
Machine Learning Seams of Conical Intersection:

A Characteristic Polynomial Approach

Tzu Yu Wang,† Simon P. Neville,∗,‡ and Michael S. Schuurman∗,‡,†

†Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa,

Canada

‡National Research Council Canada, 100 Sussex Dr., Ottawa, Canada, K1A 0R6

E-mail: simon.neville@nrc-cnrc.gc.ca; michael.schuurman@uottawa.ca

Abstract

The machine learning of potential energy surfaces (PESs) has undergone rapid

progress in recent years. The vast majority of this work, however, has been focused on

the learning of ground state PESs. To reliably extend machine learning protocols to

excited state PESs, the occurrence of seams of conical intersections between adiabatic

electronic states must be correctly accounted for. This introduces a serious problem, for

at such points the adiabatic potentials are not differentiable to any order, complicating

the application of standard machine learning methods. We show that this issue may be

overcome by instead learning the coordinate-dependent coefficients of the characteristic

polynomial of a simple decomposition of the potential matrix. We demonstrate that,

through this approach, quantitatively accurate machine learning models of seams of

conical intersection may be constructed.
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Introduction

Potential energy surfaces (PESs) are of central importance in understanding chemical pro-

cesses, forming a crucial ingredient for the simulation and rationalization of the spectroscopic

and dynamic properties of molecular systems. Accordingly, there exists great interest in the

construction of accurate PES models fitted to ab initio energies. Here, recent advances in

machine learning (ML) promise to be transformative,1–5 with accurate, high-dimensional ML

models PESs now being routinely constructed. However, there exists an important caveat

to this success: the majority of applications to date have been concerned with the learning

of isolated ground state PESs. If one is interested in excited state PESs, then an addi-

tional complication must be accounted for. Namely, that, in general, excited state PESs

exhibit extended seams of conical intersection (CIs).6,7 The existence of a CI seam between

two or more electronic states means that the corresponding adiabatic PESs belong to the

C0 differentiabilty class over any domain containing it. This lack of differentiability, or non-

smoothness, of the PESs on the locus of seam points is highly problematic for many standard

ML approaches, including kernel methods, and neural networks employing gradient-based

optimization. Such models will struggle to correctly describe CI seams; in terms of topogra-

phy and, more importantly, the dimensionality of the branching space. That is, the subspace

in which the degeneracy between the intersecting PESs is lifted to first-order, a defining prop-

erty of seams of CI. Given the central role played by CIs in photochemistry and photophysics,

this poses a serious problem that previous works have not directly addressed.8–15

In this Letter, we demonstrate that accurate ML models of CI seams, including a cor-

rect description of the branching space, can in fact be constructed by forgoing the direct

learning of PESs. Instead, we advocate for the learning of the nuclear coordinate-dependent

coefficients of the characteristic polynomial (CP) of a simple decomposition of the poten-

tial matrix. Unlike the adiabatic PESs, these form smooth surfaces, even at points of CI.

Furthermore, there exists a simple mapping between the CP coefficients and the adiabatic

PESs, making the recovery of the latter a trivial exercise. The efficacy of the proposed
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approach is demonstrated via the construction of kernel ridge regression (KRR) models of

conical intersections for a number of small molecules, although the conclusions drawn should

be transferable to other ML methods, e.g., the construction of neural network potentials.

LetR denote the vector of 3N nuclear coordinates, and V (R) the n×n nuclear coordinate-

dependent adiabatic potential matrix with on-diagonal elements Vii(R) corresponding to the

PESs Ei(R) of interest. We begin with the decomposition of the potential matrix into an

average energy and splitting matrix,

V (R) = ω(R)1n +Z(R), (1)

where ω(R) = TrV (R)/n denotes the average adiabatic energy, and the diagonal splitting

matrix Z(R) has elements Zij(R) = [Ei(R) − ω(R)]δij. The average energy ω(R) is a

smooth function of the nuclear coordinates, even at points of CI. To arrive at a smooth

representation of the splitting contribution Z(R), we follow Opalka and Domcke16 and

consider its characteristic polynomial

pZ(λ) = det [λ1n −Z(R)]

=
n∏

i=1

[λ− Zii(R)]

=
n−1∑
i=0

cZi (R)λi,

(2)

with CP coefficients cZi (R) given by
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cZ0 (R) = (−1)n
n∏
i

Zii(R)

...

cZn−2(R) =
n∑

i<j

Zii(R)Zjj(R)

cZn−1(R) = −
n∑
i

Zii(R) = 0

cZn (R) = 1

(3)

The CP coefficients are also smooth functions of the nuclear coordinates over any domain,

including one that contains a CI. Given the CP coefficients, cZi (R), and average energy,

ω(R), the adiabatic potentials may easily be recovered as the eigenvalues of the following

companion matrix:16

Figure 1: Adiabatic potential energy surfaces, E1(x, y) and E2(x, y), average energy, ω(x, y),
and the single splitting matrix CP coefficient, cZ0 (x, y), for a representative first-order CI
model (Equation 7) with parameters g̃ = h̃ = 0.5, sx = 0.25, sy = 0.1. Unlike the adiabatic
potential energy surfaces, ω(x, y) and cZ0 (x, y) are smooth, differentiable functions, even at
a point of CI.
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C(R) =



ω(R) 0 · · · 0 0 −cz0(R)

1 ω(R) · · · 0 0 −cz1(R)

...
...

. . .
...

...
...

0 0 · · · 1 ω(R) −czn−2(R)

0 0 · · · 0 1 ω(R)


(4)

The advantages of learning the set of functions {ω(R), cZi (R) : i = 0, . . . , n − 2} instead of

the PESs Ei(R) are two-fold. Firstly, these functions are extremely smooth, as illustrated

in Figure 1 for a simple first-order model of a two-state CI. This, in turn, renders them

highly amenable to machine learning, unlike the underlying adiabatic PESs, which exhibit

discontinuous derivatives at a point of CI. Secondly, and somewhat remarkably, all the

branching space information is contained in the single CP coefficient cZn−2(R), irrespective

of the number of intersecting states. To see this, we first note that the following identity

holds:

cZn−2(R) = − 1

2n

n∑
i<j

[Ei(R)− Ej(R)]2

= − 1

2n

n∑
i<j

∆E2
ij.

(5)

The proof of this is somewhat non-obvious and is given in the Supplementary Information.

Now, since the squared energy differences ∆E2
ij(R) are lifted to second-order at a point of

CI with respect to the branching space coordinates, and to fourth-order with respect to the

remaining seam space coordinates, the Hessian

Hαβ(R
′) =

∂2cZn−2

∂Rα∂Rβ

∣∣∣∣∣
R′

, (6)

when evaluated at a point of CI, RCI , has a column space corresponding to the branching

space, and a null space corresponding to the seam space. Thus, the orthogonalized branching

(seam space) coordinates may be computed as the eigenvectors of H(RCI) with non-zero
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(zero) eigenvalues.17–19 Further, as detailed below, the non-zero eigenpairs can be used to

characterize the conical intersection topography. Thus, in addition to being smooth, slowly-

varying functions, the CP coefficients provide a simple, yet fundamental, encapsulation of

the branching space information, irrespective of the number of intersecting states.

To show the advantages of constructing ML models of seams of CIs using the above-

described CP formalism, KRR models were constructed for three prototypical CIs: (1) the

symmetry-required (E ⊗ e) two-state CI between the two components of the D1 state of

NH+
3 ; (2) the accidental ‘twisted-pyramidalized’ (TwPy) CI between the S0 and S1 states

in ethylene, and; (3) the symmetry-required (T2 ⊗ (e ⊕ t2)) three-state intersection beteen

the components of the D0 state of CH+
4 . In addition, in order to highlight the shortcomings

of the traditional, direct approach, KRR models of the adiabatic PESs themselves were

computed for all three systems. In the following, we shall refer to these two sets of models

as the ‘ω-CP’ and ‘direct-energy’ models.

In all cases, radial basis function (RBF) kernel was used in conjunction with the Smoothed

Overlap of Atomic Positions (SOAP) descriptor.20,21 In brief, the SOAP descriptor trans-

forms the Cartesian nuclear coordinates into a power spectrum through a linear combination

of Gaussian type orbital function and spherical harmonics centered at each atom site, which

satisfies the desired symmetries and bijection of a molecular descriptor. More importantly,

the SOAP descriptor allows for scaling to large molecules due to being independent of the

molecule size.22 Training sets were constructed at the multireference configuration interac-

tion (MRCI) level of theory via latin hypercube sampling about each minimum energy CI

(MECI) geometry. The parameters of the SOAP descriptor were separately optimised for

each system using a genetic algorithm approach. The details of these calculations are given

in the Supplementary Information.

We first consider the quality of the ω-CP and direct-energy KRR models as judged by the

mean absolute errors (MAEs) in the vicinity of the MECI geometries as a function of training

set size. These are shown in Figure 2. In all cases, sub-chemical accuracy in the learned
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Figure 2: log of Mean absolute error as a function of training set size, in terms of number of
nuclear configurations, when fitting the characteristic polynomial parameters (ω-CP) or the
adiabatic energies (Direct).
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Figure 3: Eigenvalues of the czn−2 Hessian matrix as computed from ab initio data and using
the ω-CP and direct energy fit surrogate potentials. The number of non-zero eigenvalues
correspond to the dimension of the branching space.
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PESs is attained with fewer than 300 training points. We note, however, that the PESs

obtained from the ω-CP KRR models are consistently more accurate for a given training set

size than the corresponding direct-energy models. The ability of the direct-energy models to

accurately describe on average the adiabatic PESs in a subspace containing a CI, however,

belies a larger failing. Namely, an inability to correctly describe the branching spaces, both

in terms of direction and dimensionality. To see this, we consider the eigenvalues of the

cZn−2(R) Hessian H (Equation 6) evaluated at the MECI points using both the ω-CP and

direct-energy models. These are shown in Figure 3 alongside the ab initio MRCI values.

The number of non-zero eigenvalues of H should equal the dimensionality of the branching

space: two for a two-state CI and five for a three-state CI. In all cases the ω-CP models

quantitatively reproduce the ab initio eigenvalues. On the other hand, the direct-energy

models fail rather badly: for the NH+
3 and CH+

4 models, the dimensionality of the predicted

branching space is too high. For the C2H4 model, only two significantly-non-zero eigenvalues

are furnished by the direct-energy model. However, the values of these are significantly

underestimated which, as we discuss below, is related to an incorrect description of the CI

topography.

Having established the ability of the ω-CP models to correctly recover the dimensionality

of the branching space, we now consider their ability to describe the conical intersection

topography, that is, the parameters describing the tilt and pitch of the cone. Here, we restrict

ourselves to the two-state CI case, which is described to first-order within the branching space

by following model potential:23,24

W (1)(x, y) = (sxx+ syy)12 +

−g̃x h̃y

h̃y g̃x

 . (7)

Here, g̃ and h̃ are the norms of the orthogonalized gradient difference and derivative coupling

vectors, respectively,
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g̃ = − cos βg + sin βh, (8)

h̃ = sin βg + cos βh, (9)

β =
2gTh

hTh− gTg
, (10)

where g and h denote the nascent gradient difference and derivative coupling vectors. To-

gether, the parameters g̃ and h̃ describe the asymmetry in the pitch of the cone. The

parameters

sx =
sT g̃

g̃
, (11)

and

sy =
sT h̃

h̃
, (12)

s =
1

2

∂(E1 + E2)

∂R

∣∣∣
RCI

, (13)

describe the tilt of the principal axis of the CI cone. For the ω-CP models, all first-order

parameters are trivial to compute. The branching space coordinates x and y correspond

to the column space of the Hessian H of cZn−2(R). The corresponding non-zero eigenvalues

take values of −2g̃2 and −2h̃2,17–19 and the tilt parameters sx and sy are obtained using the

relation

s =
∂ω

∂R

∣∣∣
RCI

. (14)

The values of the first-order parameters computed using the ω-CP and direct-energy
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models are shown in Table 1 for both two-state models. In addition, we also give the angles

θx/y between the model and ab initio branching space vectors x and y. The ω-CP models are

found to quantitatively reproduce the CI topography in both cases, with branching vector

angles θx/y of less than 0.5◦ and parameters g̃, h̃ and sx/y in almost perfect agreement with the

ab initio values. The direct-energy models, on the other hand, fare less well, with maximum

branching vector angles θx/y angles of 8.0
◦ and parameters g̃, h̃ and sx/y that fail to correctly

describe the CI topography.

Table 1: Comparison of the branching space parameters determined from ab initio data and
using the surrogate potentials. The parameters g̃ and h̃ are the norms of the orthogonalized
gradient difference and non-adiabatic coupling vectors, respectively, and the θi, i = x, y are
the angles between the ab initio and ω-CP and direct-energy KRR model branching space
vector vectors x and y. Angles are given in units of degrees. All other values are given in
units of Eh/Å.

θx θy g̃ h̃ sx sy

C2H4

ab initio 0.0 0.0 0.213 0.125 -0.130 -0.046
ω-CP 0.0 0.3 0.214 0.126 -0.130 -0.046

direct-energy 3.7 8.0 0.130 0.084 0.128 -0.050

NH+
3

ab initio 0.0 0.0 0.342 0.342 0.000 0.000
ω-CP 0.3 0.3 0.342 0.342 0.000 0.000

direct-energy 5.3 5.3 0.202 0.202 0.000 0.001

Next, we show in Figure 4 both sets of model potentials for the two-state systems along the

two ab initio branching space coordinates, x and y. Two important aspects are immediately

obvious. Firstly, the direct-energy models actually yield avoided crossings, not CIs. On the

other hand, the ω-CP models correctly reproduce the intersection of the PESs. Secondly, and

perhaps more surprisingly, the ω-CP models are able to accurately extrapolate the PESs to

geometries far away from the training sets used to construct them. To see this, we first refer

to Figure 5, where the model branching space cuts are extended to large displacements. Both

ω-CP models remain accurate out to displacements of x=0.4 and y=0.4, which correspond

to geometries outside the span of the training sets. This can be discerned from Figures S4

and S5, in which we show, respectively, a superposition of the training set geometries and

the geometries corresponding to x = 0.4. Somewhat remarkably, for ethylene, this geometry
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corresponds to ethylidene, a different structural isomer to the geometries present in the

training set. Similarly, the ammonia geometry at x=0.4 corresponds to a near-dissociated

N-H bond which, again, is not represented in the training set. The ability of the ω-CP models

to extrapolate is a direct result of the significantly longer length scales on which the surfaces

ω(R) and cZi (R) vary compared to the PESs Ei(R). This, in turn results in large kernel

length scales and an increased distance from which knowledge may be transferred from the

training to prediction points. On the other hand, the rapidly-varying adiabatic PESs result

in direct-energy KRR models that rapidly lose all predictive power when moving away from

elements of the training set.

Figure 4: Adiabatic potentials in the immediate vicinity of a minimum energy conical inter-
section as determined from ab initio computations (isolated points) and the ω-CP and direct
energy surrogate potentials. The latter fail to capture the degeneracy and instead show an
avoided crossing.

It remains to comment on the choice of kernel. The RBF kernel used here is a simple

‘default’ choice in many kernel regression based methods. Belonging to the C∞ differentia-

bility class, it performs well for the smooth ω(R) and cZi (R) functions, the main focus of
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Figure 5: Adiabatic potentials over an extended region of coordinate space along the (rec-
tilinear) branching space directions, x and y, for the two-state examples. While the points
used to fit the ω-CP and direct-energy surrogate potentials were within 1.5 eV of the MECI,
the ω-CP models exhibit impressive fidelity to the ab initio surfaces over a much larger en-
ergy range.
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this work. However, for the direct learning of the PESs Ei(R), other kernel choices might

give improved results. An obvious choice here is the Matérn-1/2 kernel, which belongs to

the same differentiability class (C0) as a set of intersecting adiabatic PESs. However, even

using such a kernel, poor accuracy of the direct-energy KRR models was attained. This

is demonstrated in Figures S2 and S3, where the direct-energy Matérn-1/2 kernel model

PESs are shown plotted along the branching space coordinates for ethylene. Even with

this non-differentiable kernel choice, the model PESs form an avoided crossing instead of a

CI. Yet more complicated, and potentially better performing, kernels could be conceived of,

e.g., additive kernels designed to capture strong sub-dimensional interactions.25 However,

we believe that a strength of our proposed approach is that the complex intersecting PES

structure can be transformed into functions that can be well described by a simple kernel,

as exemplified by the RBF kernel.

Finally, we compare the proposed CP-based approach to learning seams of CI to al-

ternative approaches. An obvious alternative would be to learn quasi-diabatic potential

matrices,26–28 the elements of which are also smooth functions of the nuclear coordinates.

Indeed, this may be an advantageous approach if non-adiabatic couplings are also needed.

If this is not the case, however, then the ω-CP approach seems advantageous for three

main reasons. Firstly, quasi-diabatic potentials are somewhat ill-defined, a result of the

non-existence of strictly diabatic states for polyatomic molecules.29 The functions ω(R)

and cZi (R), on the other hand, form a fundamental representation of the potential ma-

trix, being as they are invariant to unitary transformations of the choice of electronic basis.

Secondly, and related to the prior point, the ω(R) and cZi (R) can be trivially computed

from the adiabatic potentials Ei(R), which are directly furnished from quantum chemistry

calculations. This stands in contrast to quasi-diabatic potentials, for which a subsequent

adiabatic-to-diabatic transformation must be applied, typically requiring either the addi-

tional calculation of derivative couplings or electronic wave function overlaps. Lastly, the

set {ω(R), cZi (R) : i = 0, . . . , n − 2} contains only n quantities to be learned, whilst the
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quasi-diabatic potential matrix is composed of n(n+1)/2 symmetry-unique elements. Thus,

the ω-CP formalism provides a more compact representation of a set of n adiabatic PESs.

To conclude, we have demonstrated the ability to construct quantitatively accurate ML

models of seams of CI via an indirect learning of the involved adiabatic PESs based on a CP

formalism. The advocated ω-CP approach yields a correct description of the branching and

seam spaces, a feat that seems out of reach for models based on the direct learning of adiabatic

PESs. Furthermore, it is found that a single CP coefficient, cZn−2(R), contains all branching

space information, irrespective of the number of intersecting states. In terms of practical

application, the ω-CP formalism will be of use in a number of situations. For example, in

MECI optimisation using quantum chemistry methods for which analytical gradients are not

available; in such cases ω-CP based surrogate potentials may straightforwardly be utilized.

Additionally, the use of ML adiabatic PESs and non-adiabatic couplings in excited-state

dynamics simulations is starting to gain traction.30,31 Here, there seems to be no reason to

continue using directly-learned adiabatic PESs, given the unambiguous advantages of the

indirect ω-CP approach. We thus anticipate that the results presented here shall be of great

use in directing future developments in this nascent, yet important, field of work.
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