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Dielectric constant is a value, that is widely applied in many scientific fields, and characterizes the degree of polarization 

of substances under the external electric field. In this work, a structure-property relationship of dielectric constants (ε) 

for a diverse set of polymers was investigated. A transparent mechanistic model was developed with application of a 

genetic algorithm combined with multiple linear regression analysis (GA-MLRA), to get a mechanistically explainable 

and transparent model. Based on the evaluation conducted using various validation criteria, four- and eight-variable 

models were proposed. Obtained statistical performance results and selected descriptors in the best models were 

analyzed and discussed. With the validation procedures applied the models were proven to have a good predictive ability 

and robustness.  
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Introduction 

Polymeric properties related to electrical 

conductivity are useful in many applications, such as 

cable insulation [1], capsules for electrical 

components, interlayer dielectrics, charge-storage 

capacitors [2, 3], and printed circuit boards [4]. 

Dielectric permittivity is a value that is widely used 

and characterizes the degree of polarization of 

substances under the action of an external electric 

field. A larger dielectric constant means a larger 

polarization of the medium between two charges. 

Therefore, the dielectric constant is the ability of a 

substance to separate the charge and/or orient its 

molecular dipoles in an external electric field. The 

dielectric constant is an important basic molecular 

property that can also be a useful predictor of other 

electrical properties of polymers [4-6]. However, the 

exact experimental values of dielectric constant for 

polymers are often unavailable. The prediction of 

dielectric constants computationally and by using 

theoretical approaches, such as machine learning 

predictive modeling is important in the molecular 

design of new polymeric materials with desired 

properties. The rapid and accurate implementation of 

predictions for a wide variety of chemical structures 

can significantly improve the performance and speed 

of phenomena investigation. However, the theoretical 

calculation of the property such as dielectric constant 

of the polymer is not an easy problem, since this 

property is a non-linear property and therefore a 

function of several factors, including polymer 

structure and composition, temperature, materials 

morphology, additives and plasticizers, impurities, 

and moisture in the volume of the polymer. 

Quantitative structure−activity relationship (QSAR) 

is a subsection of machine learning modeling and 

chemical informatics for revealing relationships 
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between chemical structures of molecules and their 

activity. QSAR modeling is a suitable approach for 

estimating the properties of polymers based on 

numerical features/descriptors derived from 

molecular structure to fit the experimental data [7-9]. 

The main idea of the QSAR approach is that the 

change in the desired property of a compound can be 

correlated with the structure-based properties that 

numerically expressed and called "molecular 

descriptors" [8-11]. In cheminformatics, molecular 

descriptors are numbers that formally represent a 

molecule, obtained by a well-defined algorithm and 

applied to a well-defined experimental procedure, In 

other words, molecular descriptor is the result of a 

mathematical expression that converts chemical 

structure to a numerical value [12]. Each molecular 

descriptor describes a molecular structure, by 

encoding a part of the structure or a whole molecular 

structure. Molecular descriptors play a fundamental 

role in the development of QSPR models. One of the 

main features of the QSPR approach is that it requires 

only knowledge of the chemical structure and is 

independent of any experimental properties. Once a 

correlation is found, it can be applied to predict the 

properties of new compounds that have not been 

synthesized or not found. Therefore, the QSPR 

approach can accelerate the development of new 

molecules and materials with the required properties. 

Using the QSPR approach, many different properties 

of polymers can be determined with sufficient 

accuracy, in particular, this approach is already used 

to determine such properties as refractive index [4, 

13-21], glass transition temperature [14, 22-33], 

cohesive energy [34], thermal decomposition 

temperature [35], solubility parameter [36], as well as 

for fouling release properties [37]. Several QSPR 

models for the dielectric constants of small organic 

molecules have also been reported in the literature [6, 

38-41]. But the number of attempts to predict the 

dielectric constants of the polymers was rather small 

[4, 42]. Liu et al. [42] introduced a model with a 

correlation coefficient of (R2) 0.908 and a standard 

error (s) of 0.001 for 22 polyalkenes using three 

descriptors, but the values of ε in this case only cover 

the range from 2.154 to 2.165. Bicerano [4] 

developed a QSPR model with (R2) 0.958 and (s) 

0.087 to correlate ε with 32 topological and 

constitutional descriptors for 61 polymers. This 

model contains too many descriptors. Excessive 

correlation and randomness of correlations may be 

partly due to improved results by increasing the 

number of descriptors in the correlation. Moreover, 

the two models were not validated externally, using a 

test set. In fact, validation is a crucial aspect of any 

QSPR/QSAR modeling [43]. 

The purpose of this study was to develop a reliable 

predictive QSPR model that could effectively be used 

to predict dielectric constant values, having 

mechanistically explainable descriptors for further 

design application. The model is developed using a 

set of 71 polymers with a large structural diversity, 

with further model validation applying specific 

validation approaches and an external set. 

Materials and Methods 

Data set 

The experimental data (polymers 1-56) were taken 

from the source that published by Bicerano [4], the 

remaining data (polymers 57-71) from the source 

published by Ku and Liepins [5], at room temperature 

(298K). In total, the data set for this study consists of 

71 polymers with a diverse structure (see Table 1). 

The data set contains polymers of the following types: 

polyvinyles, polyethylenes, polyoxides, polystyrenes, 

polyethers, polysulfones, polyacrylnitrile, 

polyamides, polyacrylates, poly-siloxanes, 

polyxylylenes, and polycarbonates. 

Computational Details 

In this work, the structures of all polymers were 

computationally built, optimized and used for 

generating structural properties / features / descriptors 

calculation. Due to the fact that polymers are 

macromolecules with a large size and wide chain 

length distribution, the calculation of structural 

descriptors based on original structural formulas was 

not possible using current descriptors-generating 

software [23, 30]. Moreover, due to the high 

molecular weight of the polymers, the effect of the 

terminal groups on the overall structure of polymer is 

quite small, which allows us to neglect terminal 

structures contribution. In this regard, the structures 

of repeating monomer units of investigated polymers 

were used to calculate the structural 

features/descriptors (as shown in Fig. 1) [13, 15, 22-

24, 30]. We assumed that main contributing factor to 

the polymer property is the structure of monomer 

units, and therefore the molecular descriptors are 

calculated based on the structure of repeating 

monomer units [44, 45]. 

The molecular structures of each polymer were 

drawn in ChemSketch software [46]. The 

optimization of monomeric units, i.e. a geometry 

optimization and finding the minimal energy 
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conformation is important step and provides a real 

conformation of the investigated structure for further 

QSAR modeling. The molecular modeling is often 

used for optimization and properties assessment of 

various chemical systems [47-50]. In this work the 

geometry optimization was carried out using 

HyperChem software, applying molecular mechanics 

force-field MM+ [51]. The criterion for energy 

optimization limit was chosen as the achieved 

gradient of 0.01 kcal/mol. The molecular descriptors 

for each polymer were calculated based on minimal 

energy conformation using DRAGON software [52]. 

Dragon 6.0 allows to generate about 5000 descriptors 

per structure [52]. The generated descriptors include 

the following categories: constitutional indices, 2D 

and 3D matrix-based descriptors, 2D 

autocorrelations, topological descriptors, 

connectivity indexes, information indices, atom-

centered fragments, 3D-MoRSE descriptors, charge-

based descriptors, 0D, 2D, and 3D descriptors, 

molecular properties, drug-like properties and etc 

[53]. Descriptors with high correlation, single 

variables, and non-informative information were 

discarded based on constant value, near constant, and 

pair correlation criteria (R > 0.7). 

A total of 523 descriptors of different types were 

selected after initial filter criteria applied. Each 

descriptor is representing a molecular graph invariant 

and describes the particular property and in overall 

adds to chemical diversity of the monomeric unit. 

The model development was performed with the 

following setup to find a best model. For the genetic 

algorithm (GA) based variable selection step the 

number of generations was set to 2000 and a mutation 

rate of 35% was used. For the best models’ selection, 

the population size of the final models’ list was set to 

20. For validation purposes, multiple methods were 

applied, including leave-one-out (LOO) cross 

validation, y-scrambling, as well as internal and 

external validation protocols. After validation 

techniques were applied, the best model was chosen 

based on multiple criteria: 1) high statistical 

performance of R2 and Q2 variables (including  

R2 - Q2 < 0.3); 2) a low number of variables in the 

model; 3) low cross-correlation between descriptors 

in the selected model; and 4) best performance of R2 

for the external validation set (test set). 

 

Table 1. A set of experimental and predicted dielectric constants data for the polymers involved in the experiment. 

№ Name 
Dataset 
Status 

Exp. 
Eq. 1. Eq. 2. 

Pred. Residual Pred. Residual 

1 Poly(1,4-butadiene) Train. 2.51 2.4104 -0.0996 2,6006 0,0906 

2 Poly[oxy(2,6-dimethyl-1,4-phenylene)] Train. 2.6 2.9651 0.3651 2,7210 0,1210 

3 Bisphenol-A polycarbonate Train. 2.9 3.0325 0.1325 2,8725 -0,0275 

4 Poly(ether ether ketone) Train. 3.2 3.0998 -0.1002 3,0820 -0,1180 

5 Poly(ethylene terephthalate) Train. 3.25 3.1291 -0.1209 3,0958 -0,1542 

6 Poly(chloro-p-xylylene) Train. 2.95 2.8054 -0.1446 2,7932 -0,1568 

7 Polyacrylonitrile Train. 4 3.6164 -0.3836 3,9567 -0,0433 

8 Polystyrene Train. 2.55 2.4631 -0.0869 2,3794 -0,1706 

9 Polypropylene Train. 2.2 2.3304 0.1304 2,3763 0,1763 

10 Poly(p-xylylene) Train. 2.65 2.4154 -0.2346 2,3772 -0,2728 

11 Polyisobutylene Train. 2.23 2.1490 -0.0810 2,2123 -0,0177 

12 Poly(p-chloro styrene) Train. 2.65 2.8016 0.1516 2,7449 0,0949 

13 Poly(N-vinyl carbazole) Train. 2.9 2.9390 0.0390 2,7868 -0,1132 

14 Poly(vinyl cyclohexane) Train. 2.25 2.3931 0.1431 2,1312 -0,1188 

15 Polyisoprene Test 2.37 2.2119 -0.1581 2,4058 0,0358 

16 Poly(p-hydroxybenzoate) Train. 3.28 3.1280 -0.1520 3,1413 -0,1387 

17 Poly(vinyl butyral) Train. 2.69 2.9227 0.2327 3,0580 0,3680 

18 Poly(cyclohexyl methacrylate) Train. 2.58 2.9625 0.3825 2,7652 0,1852 

19 Poly(vinyl acetate) Train. 3.25 2.9128 -0.3372 3,1751 -0,0749 

20 Poly(e-caprolactam) Train. 3.5 3.5411 0.0411 3,4218 -0,0782 

21 Poly(3,4-dichlorostyrene) Test 2.94 2.7643 -0.1757 2,9000 -0,0400 

22 Poly(hexamethylene adipamide) Train. 3.5 3.5852 0.0852 3,5226 0,0226 

23 Poly(hexamethylene sebacamide) Test 3.2 3.5443 0.3443 3,3880 0,1880 

24 Poly(isobutyl methacrylate) Train. 2.7 2.8675 0.1675 2,7456 0,0456 

25 Poly(vinyl chloride) Train. 2.95 3.1896 0.2396 2,9759 0,0259 

26 Poly(m-chloro styrene) Train. 2.8 2.6153 -0.1847 2,8629 0,0629 

27 Polychlorotrifluoroethylene Test 2.6 2.1061 -0.4939 2,2365 -0,3635 
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28 Poly(ethyl methacrylate) Train. 3 2.8124 -0.1876 2,8927 -0,1073 

29 Poly(n-butyl methacrylate) Test 2.82 2.9877 0.1677 2,9430 0,1230 

30 Poly(methyl methacrylate) Train. 3.1 2.8846 -0.2154 2,8868 -0,2132 

31 Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] Train. 3.3 3.3864 0.0864 3,4484 0,1484 

32 Polyethylene Test 2.3 2.4908 0.1908 2,3596 0,0596 

 

Table 1 (continued) 

№ Name Status Exp. 
Eq. 1. Eq. 2. 

Pred. Residual Pred. Residual 

33 Poly(a-vinyl naphthalene) Test 2.6 2.4277 -0.1723 2,4579 -0,1421 

34 Poly(tetramethylene terephthalate) Train. 3.1 3.2794 0.1794 3,1749 0,0749 

35 Poly[thio(p-phenylene)] Train. 3.1 3.4506 0.3506 3,2558 0,1558 

36 Poly(4-methyl-1-pentene) Train. 2.13 2.1958 0.0658 2,2527 0,1227 

37 Poly(1-butene) Train. 2.27 2.3378 0.0678 2,4632 0,1932 

38 Poly(a,a,a',a'-tetrafluoro-p-xylylene) Train. 2.35 2.4386 0.0886 2,4448 0,0948 

39 Poly(o-methyl styrene) Train. 2.49 2.4046 -0.0854 2,4385 -0,0515 

40 Poly(b-vinyl naphthalene) Train. 2.51 2.4622 -0.0478 2,5002 -0,0098 

41 Poly(a-methyl styrene) Test 2.57 2.4189 -0.1511 2,3614 -0,2086 

42 Poly[oxy(2,6-diphenyl-1,4-phenylene)] Train. 2.8 2.8875 0.0875 2,9843 0,1843 

43 Poly(vinylidene chloride) Train. 2.85 2.9919 0.1419 2,7289 -0,1211 

44 Poly(p-methoxy-o-chloro styrene) Train. 3.08 3.0777 -0.0023 3,1591 0,0791 

45 Poly(ethyl a-chloroacrylate) Test 3.1 3.1639 0.0639 3,4555 0,3555 

46 Poly(methyl a-chloroacrylate) Train. 3.4 3.2357 -0.1643 3,4685 0,0685 

47 Poly(oxy-2,2-dichloromethyltrimethylene) Train. 3 3.1478 0.1478 3,0166 0,0166 

48 Ultem 1000 Test 3.15 3.4652 0.3152 3,3747 0,2247 

49 Polyoxymethylene Train. 3.1 2.9951 -0.1049 3,0158 -0,0842 

50 Poly(1,4-cyclohexylidene dimethylene terephthalate) Train. 3 3.1045 0.1045 3,0271 0,0271 

51 Poly[N,N'-(p,p'-oxydiphenylene)pyromellitimide] Train. 3.5 3.5482 0.0482 3,5032 0,0032 

52 Poly[4,4'-diphenoxy di(4-phenylene)sulfone] Train. 3.44 3.3943 -0.0457 3,4010 -0,0390 

53 Poly[4,4'-isopropylidene diphenoxy di(4-phenylene)sulfone] Test 3.18 3.3082 0.1282 3,4309 0,2509 

54 Poly[4,4'-sulfone diphenoxy di(4-phenylene)sulfone] Train. 3.8 3.5963 -0.2037 3,6851 -0,1149 

55 Poly[1,1-cyclohexane bis(4-phenyl)carbonate] Test 2.6 3.0918 0.4918 3,0117 0,4117 

56 Poly[1,1-ethane bis(4-phenyl)carbonate] Train. 2.9 3.0499 0.1499 2,9578 0,0578 

57 Poly(cellulose propionate) Train. 3.2 3.1174 -0.0826 3,4035 0,2035 

58 Poly(amide-imide) Train. 3.32 3.4811 0.1611 3,3832 0,0632 

59 Poly(diallyl phthalate) Train. 3.57 3.2808 -0.2892 3,3366 -0,2334 

60 Poly(diallyl phenyl phosphonate) Train. 3.84 3.6409 -0.1991 3,7696 -0,0704 

61 Poly(2,5-dichlorostyrene) Train. 2.61 2.7786 0.1686 2,8859 0,2759 

62 Polyfumaronitrile Excl. 8.5     

63 Poly(methyl cellulose) Excl. 6.8     

64 Nylon 11 Train. 3.3 3.3744 0.0744 3,3483 0,0483 

65 Nylon 12 Train. 3.6 3.3392 -0.2608 3,3367 -0,2633 

66 Poly(vinyl fluoride) Excl. 8.5     

67 Poly(2-vinyl pyridine) Excl. 4.64     

68 Poly(vinyl toluene) Train. 2.59 2.4524 -0.1376 2,4418 -0,1482 

69 Poly(vinylidene fluoride) Excl. 8.4     

70 Poly(dichloro-p-xylylene) Test 2.82 2.9745 0.1545 2,8109 -0,0091 

71 Poly(methyl-p-xylylene) Train. 2.48 2.3989 -0.0811 2,4105 -0,0695 

  

Results and discussion 

In this work, a dataset of 71 polymers was used to 

develop a quantitative structure-permittivity 

relationship model. For the model validation, the set 

was split into training and test sets consisting of 57 

and 14 polymers, respectively. The splitting was 

performed with care to ensure that at least one 

compound of each structural class in the training set 

was represented in the test set. After GA-MLRA 

computation iterations, the best models were found. 

After a first round of GA-MLRA it was found that 

five compounds are outliers, with high experimental 

values error. The outliers are: 62, 63, 66, 67 and 69. 
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After elimination of outliers the GA-MLRA iteration 

was repeated. The set with a total of 66 components 

was split into training and test sets, containing 53 and 

13 polymers, respectively. In the process of finding 

the best model, several options were selected that best 

correlate with the dielectric constant of the selected 

polymers. Two models with four and eight variables 

are proposed, the statistical characteristics of which 

are given in Table 2. 

The following equations represent the proposed 

models with four (1) and eight (2) variables: 

 

ɛ = – 3.839(±0.559)Me + 3.478(±0.281)AAC – 

0.477(±0.138)JGI1 – 0.616(±0.115)R5p+ + 

2.491(±0.085)      (1) 

N = 53; R2
train = 0.842; s = 0.187; F = 64.124; Q2 = 

0.813; R2
test = 0.715 

 

ε = – 2.487(±0.489)Me + 2.285(±0.289)AAC + 

1.044(±0.151)GATS1p – 0.345(±0.107)ESpm11u – 

0.343(±0.154)Mor22v – 1.308(±0.178)RARS + 

1.048(±0.225)R1v+ – 0.254(±0.120)nCt + 

2.863(±0.182)      (2) 

N = 53; R2
train = 0.905; s = 0.151; F = 52.542; Q2 = 

0.865; R2
test = 0.812 

 

The four-variable model shows a good 

performance, with R2
train = 0.842 and R2

test = 0.715, 

which is a satisfactory level. A graphical 

representation of the model for the training and test 

sets is represented in Figure 1 (A). Compared to the 

4-variable model, the eight-variable model shows 

better R2
train and Q2 performance values for training 

set, less standard deviation s, and better predictive 

performance due to higher R2
test for the test set, 0.812. 

In comparing to four-variable model, the 8-variable 

model having larger number of variables, which can 

lead to some level of overfitting. A graphical 

representation of the model for the training and test 

sets is presented in Figure 1 (B).  

Both equations: (1) and (2), show satisfactory 

statistical results that confirms the robustness of these 

models. However, considering the combined 

productivity for both training and test sets, the second 

model provides better performance. 

 

Fig.1. Plots of experimental and predicted 

values of the dielectric constants for the entire 

data set. Yellow dots are the training set, blue dot 

are the test set (A – for Eq. 1.; B – for Eq. 2). 

Descriptor selection was performed by applying 

variable selection GA algorithm, followed by MLRA 

approach together with cross-validation LOO 

procedure. Based on the size of the dataset and the 

correlation coefficients of the training and test sets 

(R2train and R2test), the significance criterion F and 

the standard error s, the number of descriptors in the 

final QSPR model was determined.

 

Table 2. Statistical characteristics of the four- and eight-variable models. 

Model, No. of 

descriptors 
R2

train R2
adj s F Q2 R2

test 
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1 4 0.842 0.829 0.187 64.124 0.813 0.715 

2 8 0.905 0.888 0.151 52.542 0.865 0.812 

A very important step is to check an applicability 

domain (AD). Predictions of compounds can be 

considered reliable only if the dataset’s chemical 

space of applicability is within the predictive 

chemical space of the developed model, before the 

model can be applied for predictions. The AD check 

was performed by application of leverage approach, 

i.e. William's plot evaluation for the final models. All 

points were within the three standardized residues 

(±3σ) and within the HAT index, where h* - critical 

value of leverage h. If the errors of estimation would 

exceed the values of the standardized residues, then 

the predicted values could go out of AD and give 

inaccurate predictions as they go beyond reasonable 

extrapolation. If the value of h of the resulted data is 

higher than h*, then they are considered as 

structurally significant contributors to the model [54]. 

As can be seen in the Williams plots (Fig. 2) for 

both equations, in the first model (A) there only two 

polymers, and in the second (B) only one polymer that 

have values h higher than h*. However, these 

polymers have low residual values, which means that 

the model is stable enough to make reliable 

predictions for all polymers structurally similar to the 

ones in the dataset. 

The obtained models contain the following 

descriptors: Me - mean atomic Sanderson 

electronegativity (scaled on Carbon atom); AAC - 

mean information index on atomic composition; 

R5p+ - R maximal autocorrelation of lag 5 / weighted 

by polarizability; JGI1 - mean topological charge 

index of order 1; GATS1p - Geary autocorrelation of 

lag 1 weighted by polarizability; Mor22v - signal  

22 / weighted by van der Waals volume; RARS - R 

matrix average row sum; ESpm11u - Spectral 

moment 11 from edge adj. matrix; R1v+ - R maximal 

autocorrelation of lag 1 / weighted by van der Waals 

volume; nCt - number of total tertiary C(sp3). 

More information about these descriptors can be 

found in Dragon software user’s guide [52, 53] and 

the references therein.  

As a rule, the value of the coefficient F indicates 

the ability of the model to predict the value of the 

properties in the training set. The large F ratio values 

in both equations (64.124 and 52.542 for the first and 

second, respectively) indicate that both equations do 

an excellent job with predicting ε values. Each 

equation has an adjusted value of R2
adj: 0.829 and 

0.888, which denotes a very good correspondence 

between correlation and data variation. The cross-

validated correlation coefficient (Q2 for Eq.1. = 

0.813; Q2 for Eq.2. = 0.865) demonstrates the 

robustness of the models. The model was further 

validated using a y-randomization test. The obtained 

R2Yscr against the correlation coefficient between the 

original and shuffled data is shown in Fig. 3. It can be 

seen from the Fig. 3 that the original models are not 

due to random correlations, values of R2Yscr are 

significantly low. It is worth noting that the model 1 

showed much stronger robustness at y-scrambling 

test than model 2. The calculated results of the values 

of ε from equations 1 and 2 for the training and test 

sets are shown in Table 1 and Fig. 1.  

 

Fig.2. Williams plots for Eq.1. (A) and Eq.2. (B): yellow balls — training set; blue balls — test set. 
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Fig.3. Y-scrambling plots of selected 4-descriptor Eq.1 (A) and 8-descriptor Eq.2 (B) models. 

Based on the model selection procedure described 

earlier, the relative contribution of descriptors to the 

respective models was determined and shown in  

Fig. 4. The descriptors involved in the model are 

having the reducing contribution to the model in the 

following order: for the Eq.1: Me > AAC > R5p+ > 

JGI1; for the Eq.2: Me > AAC > RARS > R1v+ > 

GATS1p > ESpm11u > Mor22v > nCt. 

One of the most important descriptors involved in 

both equations is the AAC information index. This 

descriptor contains information about each atom in a 

molecule by its own atom type and its bond type and 

the atom types of its first neighbors. AAC is a 

measure of atomic composition associated with 

molecular complexity. When a molecule is larger and 

its elemental composition is more complex, the value 

of the descriptor increases. The positive value of this 

descriptor indicates that polymers with a more 

complex structure and, accordingly, with a larger 

value for this descriptor would have larger values of 

ε. 

ESpm11u is based on the use of bond distances as 

weights in the diagonal entries of the edge matrix. 

 
Fig.4. Descriptors contributions to Eq.1 (A) and 

Eq.2 (B). 

 

Conclusions  In this work, a structure-property relationship 

model for dielectric constants (ε) based on a diverse 

set of polymers is developed. A transparent model 
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was obtained with application of GA-MLRA 

approach, to get a mechanistically explainable model. 

This work represents two QSPR models developed 

based on descriptors computed from monomeric 

polymer structures. The reliability of the models was 

validated by several verification methods. The best 

overall performance is achieved by a four- and eight-

descriptor QSAR models, with R2 values of 

0.842/0.715 and 0.905/0.812 for training/test sets, 

respectively per each model. The models are suitable 

for further development of polymers with desired 

dielectric constants based on chemical structure 

information of monomers.  
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