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ABSTRACT: Directed evolution facilitates enzyme engineering via iterative rounds of 
mutagenesis. Despite the wide applications of high-throughput screening, building “smart 
libraries” to effectively identify beneficial variants remains a major challenge in the community. 
Here, we developed a new computational directed evolution protocol based on EnzyHTP, a 
software we have previously reported to automate enzyme modeling. To enhance the throughput 
efficiency, we implemented an adaptive resource allocation strategy that dynamically allocates 
different types of computing resources (e.g., GPU/CPU) based on the specific need of an enzyme 
modeling sub-task in the workflow. We implemented the strategy as a Python library and tested 
the library using fluoroacetate dehalogenase as a model enzyme. The results show that comparing 
to fixed resource allocation where both CPU and GPU are on-call for use during the entire 
workflow, applying adaptive resource allocation can save 87% CPU hours and 14% GPU hours. 
Furthermore, we constructed a computational directed evolution protocol under the framework of 
adaptive resource allocation. The workflow was tested against two rounds of mutational screening 
in the directed evolution experiments of Kemp eliminase with a total of 184 mutants. Using folding 
stability and electrostatic stabilization energy as computational readout, we reproduced three out 
of the four experimentally-observed target variants. Enabled by the workflow, the entire 
computation task (i.e., 18.4 μs MD and 18,400 QM single point calculations) completes in three 
days of wall clock time using ~30 GPUs and ~1000 CPUs. 
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1. Introduction 

Directed evolution has been widely employed to expand and enhance enzymes’ catalytic 

capability via iterative rounds of screening and selecting of enzyme variants.1, 2 Despite significant 

achievements in enzyme engineering, directed evolution faces big challenges in screening because 

of the enormously large combinatorial mutational space. Specifically, due to unknown sequence-

function relationship, each round of screening may take substantial cost of time and resource. The 

outcome from the screening is also uncertain. Although high-throughput screening techniques 

have been used to facilitate directed evolution,3 designing readout for the function of enzyme 

mutants is highly case dependent. To accelerate the process of mutational screening, computational 

strategies have been employed to mechanistically infer beneficial mutations,4-8 identify hotspots,9-

11 reveal structure/sequence-function relationships12-15,  and build data-driven models for 

predictive biocatalysis.16 These foundational efforts significantly broaden the scope of which 

functional enzyme variants can be understood, predicted and designed, but how to build a general-

purpose virtual screening platform for biocatalyst discovery remains an open question.  

Previously, our lab developed EnzyHTP17 as a high-throughput enzyme modeling tool to 

automate the entire life cycle of enzyme modeling, including structural preparation, mutagenesis, 

molecular dynamic (MD), and quantum mechanics (QM) calculations. Enabled by EnzyHTP, here 

we further developed a computational directed evolution protocol that enables hundreds of mutants 

to be virtually screened based on their stability and capability of stabilizing the breaking bond in 

the rate-limiting transition state. Notably, prior to our work, the Kamerlin lab has pioneered the 

development of software, CADEE,18 for semi-automatic screening of enzyme variants. CADEE 

specializes in free energy calculations using empirical valence-bond (EVB), which is different 
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from the current work that emphasizes the construction of a generic computational enzyme 

engineering platform.  

Central to the new development and implementation is an adaptive resource allocation 

strategy that accelerates the high-throughput computation via dynamically requesting and 

distributing computing nodes for each sub-task in the high-throughput modeling workflow. Here, 

resource allocation refers to the process of managing different types of computing resources (e.g., 

CPU or GPU) for different tasks (e.g., QM or MD simulations). In high-performance computing 

(HPC) clusters, large amount of computing resources can be wasted if a fixed number of CPU and 

GPU nodes are requested based on the resource need of the most computationally demanding sub-

tasks. Besides resource waste, the fixed allocation scheme can also significantly delay the 

completion of the entire workflow. 

The strategy of adaptive resource allocation was implemented as a Python application 

programming interface, known as adaptive resource manager (ARMer). Based on EnzyHTP,17 we 

benchmarked the resource and time consumption of ARMer against fixed resource allocation 

scheme in the task of modeling fluoroacetate dehalogenase (FAcD)19-23. Furthermore, we 

constructed a computational directed evolution protocol to help screen for rate-enhancing enzyme 

mutants. We tested the workflow for two rounds of directed evolution screening of Kemp 

eliminase variants. Enabled by adaptive resource allocation, the computational directed evolution 

protocol offers a tool for accelerating the process of screening and selecting beneficial enzyme 

variants for biocatalytic uses.   

2. Design and Implementation 
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2a. The computational directed evolution protocol. We constructed the computational directed 

evolution protocol using modular python functions in EnzyHTP (see Supporting Information .zip). 

The protocol consists of four steps. First, the workflow converts a list of user-provided starting 

variants into structural models using structural preparation module. The file format of these 

structural models is compatible with the downstream molecular simulations. Second, for each 

starting variant, the workflow randomly generates a certain number of mutants (defined by the 

user) to form the mutant library for the subsequent computational screening. Third, the workflow 

computes thermostability score for all mutants in a high-throughput fashion using cartesian_ddg 

in Rosetta24, 25. As an independent task, the workflow also calculates electrostatic stabilization 

energy, ∆Gelec,12, 26 for all mutants via performing 100 ns MD simulation in AMBER2 and QM 

single-point calculations (i.e., PBE1PBE/def2-SVP) in Gaussian 1627 using 100 snapshots evenly 

extracted from the MD trajectory. Specifically, the ∆Gelec is derived from the dot product between 

the reacting bond dipole (by wavefunction analysis28) and the electric field strength of the enzyme 

(calculate by Coulomb’s law with MM charges). Fourth, the workflow filters out 80% of the 

mutants that are predicted to be thermally unstable relative to the wild type (i.e., positive 

thermostability score). The remaining mutants are ranked based on their ∆Gelec values. Notably, 

completing the above-mentioned four steps concludes one round of computational directed 

evolution. A certain number of mutants (defined by the user) can be used as starting variants to 

initiate a new round of directed evolution.  
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Figure 1. The design architecture of computational directed evolution protocol. Each black dot 

represents an enzyme variant. 

2b. Adaptive resource manager (ARMer). To properly manage resource allocations for 

computational screening tasks, the adaptive resource allocation strategy employs a “workflow 

script” that runs a single-CPU thread to manage sub-tasks for the entire high-throughput workflow. 

Using commands implemented in the ARMer Python library, the workflow script configures, 

submits, and monitors new jobs in HPC clusters that pertain to the actual need of computing 

resources in a sub-task of the workflow. This is in sharp contrast to the fixed resource allocation 

scheme where maximal computing resources are requested.  

The ARMer Python library consists of two classes: the Job class and HPC class (Supporting 

Information, Figure S1). The Job class (called ClusterJob in the code) defines properties and 

functions that are associated with job configuration, submission, and dynamic monitoring of job 

completion (Figure 2). The HPC class (subclasses of ClusterInterface in the code) supports the Job 

class with properties and functions to mediate shell input/output in user’s local HPC where ARMer 

is deployed. This “plug-in” interface design allows easy support for any new HPC. Similar to 

subprocess.run in the Python standard library, ARMer library enables the “workflow script” to run 
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shell commands on other computational nodes – these commands are wrapped in the job scripts in 

the HPC clusters (see more discussion in the Supporting Information, Figure S1 and Text S1). 

 

Figure 2. Variables and functions for job configuration, submission, and dynamic monitoring 

defined in the Job class.  

With the job object instantiated, a job script for the required task can be generated 

(Supporting Information, Figure S3) and then submitted by the submit() method (Figure 2 and 

Supporting Information, Figure S2). Notably, the format of the job script, the submission 

commands, and other HPC-dependent information are obtained from the HPC class object that is 

instantiated and passed to the cluster argument described above. Once the job has been submitted, 

a job ID is added to the object by the function. By tracing the job ID, the “workflow script” can 

monitor the status of a job object in the queue, and mediate the status by killing, holding, or 

releasing the job (Figure 2). Notably, the capability of dynamically monitoring the job completion 

status is vital to high-throughput modeling workflow. This is because the workflow involves 

multiple different types of simulation sub-tasks that must be sequentially operated.  
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Two methods have been implemented to achieve dynamic monitoring – they are: 

wait_to_end()and wait_to_array_end() method. The wait_to_end() method checks the status of a 

job in the job queue with a certain period of time (i.e., every 30 seconds) and exits upon the 

detection of messages that indicate job completion, error, or cancellation. The 

wait_to_array_end() method takes multiple job objects and submits them in one job array. 

Similarly, the method monitors the status of all jobs in the array regularly, and dynamically append 

new jobs to the array up to the maximal capacity (i.e., array size).   

Implementation of ARMer in EnzyHTP enables an if_cluster_job option for all 

computationally insensitive functions (like MD, QM and free energy calculation). With this option 

turned on, the computational directed evolution protocol described in the Section 2a can achieve 

adaptive resource allocation.  

3. Results and Discussion 

3a. Test of adaptive resource allocation using fluoroacetate dehalogenase. We employed 

fluoroacetate dehalogenase (FAcD)19-23 as a model system and conducted a high-throughput 

workflow of enzyme simulations using EnzyHTP.17 The workflow consists of four sequential sub-

tasks, namely, 1) mutant structure construction, 2) 100 ns MD simulation, 3) 100 QM cluster 

calculation, and 4) post-analysis. (See details in Supporting Information Text S2 Notably, the 

model system and workflow have been applied in our previous work to test the throughput 

capability of EnzyHTP.17 However, unlike the previous workflow that samples 100 variants with 

minimalist resource cost, the current workflow only tests one enzyme variant (i.e, K83D, 

Supporting Information, Figure S4) with MD and QM simulations set up to meet resource demand 

in actual computational research (Supporting Information .zip).  
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We benchmarked the resource and time consumption of the workflow for two strategies: 

fixed resource allocation versus adaptive resource allocation, on our local HPC at Vanderbilt, i.e., 

advanced computing center for research and education (ACCRE). Using fixed resource allocation, 

all computing resources (i.e., 1 GPU and 8 CPU) involved in the workflow are requested by a 

single submission script in one shot. Figure 3 shows the simulation type, time cost (i.e., vertical 

axis), and resource demand (i.e., GPU in orange and CPU in blue) associated with each sub-task 

in the workflow. Both CPU and GPU are requested for the entire workflow (Figure 3). However, 

resource waste is observed. Specifically, in the ~14 hours of MD simulation, only one GPU is used 

but the CPUs are primarily in idle mode (time-waste: ~8x14 = ~112 CPU hours); in the 3 hours of 

QM calculations, CPUs are used but the GPU is not (time-waste: 3 GPU hours). In the 

minimization and post-analysis sub-tasks, CPU and GPU are also not exploited, albeit the resource 

cost is trivial. Apparently, with fixed resource allocation, the collective resource waste is 

significant.  

 

Figure 3. The high-throughput workflow of FAcD modeling using fixed resource allocation 

strategy, in which 1 GPU (in orange) and 8 CPUs (in blue) are requested in the beginning of the 
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workflow. The type of modeling sub-tasks, time cost, and resource consumption are noted on the 

Figure.    

Using adaptive resource allocation, a 96-hour wall-clock time, single CPU job is submitted 

that operates a Python “workflow script” to allocate resources for sequential sub-tasks involved in 

the workflow (Figure 4). The “workflow script” manages the sub-tasks using commands 

implemented in the ARMer library (detailed in the Design and Implementation section). Compared 

to fixed allocation strategy that directly executes sub-tasks using the allocated CPU or GPU, this 

workflow script configures resource-demanding sub-tasks (i.e., need >1 CPU or ≥1 GPU) in a new 

job script and then submits the job to the queue (i.e., setting if_cluster_job = ‘True’ in the code).  

In the MD simulation sub-task, the workflow script configures shell commands that run 

AMBER29 simulations in a job script along with the GPU request and environment settings. The 

workflow script then submits the MD job and regularly monitors the completion status of the job. 

After confirming the completion of MD, the workflow script will continue operating the QM 

calculation sub-task in the workflow. Since the 100 QM calculations are independent, the 

workflow script can submit multiple QM jobs (8 CPU each) simultaneously to the job array so that 

they can run in parallel up to the size limit of job array (i.e., 25 jobs) in local HPC cluster (Figure 

4). New jobs will be submitted once the “workflow script” detects open slots on the array (see 

discussion of parallel computing using Python subprocess module, Supporting Information Text 

S3). With an array size of 25 jobs, one would expect an ideal time acceleration by a factor of 25 

given the ideal condition of no job queueing time (i.e., ~2.4 hours as compared to 60 hours with 

all job running serially). Overall, with adaptive resource allocation, the resource waste can be 

minimized.  
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Figure 4. The high-throughput workflow of FAcD modeling using adaptive resource allocation 

strategy, in which a “workflow script” the runs on a single-CPU thread operates the modeling sub-

tasks (i.e., mutation, MD, and QM) by configuring, submitting, and monitoring new job scripts. 

The MD job requests 1 GPU (in orange) and each QM job 8 CPUs (in blue). To submit and run 

individual QM calculations in parallel, a job array with a size of 25 is employed. The type of 

modeling sub-tasks, time cost, and resource consumption are noted on the Figure.  

We compared the computational cost (Supporting Information, Figure S5) and wall clock 

time (Supporting Information, Figure S6) for different sub-tasks of the workflow using fixed 

resource allocation (in red) versus adaptive resource allocation (in green) on ACCRE. In contrast, 

fixed resource allocation involves 14% resource waste in GPU-based MD simulation and 87% in 

CPU-based QM calculations, while adaptive resource allocation makes full use of these computing 

resources in every sub-task of the workflow (Supporting Information, Figure S5). For wall clock 

time, both strategies differ most significantly in the QM calculation sub-task (Supporting 

Information, Figure S6). Enabled by parallel submission of individual QM jobs to a job array (i.e., 
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25 jobs per array), adaptive resource allocation strategy completes 100 QM calculations by 0.35 

hours. With fixed resource allocation (i.e., 8 CPUs), the calculations are completed by 2.8 hours. 

With larger QM system size and higher theory level, the QM resource consumption will be more 

significant. As such, the waste of resource and time for fixed resource allocation is expected to 

inflate. 

With new jobs generated, submitted, and monitored on the fly by adaptive resource 

allocation strategy, the resource waste observed by fixed resource allocation is no long expected 

because resources are requested and distributed based on the need of individual sub-task in the 

workflow. We should note that one potential caveat of adaptive resource allocation strategy is the 

time spent for queueing. In our test, the total amount of time spent for job queueing is about 12 

minutes, which is relatively trivial. On extremely crowded HPC, we assume job queueing time to 

be much longer. The fixed resource allocation scheme suffers less from the queueing, but the 

overall cost of time and resource is substantial.     

Besides being resource-efficient, adaptive resource allocation scheme also prevents 

conflict of software environment setting. Under the adaptive resource allocation scheme, the 

workflow script can customize specific environment setting based on the requirement of an 

individual job. In contrast, the fixed resource allocation scheme will have to load all environmental 

variables in the beginning of the submission job, which can cause conflict for different software 

as the workflow proceeds.  

3b. Test of the computational directed evolution protocol. We employed Kemp eliminase (KE) 

as model enzyme to test the computational directed evolution protocol for its ability to predict 

experimentally observed target KE mutants in two rounds of directed evolution experiments. KE 
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is selected for three reasons. First, the crystal structure of KE has been determined, which provides 

an accurate template to generate structural models for mutants. Second, the lead variants associated 

with each round of KE screening in directed evolution have been reported.31 This provides 

reference data to examine the predictive capability of computational protocol. Third, KE is known 

to involve a general acid-base mechanism – the substrate 5-nitrobenzisoxazole is deprotonated by 

a nearby carboxylate (side chain of Glu or Asp) to form 2-hydroxy-5-nitrobenzonitrile via one 

single transition state.30 The relatively simple mechanistic picture reduces the complexity of 

having to consider the variation of rate-limiting step upon mutation.  

We selected two out of seven continuous rounds of directed evolution (i.e., round 5 and 6) 

that leads to the identification of KE0730. Both rounds use error-prone PCR for mutagenesis. 

Experimentally, round 5 starts from six KE variants and conducts error-prone PCR with 1±1 

mutations per mutant. Twelve active variants (only two were reported, Figure 5) from round 5 

were filtered into round 6 for error-prone PCR with 3±1 mutations per mutant. This results in 

twenty active variants (only two were reported, Figure 5) that go into round 7.  

Based on the experimental protocol, we set up a computational workflow of directed 

evolution, aiming to test whether we are able to identify the experimentally-observed target 

variants from a bunch of randomly-generated mutations through the in silico screening protocol 

(Figure 5). Specifically, for round 5, the workflow starts from six variants, forms a library of sixty 

mutants with single amino acid substitution through generating ten random mutants for each 

starting variant, computes thermostability score and electrostatic stabilization energy for each 

mutant by MD and QM simulations, and selects twelve top-ranked mutants with stable fold and 

strong electric field to promote deprotonation in the rate-limiting transition state (Figure 5). These 

twelve mutants (same number as the experimental setup) are used as starting variants to initiate 
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the round 6. For round 6, random triple mutations are generated with ten mutants for each starting 

variant to form a library of 120 mutants. This round of screening results in twenty top-ranked 

mutants (same number as the experimental setup). For each round, we added the two 

experimentally-observed target variants in the mutant library (i.e., 62 and 122 mutants in total for 

round 5 and 6, respectively) and test whether these two mutants can be filtered in as the top-ranked 

mutants based on the computational scoring of protein thermostability and electrostatic 

stabilization energy (i.e., ΔGelec). By statistics, the chance of observing the target variants among 

a group of randomly selected mutants is 3.5% for round 5 and 2.5% for round 6 (Supporting 

Information, Text S5), which presents a challenging test to the predictive capability of the 

computational directed evolution protocol.  
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Figure 5. The computational protocol for two rounds of directed evolution. Round 5 and 6 out of 

the seven rounds of experimental directed evolution of Kemp eliminase are used in the test. 

Specific stages of the workflow are shown on the bottom axis from left to right. The results of each 

stage are listed above the axis. Specific information about each mutant is listed in the Supporting 

Information, Table S1. The modeling results of thermostability and electrostatic stabilization 
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energy (i.e., ΔGelec) are represented as color-coded blocks next to the mutants. For thermostability 

score, the thermally stable and unstable mutants are shown in white and red, respectively. For 

ΔGelec, a color gradient scheme from darker green to white is applied, where darker green refers to 

strong electric field with greater capability of stabilizing the bond cleavage. “Green check” or “red 

cross” represents the successful or failed inclusion of an experimentally-observed target mutant in 

a screening stage.  

 Figure 5 shows the outcome of each screening stage of the computational directed 

evolution protocol. In the mutant library of round 5 (i.e., 62 mutants), the thermostability scores 

vary from -6.4 to 56.3 Rosetta energy unit (REU) with a standard deviation of 17.3 REU; 16 

mutants are predicted to be more stable than the wild-type (i.e., negative thermostability score) 

and 46 less stable (i.e., positive thermostability score). For screening, we defined the “stable” 

mutants (labeled in white, Figure 5) to consist of all mutants that are more stable than the wild-

type (i.e., 16) plus 20% of the top-ranked mutants with a positive thermostability score (i.e., 10). 

We allowed for a slight magnitude of stability dropping because the loss of stability might be a 

potential trade-off for catalytic enhancement. Notably, the empirical cutoff value used here was 

defined prior to the computation and used consistently for both round 5 and round 6. Among the 

26 stable mutants, the ΔGelec values vary from 0.5 to 3.1 kcal/mol with a standard deviation of 0.6 

kcal/mol; the 12 mutants with top-ranked ΔGelec values were sent for screening in round 6. 

Throughout the round 5, both experimentally-observed target mutants are found in the final list. 

In the mutant library of round 6 (i.e., 122 mutants), the thermostability scores vary from -

12.5 REU to 68.3 REU with a standard deviation of 13.9 REU. Using the same screening strategy 

as described for round 5, the workflow identifies 34 stable mutants. Unfortunately, one of the target 

mutants (i.e., I7D G202R N224D I44E K146T) is excluded from the list. This is likely caused by 
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limited accuracy of Rosetta cartesian ddG in predicting multiple mutations that involve epistatic 

effects. Using data-driven models that account for cooperative contributions of multiple mutations 

can potentially fix the problem. Among the stable mutants, ΔGelec values vary from -0.4 kcal/mol 

to 2.5 kcal/mol with a standard deviation of 0.6 kcal/mol. Based on the ranking of ΔGelec values, 

we selected 20 mutants, in which the other target mutant is included.  

Overall, the computational directed evolution protocol identifies three out of four 

experimentally-observed target mutations in two continuous rounds of mutagenesis. The hit rate 

is significantly higher than that derived from random sampling. Accelerated by ARMer, the entire 

workflow finishes in 3 days with ~30 GPUs and ~1,000 CPUs. This corresponds to a total of 18.4 

μs MD and 18,400 QM single point calculations. For the next step of development, the challenge 

lies in the development of catalytically relevant descriptors and predictive scoring functions to 

inform the impact of mutation on enzyme catalysis. How to incorporate calculations of reaction 

barriers in the high-throughput workflow is also a meaningful question.  

4. Conclusion 

We designed a computational directed evolution protocol based on EnzyHTP. Through 

iterative rounds of screening, the workflow can generate random mutations and identify mutants 

with enhanced catalytic functions. To accelerate the throughput capability, we developed a Python 

library, ARMer, to adaptively allocate resources for computational sub-tasks in a high-throughput 

molecular modeling workflow in HPC clusters. The ARMer Python library consists of two classes: 

the Job class that defines variables and functions for job configuration, submission, and 

monitoring; the HPC class that supports the Job class to mediate external input/output in HPC 

clusters and users can easily customize a subclass for their local HPC clusters. Using commands 
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implemented in ARMer, a “workflow script” can run on a single CPU thread to generate, submit, 

and monitor new jobs that call external software to execute sub-tasks.  

To test the efficiency, we employed ARMer to manage the sub-tasks in the enzyme 

modeling workflow for FAcD using EnzyHTP. The sub-tasks include enzyme mutant structure 

construction, 100 ns MD simulation, 100 QM calculations, and electronic structure analysis. We 

compared the consumption of time and resource between two allocation strategies: fixed resource 

allocation versus adaptive resource allocation. Fixed resource allocation involves significant 

resource waste: in the 14 hours of MD simulation, only one GPU is used but the CPUs are primarily 

in idle mode (time-waste: 8x14 = 112 CPU hours); in the 3 hours of QM calculations, CPUs are 

used but the GPU is not (time-waste: 3 GPU hours). In contrast, the adaptive resource allocation 

makes full use of both computing resources in the corresponding sub-tasks of the workflow. 

Moreover, ARMer allows parallel submission of multiple smaller computational jobs in a job array 

and provides customized environment settings for each software used in the workflow. 

Enabled by ARMer and EnzyHTP, we constructed the computational directed evolution 

protocol and tested it against two continuous rounds of experimental directed evolution for Kemp 

elimiase, KE07. Using the workflow, we successfully reproduced three out of four experimentally-

observed target mutants in 3 days with a total of 18.4 μs MD and 18,400 QM single point 

calculations by ~30 GPUs and ~1000 CPUs. The computational directed evolution protocol holds 

great promise to accurate the process of enzyme engineering.  
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https://github.com/ChemBioHTP/ARMer. The input files and structures are provided as part of the 

SI files. EnzyHTP is available from https://github.com/ChemBioHTP/EnzyHTP/tree/develop. 

Workflow scripts for the computational directed evolution protocol are available from 

https://github.com/ChemBioHTP/EnzyHTP/blob/develop/Test_file/KE_accre/R6/KE-

metrics_complete.py. AMBER 19 is available from http://ambermd.org/. Gaussian 16 is available 
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