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Abstract 
 

Essential oils contain a variety of volatile metabolites, and are 
expected to be utilized in wide fields such as antimicrobials, insect 
repellents and herbicides. However, it is difficult to foresee the effect 
of mixing the oils because hundreds of compounds can be involved 
in synergistic and antagonistic interactions. For efficient formula 
optimization, we have developed and evaluated a machine learning 
method to classify antibacterial interactions between the oils. Cross-
validation showed that graph embedding improved areas under the 
ROC curves for synergistic-versus-rest classification. Furthermore, 
antibacterial assay against Staphylococcus aureus revealed that 
oregano–ajowan, lemongrass–hiba, cinnamon–lemongrass and 
ajowan–ginger combinations exhibited synergistic interaction as 
predicted. These results indicate that graph embedding approach is 
useful for predicting synergistic interaction between antibacterial 
essential oils. 

 
 
1. Introduction 
Plants produce and emit diverse volatile 
organic compounds (VOCs). Humans have 
found value in the VOCs, and extracted them 
as essential oils (EOs) by distillation or 
expression. EOs have been extracted from 
approximately 3000 plants, and widely used 
for pharmaceutical, agronomic, food, sanitary, 
cosmetic and perfume industries [1]. In the last 
decades, VOCs were elucidated to be involved 
in protection against pathogens, defense 
against herbivores, attraction of pollinators and 
plant–plant signaling [2]. However, it is still 
uncertain how diverse VOCs cooperatively 
fulfill their functions under each physiological 
condition. 

 Although a large number of EOs and 
VOCs have been reported to show 
pharmacological activities [3, 4], development 
of bioactive products from them is still a 
challenging task. Many studies have shown 
that combined EOs exhibit stronger/weaker 
effects (hereinafter referred to as “EO–EO 
interaction”) than expected [5, 6]. 
Unfortunately, the causal relationship of the 
EO–EO interaction is not clear because tens to 
hundreds of VOCs can be involved in the 
interaction. Thus, EO products occasionally 
fail to show the expected activity even though 
they are generally used in combination. 
 Advances in machine learning have 
made significant progress in predicting 

https://doi.org/10.26434/chemrxiv-2023-6j4nx ORCID: https://orcid.org/0000-0002-7353-0956 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-6j4nx
https://orcid.org/0000-0002-7353-0956
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

biologically important pairs such as protein–
protein interaction [7], drug–target interaction 
[8] and drug–drug interaction [9] in the last 
decades. Traditional approaches represent 
interaction pair as a numerical vector by 
operating corresponding (molecular or protein) 
descriptors, and consider the prediction task as 
a binary classification problem of the 
presence/absence of interaction. These 
classification-based approaches have shown 
good results for many applications including 
our previous study on drug–target interaction 
[10]. However, the approaches can not predict 
unknown interactions correctly if the 
descriptors do not depict characteristics of the 
interactions. Recently, graph embedding 
approaches have gained attraction in 
biomedical fields in order to capture structural 
features of the interaction network [11]. A 
systematic comparison on drug–drug 
interaction showed the graph embedding 
methods achieved competitive performance 
without using biological features [12]. 
 In the present paper, we have 
developed a machine learning method to 
predict EO–EO interactions using graph 
embedding. The interactions were represented 
as a network structure with EOs and VOCs as 
nodes, and their synergistic/antagonistic 
interactions as edges (Fig. 1). The network 
structure and oil composition data were 
inputted to a graph embedding algorithm to 
encode the nodes as numerical vectors. The 
edge features were constructed from pairs of 

the learned node representations with either of 
binary operators, and were inputted to a 
machine learning algorithm to classify 
synergistic/additive/antagonistic pairs. The 
classification performance was evaluated by 
statistical methods and antibacterial assay. 
 
2. Results 
2.1 Literature search on EO–EO interaction 
Literature search on antibacterial interaction 
found 46 synergistic, 53 antagonistic and 172 
additive pairs from 23 papers (Table S1). The 
network structure of synergistic/antagonistic 
interactions consisted of 54 EOs and 18 VOCs 
(Fig. 2a). The EOs were composed by 1 to 33 
(5.6 on average) VOCs (Table S2). 
Monoterpene hydrocarbons (α-pinene, 
limonene etc.), oxygenated monoterpenes (1,8-
cineole, linalool etc.), sesquiterpene 
hydrocarbons (β-caryophyllene etc.), 
oxygenated sesquiterpenes (caryophyllene 
oxide etc.) and phenylpropanoids (eugenol 
etc.) were frequently reported to compose the 
oils. However, on average, 24.4 percent of the 
composition was not shown in the papers (Fig. 
2b). 
 
2.2 Graph embedding and machine learning 
of EO–EO interaction 
The three-class classifier was successfully 
constructed using graph embedding and the 
synergistic, antagonistic and additive pairs 
found by the literature search. Output 
probability for synergistic-versus-rest and 

 

Figure 1.  Overview of the graph embedding method to predict interaction between essential oils. 

https://doi.org/10.26434/chemrxiv-2023-6j4nx ORCID: https://orcid.org/0000-0002-7353-0956 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-6j4nx
https://orcid.org/0000-0002-7353-0956
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

antagonistic-versus-rest classifications were 
evaluated by ten-fold cross-validation with 
receiver operating characteristic (ROC) curve 
to visualize the relative trade-offs between the 
true positive rate and false positive rate. 
Among four (Hadamard, L1-norm, L2-norm 
and average) binary operators, average 
operator showed the best area under the ROC 
curve (AUC) for both classifications (Table 
S3). Furthermore, for the synergistic-versus-
rest classification, the operator also showed the 
best partial AUCs (AUC0.5 = 0.211 and AUC0.2 
= 0.048). Therefore, we selected the average 

operator for further validation to find unknown 
synergistic EO–EO interactions. The graph 
embedding method performed significantly 
better in AUC (0.615 vs 0.556, p = 1.1 × 10-3), 
AUC0.5 (0.211 vs 0.164, p = 1.7 × 10-4) and 

AUC0.2 (0.048 vs 0.033, p = 3.8× 10-5) for the 

synergistic classification than those performed 
without graph embedding (Table 1). 
However, no significant differences (p > 0.01) 
were observed for the antagonistic-versus-rest 
classification. 
 

 
Figure 2. (a) Network structure of antibacterial interaction data on Staphylococcus aureus. Each edge 
is colored by synergistic (red) or antagonistic (light blue) interaction. Each node has a pie chart with the 
chemical composition divided into chemical categories shown in (b) for better visualization. (b) Mean 
composition of essential oils in the interaction data. Values in parentheses indicate the mean percentage 
composition. 

 
Table 1. AUC and partial AUCs obtained by ten-fold cross-validation. 

classification metric 
method 

graph 
embedding 

classification-
based 

synergistic- AUC 0.615 ± 0.020 0.556 ± 0.040 
versus-rest AUC0.5 0.211 ± 0.016 0.164 ± 0.023 

 AUC0.2 0.048 ± 0.004 0.033 ± 0.006 
antagonistic- AUC 0.576 ± 0.014 0.550 ± 0.033 
versus-rest AUC0.5 0.150 ± 0.010 0.159 ± 0.017 

 AUC0.2 0.020 ± 0.004 0.024 ± 0.003 
Values are means ± SD of 10 iterations, and the significantly better results  

are highlighted in bold (paired t-test, p < 0.01). 
AUC: areas under the receiver operating characteristic (ROC) curve. 
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Figure 3. Chemical composition of the selected essential oils. Values in parentheses are the percentage of 
the total peak area obtained from the total ion current (TIC) chromatogram. Pie charts represent the 
chemical composition divided into chemical categories shown in Fig. 2b. 
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2.3 Prediction of synergistic interaction 
between available EOs 
We calculated the probability of 
synergistic/antagonistic interaction between 
all possible pairs of the commercially available 
84 EOs (Table S4) using the classifier 
constructed above. The classifier predicted 
2088 EO–EO pairs as synergistic when 
Youden index (= 0.351) was used as the 
threshold probability. We randomly selected 
16 EO–EO pairs from them for following gas 
chromatography/mass spectrometry (GC/MS) 
analysis and antibacterial assay. 
 
2.4 Gas chromatography/mass 
spectrometry analysis of selected EOs 
In order to obtain more comprehensive 
composition data, the purchased EOs were 
analyzed by GC/MS. The major compounds 
identified (Fig. 3) were almost the same as 
those data provided by suppliers. We also 
characterized 7, 19, 38, 43, 41, 33, 20, 25, 10 
and 21 VOCs from ajowan, cinnamon, ginger, 
hiba, katrafay, lemongrass, lemon tee tree, 

oregano, Peru balsam and thyme thymol EO, 
respectively (Table S5). We then confirmed 
that the classification of the 16 EO–EO pairs 
was reproduced by inputting the GC/MS data 
instead of the suppliers’ data. 
 
2.5 Antibacterial assay 
Broth microdilution revealed that the EOs and 
their 16 combinations showed minimum 
inhibitory concentration (MIC) range of 0.5 to 
>4 mg/mL and 0.125 to >4 mg/mL, 
respectively (Table 2). MIC for thymol 
(positive control) was 0.25 mg/mL, which was 
equivalent to literature data (0.03 v/v % [13]). 
No inhibition of bacterial growth was observed 
in the negative control. 

Four EO–EO pairs (oregano–ajowan, 
lemongrass–hiba, cinnamon–lemongrass and 
ajowan–ginger) exhibited fractional inhibitory 
concentration index (FICI) less than or equal to 
0.5, namely, synergistic interaction. In 
particular, the lemongrass–hiba combination 
of showed the strongest MIC (0.125 mg/mL) 
which was stronger than that of thymol, and its 

Table 2. Observed antibacterial interaction between essential oil pairs predicted as synergistic. 

Essential oilA Essential oilB 
Probability MICA MICB MICmix 

FICI 
synergistic antagonistic (mg/mL) (mg/mL) (mg/mL) 

lemongrass oregano 0.669 0.075 0.79 0.5 0.5 0.81 (AD) 
oregano Peru balsam 0.629 0.161 0.5 >4 1 1.0–1.1 (AD) 

lemongrass Peru balsam 0.607 0.123 0.79 >4 2 1.2–1.6 (AD) 
oregano ajowan 0.585 0.190 0.5 0.5 0.25 0.50 (S) 

thyme thymol oregano 0.584 0.182 0.5 0.5 0.5 1.0 (AD) 
lemongrass ajowan 0.565 0.146 0.79 0.5 0.4 0.67 (AD) 

thyme thymol lemongrass 0.562 0.140 0.5 0.79 0.5 0.81 (AD) 
ajowan lemon tee tree 0.541 0.159 0.5 1 0.5 0.75 (AD) 

thyme thymol lemon tee tree 0.538 0.152 0.5 1 1 1.5 (AD) 
lemongrass hiba 0.537 0.111 0.79 0.5 0.125 0.19 (S) 

katrafay Peru balsam 0.535 0.190 1 >4 >4 >2.5 (AD/AN) 
cinnamon oregano 0.504 0.280 0.5 0.5 0.5 1.0 (AD) 
cinnamon lemongrass 0.497 0.218 0.5 0.79 0.25 0.41 (S) 

lemon tee tree ginger 0.487 0.132 1 >4 2 1.0–1.3 (AD) 

ajowan ginger 0.415 0.285 1 >4 0.25 0.25–0.28 (S) 
thyme thymol ginger 0.415 0.274 0.5 >4 0.5 0.50–0.56 (AD) 
The FICI was interpreted as S: synergistic (FICI ≤ 0.5); AD: additive (0.5 < FICI < 4); AN: antagonistic (FICI 
≥ 4). Observed synergistic interactions are highlighted in bold. Plant species corresponding the oil names are 
shown in Fig. 3. 
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FICI reached 0.19. Meanwhile, the other 12 
pairs showed additive or antagonistic 
interaction. 
 
3. Discussion 
Development of analytical technology enabled 
us to identify hundreds of VOCs present in 
EOs, and artificial intelligence has been 
applied to the bioactivity prediction using the 
chemical composition data [14, 15]. However, 
as far as we know, its application to EO–EO 
interaction is not yet reported, probably 
because of a shortage of publicly available 
training data. In this study, we confronted this 
problem with graph embedding to compensate 
the shortage by adding network structure data 
of the interaction. This strategy worked well 
for synergistic-versus-rest classification in the 
cross-validation.  The possible reason is that 
there exists antibacterial contribution of trace 
constituents absent in the reported composition 
data. In fact, several blends of major 
constituents were known to show much weaker 
antibacterial activity than original EOs [16]. 
On the other hand, the graph embedding 
approach did not show better performance for 
antagonistic-versus-rest classification in this 
research. The antagonistic mechanisms may be 
ascribed to the major components such as 
bacteriostatic–bactericidal combination and 
common site of action [16]. 

The precision obtained by antibacterial 
assay (4 / 16 = 25%) was apparently low, 
however the frequency of synergistic 
interaction should be taken into consideration. 
It is generally difficult to infer the frequency of 
EO–EO interactions from the literature data 
because additive EO pairs tend to be 
considered as negative results, and to be not 
reported. An indicative study was performed 
by Orchard et al., testing 247 EO combinations 
against three reference strains of 
Staphylococcus aureus (ATCC 25923) and 
methicillin-resistant Staphylococcus aureus 
(ATCC 43300 and ATCC 33592), which 
resulted in observation of 6, 9 and 14 
synergistic interactions, respectively [17]. 
Assuming that synergism is observed at the 
same level, our method is expected to detect 
more synergistic pairs (4 / 16) than random 

sampling (6 to 14 / 247). 
 Predicting interaction against out-of-
sample (not learned) EOs is a critical issue 
because our learning data covers just 54 EOs, 
namely, most of the available EOs lack the 
interaction data. Furthermore, for each plant 
species, chemical composition varies under 
environmental conditions such as temperature, 
carbon dioxide, lighting and soil fertility [18]. 
In this study, the graph embedding method 
successfully detected synergistic interactions 
for the out-of-sample EOs (ajowan, hiba and 
ginger) and for EOs from different sources   
(cinnamon, oregano and lemongrass). This 
result indicates that the proposed approach is 
applicable to a wide variety of EOs. 

The molecular mechanism of action 
provides insights to understand the synergistic 
and antagonistic interactions. Previous studies 
on EOs pointed out the involvement of 
hydrophobicity which is responsible for the 
disruption of bacterial cell membrane [16, 19]. 
For example, p-cymene and carvacrol are 
considered to act synergistically by expanding 
cell membrane, which results in the 
destabilization of the membrane [20]. This 
mechanism may contribute to the interaction 
we have found between oregano (composed of 
47.2% carvacrol) and ajowan (composed of 
11.5% p-cymene). However, other three 
interactions (lemongrass–hiba, cinnamon–
lemongrass and ajowan–ginger) are not 
explained by known interactions between the 
major constituents. Enrichment of the 
mechanism information of VOCs will not only 
provide interpretation of the assay results but 
also improve the predicting performance of 
graph embedding approach by incorporating 
the network structure of VOC–target 
interactions into the embedding. 
 Finally, the graph embedding 
approaches have potential limitations. The first 
is that the embedding is generally performed in 
a black-box fashion, which makes difficult to 
understand which VOCs contribute to the 
interaction. Feature extraction with wrapper 
method (e.g. recursive feature elimination) 
may resolve the issue. The second limitation 
concerns triple or more combination. The 
method described in this research is based on 
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binary combination for model simplification. 
Further assay data and statistical theories 
focused on multiple combination are needed. 
 Our study suggests that graph 
embedding approach is useful for exploring 
synergistic interaction between antibacterial 
EOs. Machine learning of EO–EO interaction 
will help cost-effective EO formula 
optimization. Application for other biological 
activities will be evaluated in future research. 
 
4. Methods 
4.1 Data 
Literature search on antibacterial interaction 
among EOs and VOCs was performed using 
PubMed [21] and Google scholar 
(https://scholar.google.com) in April 2021. 
The keywords “synergy”, “synergistic”, 
“antagonistic”, “antimicrobial” and 
“antibacterial” were used for the search. The 
tested organisms were restricted to 
Staphylococcus aureus, the most targeted 
bacteria for exploring antibacterial activity of 
plant extracts [22]. Cytoscape [23] (ver. 3.9.1) 
was used to visualize the EO–EO interaction 
data. 

Chemical composition data of 
commercially available 84 EOs were retrieved 
from homepages of product suppliers in Japan. 
We excluded EOs rich in monoterpene 
hydrocarbons because their antibacterial 
effects seemed to be much weaker than other 
constituents [24]. 
 
4.2 Reagents 
Acetone for gas chromatography was 
purchased from KISHIDA CHEMICAL Co., 
Ltd, Japan. Dimethyl sulfoxide (DMSO) and 
thymol (special grade) were purchased from 
FUJIFILM Wako Pure Chemical Corporation, 
Japan. A series of n-alkane standards (C9 to 
C40) was purchased from GL Sciences Inc., 
Tokyo, Japan. Mueller-Hinton II broth was 
purchased from Becton, Dickinson and 
Company, USA. Staphylococcus aureus 
(NBRC 12732) for antibacterial activity tests 
were from the National Institute of Technology 
and Evaluation, Biological Resource Center 
(NBRC), Japan. 
 

4.3 Graph embedding 
The network structure and oil composition data 
were inputted to attri2vec [25], a graph 
embedding algorithm to encode the nodes as 
numerical vectors. The number and the size of 
hidden layer were set to 1 and 16, respectively. 
Walk length was set to 3, number of walk was 
set to 3, batch size was set to 32, epochs was 
set to 50 and learning rate of Adam optimizer 
was set to 0.01. Binary cross-entropy was 
chosen as loss function. StellarGraph library 
(https://github.com/stellargraph/stellargraph) 
was used for the attri2vec implementation. The 
edge features were constructed from pairs of 
the learned node representations with four 
binary operators (Hadamard, L1-norm, L2-
norm and average) [26]. For comparison with 
a classification-based method, the oil 
composition data without graph embedding 
was used to construct the edge features.  
 
4.4 Machine learning of EO–EO interaction 
The edge features constructed above were 
inputted to multinomial logistic regression 
with L-BFGS method [27] to classify the three 
types (synergistic/additive/antagonistic) of 
interactions. Output probability for synergistic 
and antagonistic classes were evaluated by 
receiver operating characteristic (ROC) curve 
[28], respectively. We repeated ten-fold cross-
validation 10 times, and used a paired two-
tailed t-test to determine whether there is any 
difference in area under the ROC curve (AUC) 
between the two methods. The partial AUCs 
were calculated using ‘pROC’ (ver. 1.18.0) R 
package. 
 
4.5 Prediction of synergistic interaction 
between available EOs 
The probability of synergistic/antagonistic 
interaction between all possible pairs of the 
commercially available 84 EOs were 
calculated using chemical composition data 
provided by suppliers and the classifier 
constructed above. Youden index [29] 
obtained by the cross-validation was used to 
set cut-off probability. Sixteen EO–EO pairs 
were selected for following evaluation. The 
EOs corresponding to the selected pairs were 
purchased from the suppliers. 
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4.6 Gas chromatography/mass 
spectrometry (GC/MS) analysis 
Chemical characterization was performed as 
reported by the authors [30] using gas 
chromatograph coupled with mass 
spectrometer model QP2010 (Shimadzu, 
Kyoto, Japan). Essential oils were dissolved in 
acetone (2 μL/mL). This solution (1 μL) was 
injected in split mode (1:50 ratio) onto a DB-
5MS column (30 m × 0.25 mm i.d. × 0.25 μm 
film thickness, Agilent, USA). The injection 
temperature was set at 270 °C. The oven 
temperature was started at 60 °C for 1 min after 
injection and then increased at 10 °C/min to 
180°C for 1 min, increased at 20 °C/min to 
280 °C for 3 min followed by an increase at 
20 °C/min to 325 °C, where the column was 
held for 20 min. Mass spectra were obtained in 
the range of 20 to 550 m/z. Essential oil 
components were identified based on a search 
(National Institute of Standards and 
Technology, NIST 14), the calculation of 
retention indices relative to homologous series 
of n-alkane, and a comparison of their mass 
spectra libraries with data from the mass 
spectra in the literature [31, 32]. 
 
4.7 Antibacterial assay 
The essential oil alone and the 1:1 
combinations were tested using the broth 
microdilution assay reported by the authors 
[30]. A stock solution of each essential oil 
(dissolved to a concentration of 40 mg/mL in 
DMSO) was diluted to 4 mg/mL by Mueller-
Hinton II broth medium, followed by serial 
dilution by the medium to lower concentrations 
(2, 1, 0.5, 0.25, 0.125, 0.0625, 0.0313, 0.0156 
and 0.0078 mg/mL). Thymol, a known 
antibacterial agent, was dissolved and diluted 
in the same way to ensure microbial 
susceptibility (positive control). The oils were 
all tested in triplicate. Staphylococcus aureus 
NBRC 12732 was inoculated onto normal agar 
plates, and cultured for 24 hr at 35 ± 1 °C. The 
bacterial suspensions were diluted by saline to 
obtain 0.5 McFarland turbidity equivalent (ca. 
108 colony forming units per mL (CFU/mL)), 
and were further diluted 10 times (ca. 107 
CFU/mL). 0.1 mL of essential oil-containing 

medium and 5 μL inoculum were added to 
sterile micro-titre plates. 10 % (v/v) DMSO in 
the medium was used to determine if the 
solvent exhibited any antibacterial effect 
(negative control). The micro-titre plates were 
incubated for 18 to 24 hr at 35 ± 1 °C. Based 
on the opacity and color change in each well, 
the lowest concentration capable of inhibiting 
the growth was determined as minimum 
inhibitory concentration (MIC). 

The type of interaction was determined 
using fractional inhibitory concentration (FIC), 
a widely accepted means of measuring the 
interactions [33], followed by calculating FIC 
index (FICI) through the equations below: 

FICI = FICA + FICB 
where 

FICA = MICA (combination) / MICA (alone) 
and 

FICB = MICB (combination) / MICB (alone) 
The FICI values were interpreted as follows:  
≤ 0.5 = synergistic; 0.5–4.0 = additive; ≥ 4.0 = 
antagonistic. 
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