of features present in the reference molecule, b is the number of features

present in the query, and c is the number of features shared by both molecules. This value

ranges from 0 to 1, with 1 being identical. A subset of the top ranked molecules based on the

TANIMOTO coefficient are used for further screening.

Rigid Receptor - Flexible Ligand Docking

Rigid receptor - flexible ligand docking was done using CDOCKER13 following the standard pro-

tocol. Briefly, CDOCKER is a molecular dynamics (MD) based simulated annealing method im-

plemented in CHARMM. For each ligand, 500 random starting conformations were generated
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using OpenBabel31 and oriented in the binding pocket. Then, parallel MD based simulated

annealing was run to generate 500 docking poses for each conformer. The docking poses are

then clustered using a K-means clustering algorithm based on heavy atoms within a 1Å RMSD

cut-off. If a cluster contained fewer than 10 docked poses it was excluded from future analyses.

Of the remaining clusters, the minimum energy pose of each is selected and ranked based on

the binding energy. These docking poses are then rescored using the FACTS implicit solvent

model.14 A detailed description of the FACTS implicit solvent model setup is documented in

the Supporting Information.

Results and Discussion

FASTDock is able to recover known binding sites. Binding ‘hot spots’ are locations on the pro-

tein surface that have high binding affinity for small, functional probe molecules.8,32 Thus, they

are important targets for many biological applications, including rational drug design. Exper-

imentally, the location of these hot spots can be identified by screening the protein of interest

against a library of small organic molecules via either NMR spectroscopy33 or X-ray crystallog-

raphy;25,34 sites where multiple probes cluster are defined as hot spots. Specifically, the multi-

ple solvent crystal structures (MSCS) method,25 based on X-ray crystallography, superimposes

the structures of the target protein solved in 8-10 types of organic solutions to find clusters

of small molecules. While powerful, site identification in this way is costly, time-consuming,

and limited by physical constraints such as protein size and solubility of the small molecules,

as well as the ability to crystallize the protein-solvent complex. Probe mapping in the FAST-

Dock workflow provides an in silico analogue of these experimental approaches. While previous

groups have developed such methods,3,6 here, we establish a pyCHARMM-based probe map-

ping framework that can be integrated into subsequent steps of the pipeline. Additionally, as a

standalone program, this can be integrated into a high-throughput workflow, unlike currently

existing web-servers for probe mapping.
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Mapping Elastase

Porcine pancreatic elastase has been used as a model enzyme in the design and development of

methods that allow mapping of the binding surface of a protein, both computationally and ex-

perimentally.6,25 Thus, we mapped an elastase structure that is co-crystalized with an inhibitor

(PDB: 1ELA) in order to determine whether our probe mapping method can recover all bind-

ing sites identified experimentally. We compare the sites mapped using FASTDock with those

mapped by MSCS.

Figure 2: Binding of organic probes to elastase, as determined by X-ray crystallography and
computational mapping. (A) Probes mapped to elastase using MSCS, based on the superposi-
tion of structures solved in various organic solvents. (B) Probes mapped to elastase using FAST-
Dock. (C) FASTDock sites that overlap with experimentally identified sites. Each FASTDock site
is colored differently to distinguish between sites.

Crystal structures of elastase were solved in neat acetonitrile, 95% acetone, 55% dimethyl-

formamide, 80% 5-hexene-1,2-diol, 80% isopropanol, 80% ethanol and 40% trifluoroethanol.

Additional structures were also solved in mixtures of 40% benzene or 40% cyclohexane in 50%

isopropanol and 10% water. These last two mixtures showed no bound benzene or cyclohexane,

but did show elastase bound to isopropanol. The remaining organic probes clustered in areas

in and adjacent to the active site. Superpostioning all structures identified five distinct binding

hot spots (Figure 2A).25

Of the eight organic solvents used in MSCS, six are included in our FASTDock probes. In

examining the probes, two are not included: trifluoroethanol and 5-hexene-1,2-diol. Trifluo-

roethanol was included in MSCS probes as there is a known elastase inhibitor with a trifluoro
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group. While there are many drug molecules that also include trifluoro groups, this is a specific

probe type. As our method is trying to include a reasonable number of probes while cover-

ing a large chemical space, we included more generalized functional groups. We note that it is

simple to add additional probes to the FASTDock workflow, and one could add specific func-

tional groups if targeting specific features. The probe 5-hexene-1,2-diol is included in MSCS

to capture hydrophobic interactions in addition to hydrogen bonding. While we do not have

5-hexene-1,2-diol as a probe in FASTDock, we have hydrophobic probes, such as ethane, and

multiple probes to query hydrogen bonding (e.g. ethanol, isopropanol, etc.).

Despite these minor differences, using FASTDock probe mapping we are able to identify 16

distinct sites (Figure 2B), three of which overlap with the five sites identified by MSCS (Figure

2C). These three FASTDock clusters are comprised of, on average, 14 probes. The largest (Figure

2C; blue) is located in the the active site and comprised of 17 probes. These include all probes

identified experimentally, in addition to benzene, which was not observed to bind in the MSCS

experiments. Additionally, based on our site ranking system, which prioritized pocket-like, lig-

andable sites, we find that two of the three sites are among the top 10. Thus, we show that our

probe mapping technique is able to recover all experimentally known binding sites. In addition,

our scoring method prioritizes two-thirds of experimentally identified sites.

Mapping the Active Site

While we have shown that this method is able to recover experimentally validated binding sites

in the case of elastase, we were also interested in how well FASTDock does in predicting the ac-

tive site. Because all structures we used were co-crystallized with inhibitors, the active site was

one of the most prominent binding pockets on the protein. As our scoring method prioritizes

ligandable, pocket-like structures, it should rank this site amongst the top. We looked at active

site recovery of three diverse receptor datasets (Table 2). For each receptor class, we mapped

multiple co-crystal structures. After probe mapping and ranking, we checked to see how many

structures for a given receptor included the active site ranked among its top sites. Among the
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three different receptor classes mapped, only one, PDE10A, ranked the active site as the top site

the majority of the time (Table 2). However, all three receptors included the active site among

the top 3 sites. Since allostery is ubiquitous in the proteome, it is possible that undiscovered

allosteric sites are included among the top ranked sites. If these sites are also ligandable, this

may be pushing the active site down in scoring.

Table 2: Active site recovery using FASTDock probe mapping.

Receptor Name Co-crystal structures Top Site Top 3 Sites Receptor Class
PDE10A 44 80% 95% Kinase
HIVPT 50 22% 76% Retroviral Protease
MDM2 41 29% 71% E3 Ligase

MACCS filtering is able to recover active molecules. In practical applications of virtual

screening one typically wants to know: How well does a screening method perform in discrim-

inating binders from non-binders? To examine the effectiveness of our pipeline in distinguish-

ing binders from non-binders we perform MACCS filtering on five different receptor datasets

(Table 3), which cover different receptor classes and binding environments. Each receptor

contains a diverse set of ligands, obtained from the diverse subset of the Database of Useful

Decoys-Enhanced (DUD-E)20, which contains a large number of experimentally verified ac-

tives and decoys. These decoys are generated so that they are physico-chemically similar but

topologically dissimilar to the known actives.20,21 All co-crystal structures from the same recep-

tor class share the same binding pocket. The area under the curve (AUC) value of the receiver

operating characteristic (ROC) curve as well as the enrichment factor at 1 and 20 percent (EF1

and EF20, respectively) are used to evaluate the performance in distinguishing the non-binders

from binders.20

To compare the performance of the FASTDock cluster in filtering based on MACCS finger-

printing, we compare our filtering results with that of known binders using the bound ligand

from the co-crystal structure used in initial probe mapping. Using the ligand from the crystal

structure, we see high AUC values and enrichment factor values (Table 4). This suggests that the

MACCS filtering is able to adequately discriminate between binders and non-binders when a
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Table 3: Recptors used in benchmarking MACCS filtering.

Receptor Name Co-crystal structures PDB ID∗ Receptor Class
HIVPT 50 1BK6 Retroviral Protease
AmpC 40 1XGI Beta-lactamase
AKT1 22 3QKM Kinase
CXCR4 50 5TZR G protein-coupled receptor
GCR 68 3MNE Glucocorticoid Receptor

* The PDB ID of the receptor with the best enrichment factor (EF1) is listed.

known binder is used as the reference. Applying this same method using the FASTDock cluster

as reference, we see high enrichment and AUC values for four out of the five receptors tested

(Table 4). This suggests that MACCS filtering with the FASTDock cluster is also able to distin-

guish between binders and non-binders. Notably, filtering with the FASTDock cluster as the

reference shows lower enrichment values than filtering with the known, crystallized binder as

the reference (Table 4). This suggests that in cases where the binder is known, it may be better

to use known ligands for MACCS filtering rather than the FASTDock cluster. However, in cases

where there is no pre-existing knowledge of binders, such as in screening of allosteric sites, the

MACCS filtering step using the FASTDock cluster provides a viable means of identifying puta-

tive ligands.

Table 4: Recovery of active molecules after MACCS fingerprint screening using the ligand from
the crystal structure (crystal ligand) and the FASTDock cluster.

Receptor Reference AUC EF1 EF20

HIVPT
Crystal Ligand 0.59 9.6 1.7
FASTDock Cluster 0.69 3.6 2.1

AmpC
Crystal Ligand 0.80 42.2 2.9
FASTDock Cluster 0.73 2.2 2.5

AKT1
Crystal Ligand 0.62 7.8 1.9
FASTDock Cluster 0.38 2.8 0.6

CXCR4
Crystal Ligand 0.87 21.3 3.6
FASTDock Cluster 0.38 0.0 0.1

GCR
Crystal Ligand 0.57 4.9 1.7
FASTDock Cluster 0.65 5.4 2.2

Unlike the other receptors tested, we were unable to achieve high recovery of active molecules

for the CXCR4 receptor after the MACCS filtering step, despite accurately locating the active site.
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Using the FASTDock cluster, screening gives an AUC value of 0.38, and an EF1 of 0. This indi-

cates that after screening and ranking, there are no active molecules in the top 1%. As the FAST-

Dock probes adequately cover the chemical space of active and decoy molecules in the CXCR4

dataset (Figure S3), we hypothesize that the issue is in the probe mapping step. After mapping,

probes at the active site only capture non-specific features, mainly those highlighting van der

Waals interactions. As this receptor has a highly hydrophobic binding pocket, it is possible that

the shape of the active site then becomes more important than the exact chemotypes that map

there. Furthermore, the DUD-E dataset defines decoys as molecules that are chemically similar,

but topologically different. As our mapping step currently does not incorporate 3D geometries,

it is unable to distinguish between active and decoy molecules for this receptor set. This would

explain why active recovery is high in docking,20 but poor in the screening step.

Overall, we have shown that performing fingerprint screening using the FASTDock cluster

shows comparable or increased early enrichment of active molecules as compared to perform-

ing the same screening with the ligand bound in the crystal structure of the receptor.

FASTDock pipeline increases recovery of active molecules at the docking step. While fil-

tering the ligand database using MACCS fingerprints is able to discriminate between binders

and non-binders in nearly all cases considered, this step lacks any 3D information. Thus, after

filtering, we take a subset of high ranking molecules and perform docking experiments to see if

additional filtering increases our ability to discriminate between binders and non-binders. As a

test case, we consider recovery of active molecules upon docking to HIV protease.

To compare the performance of docking after fingerprint screening using the FASTDock

cluster, we compare our docking results with those from docking after screening using the

bound ligand from the co-crystal structure used in initial probe mapping. Moreover, to de-

termine whether the fingerprint screening step increases overall binder enrichment, we also

compare active recovery after docking with no prior filtering to our filtering results. For the

case with no filtering, all molecules in the DUD-E dataset for HIV protease are used in rigid re-

ceptor docking. In both cases of pre-filtering, molecules with a TANIMOTO coefficient of 0.5 or
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Figure 3: Discrimination between binders and non-binders of HIV Protease after fingerprint
screening and subsequent docking.

greater to the reference are used for docking.

After pre-filtering with the ligand from the crystal structure, we have 19,909 molecules with

a TANIMOTO coefficient greater than our cutoff of 0.5. After docking these molecules, we see

a high AUC value (0.63) and good enrichment at one percent (EF1 = 2.5). This enrichment is

comparable to early enrichment achieved without any prior filtering (Figure 3). This suggests

that the filtering step is able to enhance the ability of the docking process in discriminating

between binders and non-binders. In addition, the filtering step is able to provide speed-up by

docking significantly fewer molecules (19,909 vs. 41,330). After pre-filtering with the FASTDock

cluster, we have 3,151 molecules with a TANIMOTO coefficient greater than our cutoff of 0.5.

Interestingly, though early enrichment after MACSS filtering here is lower than that of filtering

with the ligand from the crystal structure, we see the opposite trend after docking (Figure 3).

Upon docking, we see a high AUC value (0.62) and high early enrichment (EF1 = 10.5). Here, the

early enrichment is significantly greater than that after pre-filtering with the ligand from the

crystal structure, as well as that after docking with no pre-filtering (Figure 3). This suggests that

pre-filtering using MACCS fingerprints prior to the rigid docking step significantly increases

early enrichment, showing better discrimination between binders and non-binders, as well as
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Figure 4: Kinase domain of Abl kinase (PDB: 2HYY) shown with (A) known inhibitors from 25
different co-crystal structures, (B) probe mapping after FASTDock probe docking, and (C) FAST-
Dock sites that overlap with known ligand binding sites. Of the five known binding sites, three
are recovered with the FASTDock protocol.

provides significant speed-up of the overall virtual screening process.

Mapping Allosteric Sites

FASTDock is able to recover known allosteric sites. As we propose this protocol will be most

useful in identifying binders of novel sites, we wished to determine how well FASTDock does in

predicting allosteric sites in addition to the active site. To do so, we used the protein tyrosine

kinase Abl as a benchmark. Abl kinase is a member of the Src family of protein kinases, which

catalyze γ-phosphate transfer from ATP to protein substrates containing serine, threonine or

tyrosine residues. Proteins in this family consist of four domains; the kinase domain, which is

linked to regulatory SH2, SH3, and unique domains, contains the active site - where ATP is used

to phosphorylate other proteins and initiate signaling. Mutations in Abl kinase are associated

with chronic myelogenous leukemia (CML), making this a popular clinical target. For this rea-

son, Abl has many known inhibitors, with some being ATP competitive and others binding at

various allosteric sites across the kinase domain.

To determine how FASTDock does in locating allosteric sites, we first documented all known

binding sites of Abl kinase by obtaining a dataset of Abl structures co-crystalized with inhibitors.
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This dataset was obtained from the binding MOAD, and only structures with a resolution greater

than 2.5Å and experimental binding data (IC50,KI , or KD ) available were used. From the dataset

generated, we note there are five binding sites (Figure 4A). These include the ATP pocket, the

myristate binding site, and three allosteric sites, one of which is directly adjacent to the ATP

pocket; large compounds, such as imatinib, bind across this allosteric site and the ATP pocket.

The myristate site binds the myristoylated end of the unique domain of Abl kinase, and is a

self-regulatory site that regulates the global conformational change of Abl and thus its activity.

From this dataset, we mapped an Abl kinase structure that is co-crystallized with imatinib

(PDB: 2HYY), a known clinical, kinase inhibitor. After initial probe mapping, we locate many

sites across the kinase domain. These sites overlap with all experimentally identified binding

sites (Figure 4B). After ranking and scoring the sites, we see only three of the sites identified

overlap with the identified binding site. Two sites are no longer identified: the myristate site

and the ATP pocket (Figure 4C).

Only two probes map to the myristate site (benzene and ethane), hence it falls out upon

scoring. This is not entirely surprising, as the myristate pocket is hydrophobic. Looking at the

three ligands binding at this site, we find the benzene ring is the only common feature across all

three. The presence of ethane accounts for the native binding partner, myristate. It is slightly

concerning that the ATP pocket is no longer identified. However, the co-crystal structure used

for probe mapping is that of the inactive form. Thus, the ATP pocket is not easily accessible.

It is surprising that FASTDock was able to map probes to the area at all prior to scoring. Fur-

thermore, one of the sites FASTDock did identify is directly adjacent to the ATP pocket; ligands

binding to the ATP pocket overlap with this identified site. Thus, the site for ligand binding is

still identified. Nonetheless, we have identified 60% of known binding sites, and all allosteric

binding sites.
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Conclusion

Allostery is ubiquitous across the proteome. Thus, exploration of allosteric modulation is cru-

cial for advancing our understanding of biological mechanisms and developing of novel ther-

apeutics; however, identification remains a challenge. Allosteric sites are often hidden and do

not have clear geometric or chemical features. Furthermore, upon discovery of novel allosteric

sites, early lead generation is made more difficult as compared to orthosteric sites, since often-

times there is no information about the types of molecules that can bind at the site. With the

advent of ultra-large libraries of small molecules, searches through chemical space via brute

force approaches such as docking become infeasible. Thus, there is a need for a rapid, high-

throughput workflow which can identify selective and potent binders from a large library of

small molecules in an efficient manner.

In this work, we described a novel, high-throughput pipeline for identification of selective

and potent binders from large small-molecule libraries. This pipeline consists of three distinct

components: Probe mapping for site discovery, fingerprint screening, and rigid receptor dock-

ing. We show that our probe mapping technique is capable of recovering all experimentally

known binding sites. In addition, our ranking method is able to prioritize two-thirds of exper-

imentally identified sites over other computationally mapped sites. Finally, pre-filtering with

fingerprint screening of a target ligand database shows increased early enrichment in the rigid

docking step, and is also able to allow for fewer molecules to be docked while still delivering ro-

bust results. As the most computationally intensive aspect of a typical lead discovery pipeline

is the ligand docking step, the work-flow described herein has the potential to cut down com-

putational costs as well as make virtual screening more accessible because of the decreased re-

quirement for computational resources. Furthermore, this workflow can enrich allosteric and

cryptic site discovery, as the ability to process multiple conformations of a given target leads to

a more complete picture of the protein’s binding landscape. In addition, in the case of search-

ing for lead compounds binding at novel allosteric sites, the pipeline presented here provides

an efficient way in which to identify selective and potent binders from a large library of small
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molecules.
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